Software Engineering
Past, Present, and Future

Japan Advanced Institute of Science and Technology
School of Information Science

Koichiro Ochimizu

Software Development is Challenging
but Difficult to Achieve!

* Software entities are more complex than
most things people build like buildings,
automobiles or VLSI.

« Within only 30 years the amount of software in cars went
from O to more than 10,000,000 lines of code. More than
2000 individual functions are realized or controlled by
software in premium cars, today. 50-70% of the
development costs of the software/hardware systems are
software costs. (Manfred Broy, “Challenges in Automotive
Software Engineering’, ICSE2006, pp33-42,2006)

Why is Software Development so
difficult ? (F.Brooks,Jr)

1. Complexity

Computer programs are complex by their nature: a huge amount of part
and their relationships.

2. Conformity
Software can not be created in i1solation, but must conform to real-world
constraints — pre-existing hardware , third party components, government
regulations, legacy data formats, and so on.

3. Changeability

Software is always evolving, as the outer environments of software
change.

4. Invisibility
Software doesn’t exist in a way that can be represented using geometric

models, especially for representing the behavior of software.

Machine
‘ Conformity
Constraints -

Embedded Software EVolution
Complexity, Invisibility

Constraints

Conformity

SoC

Business
Social rules

l Conformity
)

Evolution
Information System

Constraints

Complexity, Invisibility

Constraints

Computers
and Network

Who makes
such a complex software?

 Human beings

* A group of human being should collaborate to
complete the work within specified time and
cost with producing high quality product.

 Difficult to deal with the following problems
caused by human beings

— instability
— Suddenness
— Uncertainty

Software Engineering
can support their activities

» Software Engineering Technologies

— Provide us to control the problems specific to
software developments

— Support the team to proceed the work smoothly

Major Topics in Software Engineering

Software Process Model (SPM)

— SPM provides for the strategy for software development

Project Management Technologies (PM)

— The application of knowledge, skills, tools and techniques to project
activities to meet project requirement. Managing a project includes:
identifying requirements; establishing clear and achievable objectives;
balancing the competing demands for quality, scope, time and cost
(PMBOK).

Software Development Methodologies (SDM)

— SDM provides for the desirable structure of software and define the
procedure how to form them

— Several examples of structures :easy to verify correctness, easy to
encapsulate the change impact, easy to divide the whole work into
independent parts, easy to reuse, easy to evolve

Languages and Environments

— Languages and Environments(Collection of tools) facilitates software
engineering activities

Role of Software Process Model(SPM)

* Need to adopt the proper SPM for the project
or the organization to integrate individual
effort of team members to achieve the goal.

* Because individual member of a project team
has different levels of skills

* Sometimes, a project consists of people who
belong to different organizations

Is it enough to adopt the proper SPM?

* Can not achieve the high degree of software
quality only by adopting the proper software
process model.

* A project need to follow some standardized
procedure, Software Development
Methodology(SDM) , to achieve the high

degree of software quality.

* Need a SDM(procedure) based on some
SPM(strategy) to achieve the successful
software development.

Role of Software Development Methodologies
(SDM)

* In the field of SDM study, we have been
studying the desirable structure of software
and have been defining the procedure how to
form them

» Several examples of structures :easy to verify
correctness, easy to encapsulate the change
impact, easy to divide the whole work 1nto
independent parts, easy to reuse, easy to
evolve

Is it enough to choose
proper SPM and SDM?

* There still remains problems on QCD after
adopting the proper SPM(integration of efforts
to the goal) and the SDM(standardization of
procedure).

* Software development project sometime end
up with: cost overruns; schedule delay; poor
quality.

Role of Technical Project Management

 The role of PM 1s:

— Initiating and planning a project to meet project
requirements within limited resources such as
human resources , facilities, budget and
information

— to achieve the high quality products on time within
budget

— Monitoring and Controlling the project status,
detecting project —specific risks that could not be
estimated or predicted at the beginning of the
project and being revealed as the project progress

History of SPM, SDM, PM

Waterfall model (early in the 1970s)

Development of Programming Methodologies (early in the 1970s)
Development of Design Methodologies (late in the 1970s)

Development of Requirement Engineering Technologies (late in the 1970s)
Beginning of Technical Project Management (late in the 1970s to early in the 1980s)
Improvement of Waterfall model (V model) (middle to late in the 1980s)
Iterative Waterfall Model (mini waterfall, spiral) (early in the 1980s)
Prototyping (early in the 1980s)

Executable specifications and Formal Methods (middle in the 1980s)
Process Programming (late in the 1980s)

SPI (early in the 1990s)

CASE tools (early in the 1990s)

Architecture centric Development (middle in the 1990s)

Object oriented software development technologies (after 1980s)

Maturity of Software Assessment technologies (late in the 1990s)

UML (late in the 1990s)

Iterative Software Process Model(2000s)

Agile (2000s)

GORE, IR,COTS (middle of 2000s)

SOA, Cloud, Embedded System

Change of SPM

Waterfall Model

— Custom development, Large-scaled software
development

V Model (System Engineering)
— Outsourcing

[teration by Min1 Waterfall Model or Spiral
— Risk Management

Prototyping

— User involvement

[terative & Incremental SPM

— Reduction of uncertainty by studying the project
specific features

How was Waterfall model constructed?

e Design of phases
— Starting from “Analysis” and “Coding”
— Add necessary phases to control a large program development
* System Requirements, Software Requirements, Program Design, Testing, Operation
— Add the Preliminary Design Phase to define the constraints
— Add information about ordering of phases

The design proceeds the change process 1s scoped down to manageable
limits. At any point in the design process after requirements analysis is
completed there exists a firm and close-up, moving baseline to which
to return in the event of unforeseen design

* Dealing with backtrack problems

— Implementation described the above item is risky and invites failure.
The testing phase which occurs at the end of the development cycle is
the first event for which timing, input/output transfer , etc., are
experienced. If the wrong phenomena occurs, it may cause backtrack
to program design or even to software requirements definition.

— R.Winston proposed the way how to deal with this problem.

Winston.W. Royce,”Managing the Development of Large Software Systems: Concepts and Techniques”,
Proc. of IEEE WESCON, pp.1-9, 1970 (Proc. of 9th ICSE, pp328-338, 1987,

Implementation steps to deliver a small
computer program for internal operation

Customers are

happy to pay
MEPSG
& 72
Effective for

Programmer: both steps involve
genuinely creative work

internal use

Implementation steps to develop a large
computer program for delivery to a customer

System
Requirements

A

A 4

Software
Requirements

A

A 4

Analysis

A

A

y

Program
Design

4

A

Many additional development
steps are required to develop a

large computer program

A 4

Operations

Hopefully, the iterative interaction between the
various phases is confined to successive steps

System
Requirements

A

A 4

Software
Requirements

A

A

Analysis

4

A

Unfortunately,
the design iteration
are never confined to
the successive steps

Program
Design

4 y

A 4

Operations

System Insure that a preliminary

Requirements | program deSign iS COmplete
Software before analysis begins

Requirements

Designer must impose on the analyst
the storage, timing, and operational
constraints

A 4

Analysis

A 4

Program
Design

Coding

A

Testing

A 4

Operations

System
Requirements
Software
Requirements l
/ Preliminary
Program

Doc. 1 Software Design
Requirements

Doc.2 Prehmmary
Design
Specification

Doc. 3 Interface
Specification

Doc. 4
Final Design
Specification

Insure that documentation is

current and complete

Doc. 5
Test Plan
Specification

Doc.4 Final

Program as Built

Design \ / ?
Coding T
Doc. 4

Final Design Testing
Specification

(at least 6 types of documents)

Analysis —l /
Design

Doc. 5 Test Plan
Specification and
Test Results

/
=

Doc. 6 <«—— Operations

Operating
Instructions

System

Requirements

A 4

Attempt to do the job twice

Software
Requirements v
Preliminary
Program
Design
Analysis
Preliminary A
esign
Analysis
Program
Design
Coding
Testing
Usage

A

Program
Design

Coding

/

\ 4

Testing

A 4

—p| Operations

System
Requirements

A 4

Software
Requirements
A 4
Preliminary
Program
Design
A 4

Analysis

Plan, control, and monitor
computer program testing

=
\
-

Operations

System

Requirements

A 4

Software
Requirements

A 4

Preliminary
Program
Design

Analysis

A 4

Program
Design

Involve the customer
the involvement
should be
formal, in-depth,
and continuing

Coding /
A 4

Testing

Operations

System

Requirements

A

Software
Requirements

=

=

/ :

—

Preliminary
Program
Design

Analysis

Program
Design

Coding

Waterfall Model

l.

Complete program Design
before analysis and coding
begins

Documentation must be
current and complete

Do the job twice if possible

Testing must be planned,
controlled and monitored

Involve the customers

Winston. W.
Royce,”Managing the
Development of Large
Software Systems:
Concepts and Techniques”,
Proc. of IEEE WESCON,
pp-1-9, 1970 .

Testing

Operations

Introduction of System Engineering

« Systems engineering techniques are used 1n complex projects:
spacecraft design, computer chip design, robotics, software
integration, and bridge building. Systems engineering uses a
host of tools that include modeling and simulation, requirements
analysis and scheduling to manage complexity.

* The V-model is a software development process which can be
presumed to be the extension of the waterfall model. Instead of
moving down 1n a linear way, the process steps are bent
upwards after the coding phase, to form the typical V shape.
The V-Model demonstrates the relationships between each
phase of the development life cycle and its associated phase of
testing.

Wikipedia “System engineering” and “V-Model”

Y Model

 Introduction of System Engineering Approach
— Define System Requirements
— Allocate system requirements to subsystems
— Define the detailed components
— Test components, Test subsystems

* Write specification to outsource parts of the whole
system with producing the specification of acceptance
test in the same level of abstraction.

Inside Structure of a Car

" J E n¥ i e mi
) W ._-\.-".N
Tool Driver
{e.g.. Diagnostic Tester) ™
! Siesring Wheel
Angle Speed

SensoT Sensor

Bus #—

Electronic
Comirgl Units
& ¥

Wheel Brake
(Actuator)

& Brake Pedal Ut
(Setpoint Generalon)

H':'IJI'&II.HL"
Modulator® Wheel Brake
Vehiche [Actuabor)

Jorg Schauffele, Thomas Zurawka, “Automotive Software Engineering”, SAE Intnl. 2005.

System levels in automotive electronics

Vehicle
Level

Vehicle
Subsystem Level
(e.g., powertrain)

ECU Level

Microcontroller
Level

Software
Level

e s b b e 4 n o h s — — — ek — —

Software Subsystem

Software Component

Jorg Schauffele, Thomas Zurawka, “Automotive Software Engineering”, SAE Intnl. 2005.

Overview of support processes for the development of
electronic systems and software

| B4 Support Processes

!
Configuration {—" | Project Management |
Management =
- -.:; = J
e

i e el
L T

= - = - -_— - ——

Core Procem

= -
|52 %> -
™ I—= 5 O . =
-,_qut”r_mimh_l-_ _— g éﬁ v li?\«.g.-f’.-f""rﬁ
g < Elecoronee
Qﬁ 2 YWehucle
| Sysiems

‘ U

Supplier Management |~ | Quality Assurance ‘

e e— — e — L —

Jorg Schauffele, Thomas Zurawka, “Automotive Software Engineering”, SAE Intnl. 2005.

Overview of the core process for the development of
electronic systems and software

Analysis of User Requirements
and Specification of Acceptance Test

Logical Sysiem Architecture
Technical System Architecture # & System Test
x F i

Analysis of T Funetion Calibration
Logical System
Architecture)
& Specification of Techaical Syatei Archileciuns SYStem Integratlon Test
1 ECU BN 2 r
Techmc‘al %,__/ &£ &
Svaem System Architecture GO 3 Integration of System Components
Dot i S ?E*IP'E:‘L'—'E'L7
Softwarne
; Sl
Devclogen Analysis of —_

Software Requirements Software Integration Test

& Specification of
Software Architecture

Integration of Software Components

A i
Specification of]
Software Components Testing of

Software Components

Of Software Components

Design & Implementation “

Jorg Schauffele, Thomas Zurawka, “Automotive Software Engineering”, SAE Intnl. 2005.

Backtracking to Iteration

e [teration
— Mini-Waterfall model, Spiral Model
— Risk Management

— Detect and Deal with project-specific risks on
QCD early

* Prototyping

— Involve user 1nto 1teration to fix requirements
smoothly

Iterative & Incremental Approach

The basic 1dea behind iterative enhancement 1s to develop a
software system incrementally, allowing the developer to take
advantage of what was being learned during the development
of earlier, incremental, deliverable versions of the system.
Learning comes from both the development and use of the
system, where possible. Key steps in the process were to start
with a simple implementation of a subset of the software
requirements and iteratively enhance the evolving sequence of
versions until the full system 1s implemented. At each iteration,
design modifications are made and new functional capabilities
are added.(wikipedia)

The earlier we can detect the project-specific problems, the
greater the chance to correct them become

At the beginning of the project, we can not understand the
project goal clearly. After getting the development experience
once, we can use the knowledge got from the first increment
and can have a chance to change the process

Relative levels of effort expected across the phases

Inception(idea)

Elaboration(Architecture)

Construction(Beta release)

Transition(products)

Management

Environment

Requirements

Design

Implementation

Asses§ment

Deployment
[

Walker Royce,” Software Project Management A Unified Framework” , ADDISON-WESLEY,

Iterative & Incremental

Inception(Idea) Elaboration(Architecture) Construction(Beta-release) | Transition(Products)
100%
Progress
[teration 7 adds no new
Iteration 1 Iteration 2 Iteration 3 components, only upgrades,

Increment 4

fixes, and enhancements

[teration 1, 2 and 3 include architecturally
significant components

Increment 5

Increment6 [([teration?

Walker Royce,” Software Project Management A Unified Framework” , ADDISON-WESLEY,

Summary on SPM

 From “Controlling the Scale”
* To “Controlling Risks
caused by Instability, Suddenness, Uncertainty”

Risk management

Outsourcing and Off-shore Development

History of SDM

What structures and How

Structured Programming
— easy to verify correctness a program, easy to divide the whole work into
independent parts
Information Hiding Module
— Encapsulation of change impact
Structured Analysis and Design
— Encapsulation of change impact
Requirement Engineering
— Requirements definition
Executable Specifications and Formal Methods
— Verifying and proving some properties of a program, Generation of a program,
Object-Orientation
— easy to encapsulate the change impact, easy to reuse and easy to evolve a program

Goal Oriented Requirement Engineering, Integrated Requirement Engineering,
COTS

— Shortening the development time

Principles on Software Engineering

Rigor and Formality

Rigorous approach enables us to produce more reliable products, control their cost, and
increase our confidence in their reliability. Formality is a stronger requirement than
rigor; it requires the software process to be driven and evaluated by mathematical laws.

Separation of Concerns

To deal with different individual aspects of a problem and we can concentrate on each
separately.

. Modularity

Kind of Separation of Concerns. A complex system may be divided into simpler pieces
called modules, allowing details of each module being handled in isolation.

. Abstraction

Kind of Separation of Concerns; Separation of what from how. The we can identify the
important aspects of a phenomenon and ignore its details.

. Anticipation of Change

When likely changes are identified, special care must be taken to proceed in a way that
will make future changes easy to apply.

. Generality

Generalizing the problem to make the solution more potential one for being reused.
. Incrementality

A process that proceeds in stepwise fashion, in increments, for risk reduction.

Rigor and Formality

cross-cutting Aspect orientation

concerns

Separation
localize of Concerns primary concerns complement
Complexi separation of what Modularity
from how data abst%\
Conformit Abstraction
y Object-Orientation
Process

(class, inheritance, polymorphism)
Changeability
extension to product lines

Anticipation © __
of Change

nvisibility — Feature-Orientation &

Product Line Engineering

Generality

. UP, Agile
Incrementality

UML (4+1 views)

SawSanda Aye and K. Ochimizu,” Defining Ontology for Complexity Issues in Software Engineering”, Natnl Conf. of JSSST, 2004.

Summary on SDM

 Principles pursued

—QObjects to be made, verified and
modified should appear in the same
part of source code

—Reduce the volume of codes to be
written

History of Project Management

1910s: the Gantt chart by Henry Gantt

prior to the 1950s, projects were managed on an ad hoc
basis using mostly Gantt Charts, and informal techniques
and tools. At that time, two mathematical project
scheduling models were developed. The "Critical Path
Method" (CPM) and the "Program Evaluation and
Review Technique” or PERT for Polaris missile
submarine program; These mathematical techniques
quickly spread into many private enterprises.

In 1969, the Project Management Institute (PMI) was
formed to serve the interests of the project management
industry.

1970s: Theory of Constraint (TOC): Drum Buffer, Rope
by E.M. Goldratt

Development of PM

Various Measures
— (Cost-estimation

— Detection of risky factors (Software complexity
measures, V measure, E measure)

— Decision support for terminating test activities
(software reliability growth model)

Measurement
— Complexity metrics
— Function Points

CMM
— Maturity Levels and Best Practices

Software Assessment
— Benchmark and Baseline

PMBOK
— Knowledge

Complexity Metrics

useful metrics to predict fault-proneness of code :

 Chidamber and Kemerer — CK
Weighted Methods per Class (WMC)
Depth of inheritance tree (DIT)
Number of children (NOC)

Coupling Between objects (CBO)
Response for class (RFC)

Lack of Cohesion of methods (LCOM)

I

 Bansiyana and Davi's quality metrics - QMOOD
7. Average of DIT for all classes in the system (ANA)
8. Class Interface Size (CIS)
9. Data Access Metric (DAM)
10. Direct Class Coupling (DCC)
11. Measure of aggregation (MOA)
12. Measure of functionality abstraction (MFA)
13. Number of methods (NOM - same as WMC)

Complexity Metrics are used for

Design Complexity Metrics Predict

Fault-prone
code

Code

Approximation:
.10 obtain good
candidates of fault-proneness prediction

Design Complexity Metrics

— Predict before coding

UML Artifacts

The Need for Software Measurement

Level Audience

Tier 3

Senior Management

Tier 2

Middle Management

Tier 1

Project Management

David Garmus, David Herron, “ Function Point Analysis” ADDISON-WESLEY, 2001.

Focus:

Time to Market Customer Satisfaction

Cost Saving

4

A

A

4

A

4

A

Focus:
Productivity Cost Monitoring Efficiency Performance
Focus:
Function Effort Defects Schedule Compliance
Points

Software Assessment

Understand the source of troubles by qualitative data and
justify them by quantitative data

There are several useful measures(FP measures) calculated by
Function Point

Productivity: Hours per FP, Information technology
productivity, Rate of delivery, Delivered functionality and
developed functionality

Quality: Functional requirement size, completeness, Rate of
change, Defect removal efficiency, Defect density, Test case
coverage, Volume of Documentation

Financial: Cost per FP, Repair cost ratio, portfolio asset value

Maintenance: Maintainability, Reliability, Assignment scope,
Rate of growth, portfolio size, Backfire value, Stability ratio

David Garmus, David Herron, “ Function Point Analysis” ADDISON-WESLEY, 2001.

Summary on PM

Not good to follow the successive phases 1n a
linear way(waterfall). Better to overlap
activities of phases(iterative)

Still something wrong!

Traditional PM techniques pursue the
efficiency, use up human resources to the
maximum

Should take account of capacity and load of a
project team.

OOAD, SOA and Cloud

Service Orientation

OO0 OO 00 /I\ /]\ /[\ /I\ /I\
- BPM EAI AOP Web Others
brocess Applieation Oriented Services
Management Integration Programming
v : : :
SOA Object-Orientation
Modular Procedural RPC T
Development Programming Others

Thomas Erl, “SOA Principles of Service Design”, PRETICE HALL, 2008

OOAD, SOA, and Cloud

The major benefit of the concept behind cloud computing 1s that
the average user does not require a computer that is extremely
powerful to handle complex database indexing tasks that server
farms can

Instead, with the use of broadband, users can easily connect to
the cloud, which would commonly be referred to as the point of
contact with the larger network.

With this point of contact, cloud computing users from all
across the world can reap the benefits of enormous processing

power without major capital or technical know-how.

Benefits: Flexibility, Scalability, Capital Investment, Portability
Drawback: Dependability, Security, Little or No Reference

“Cloud Computing — The Complete Cornerstone Guide to Cloud Computing Best Practices”, The Art of Services, 2008

Wrong Usage of Software Engineering

| C

= Rigid DV

| \ Lack of Budget
Excessive

Competition Team
+

Software
Engineering \
)* * Insufficient
& ‘ Shortage of
i Human Resource
N~

ERe
«

Software Engineering is a tool to
increase the Capacity of Software Team

External Factors
Death March Read the project risks early

SPM,PM
Internal Project Manager
Outsourcing i Factors
Off-shore Isr:féztéﬂggss Increase the Capacity
Development Uncertainty % % % of the team
Is the current SDMS’,
goal of SE Language&Environments ~
proper? /N Team Cohesion and
Too much \ individual Expertise
pursue of "O[o‘ i th A
generality i Ing the system wit Communication and
desirable structure . .
Sustainable learning

Avoid the redundant Description
\ Encapsulation of relevant things

