
I217: Functional Programming

1. Sorts, Operators, Terms & Equations

Kazuhiro Ogata, Canh Minh Do

Roadmap

• Preliminaries

– Programming paradigms

– Functional programming & CafeOBJ

– Sets, Tuples, Functions

• Some examples

• Sorts, Operators, Variables, Terms, Equations

• Some commands and comments

• Exercises

2i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Programming Paradigms

• Imperative (procedural) programming
– Fortran, Pascal, C, C++, Lisp, Standard ML, Ruby,

Python

• Logic programming
– Prolog, GHC, KL1, Maude, CafeOBJ

• Object-oriented programming
– Smalltalk, C++, Java, Self, Scala, Ruby, ABCL/1,

ConcurrentSmalltalk, MultithreadSmalltalk, Python

• Functional programming
– Miranda, Haskell, Erlang, Lisp, Standard ML, Scala,

Maude, CafeOBJ

3i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Functional Programming & CafeOBJ

• Functional Programming
– Programs are functions in the mathematical sense.

– To execute programs is to apply functions to arguments.

– No destructive assignment.

– More amenable to program verification.

• CafeOBJ
– An executable specification language.

– Not a real programming language, but can be used as an
educational programming language.

– CafeOBJ programs (specifications) can be verified, namely
that we can prove that programs written in CafeOBJ enjoy
(desired) properties with the CafeOBJ system.

4i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Some Example in CafeOBJ

5

open NAT .
op gcd : Nat Nat -> Nat .
var X : Nat .
var NzY : NzNat .
eq gcd(X,0) = X .
eq gcd(X,NzY) = gcd(NzY,X rem NzY) .
-- What follows -- on a line is a comment.
red gcd(0,0) . -- compute the gcd of 0 & 0
red gcd(2,0) . -- compute the gcd of 2 & 0
red gcd(0,2) . -- compute the gcd of 0 & 2
red gcd(24,36) . -- compute the gcd of 24 & 36
red gcd(2015,31031) . -- compute the gcd of 2015 & 31031

close

op _rem_ : Nat NzNat -> Nat .
eq X rem NzY

= remainder of
dividing X by NzY .

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

NzNat
Nat

…
0 1 2 3

Sets

6

A set is a collection of similar things such that (1) duplication
is irrelevant and (2) the enumeration order is irrelevant.

0 1 2 3 … 1 2 3 … 0

The set of natural
numbers

The set of non-zero
natural numbers

The set
of zero

{0, 1, 2, 3, …} {1, 2, 3, …} {0}

{0, 1, 2, 3} {3, 2, 0, 1} {1, 3, 2, 0, 2, 1}

Because of (1) & (2), the following three sets are the same:

true
false

The set of
Boolean values

{true, false}

Nat NzNat
Zero Bool

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Tuples

7

A tuple of length n (≧ 0) (or n-tuple) is a collection that
consists of n elements such that the enumeration order is
relevant and the elements are not necessarily similar.

() (the empty tuple & may be omitted)

The set of n-tuples such that the ith (1 ≦ i ≦ n) element is
from a set Si is represented as S1×…×Sn.

Nat×Bool×Nat Nat {()} (which may be omitted)

(110, true, 119) (117) (which is the same as 117)

The above three tuples are elements of the following sets
respectively:

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Functions

8

A function f from a set A to a set B maps each element of A
to an exactly one element of B.

…
…
…

…

…
…
…A B

Domain of f Co-domain of f

gcd is a function from Nat×Nat to Nat.

gcd maps (0,0), (2,0), (0,2), (24,36) and (2015,31031) to 0, 2,
2, 12 and 403, respectively.

Constants, such as 0, can be regarded as functions from {()}
to Nat.

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Factorial

9

open NAT .
op fact : Nat -> Nat .
var NzX : NzNat .
eq fact(0) = 1 .
eq fact(NzX) = NzX * fact(p NzX) .
--
red fact(0) .
red fact(1) .
red fact(10) .
red fact(100) .
red fact(1000) .
-- red fact(10000) . -- stack overflow
-- red fact(100000) . -- stack overflow

close

op p_ : NzNat -> Nat .
eq p NzX = the previous number of NzX .

op _*_ : Nat Nat -> Nat .
vars X Y : Nat .
eq X * Y = multiplication of X & Y .

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Odd-Even Divide & Conquer Factorial

10

open NAT .
op cond : Bool Nat Nat -> Nat .
op g : Nat Nat -> Nat .
op oedc-fact : Nat -> Nat .
vars X Y : Nat . var NzX : NzNat .
-- cond
eq cond(true,X,Y) = X .
eq cond(false,X,Y) = Y .
-- g
eq g(X,Y) = cond(X > Y, g(X,2 * Y) * g(sd(X,Y),2 * Y), X) .
-- oedc-fact
eq oedc-fact(0) = 1 .
eq oedc-fact(NzX) = g(NzX,1) .

--
red oedc-fact(10000) . -- can be computed

close

op _>_ : Nat Nat -> Bool .
eq X > Y = true if so

false otherwise .

op sd : Nat Nat -> Nat .
eq sd(X,Y)

= symmetric difference between X & Y .

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Fibonacci

11

open NAT .
op fib : Nat -> Nat .
op sfib : Nat -> Nat .
var NzX : NzNat .
-- fib
eq fib(0) = 0 .
eq fib(NzX) = sfib(p NzX) .
-- sfib
eq sfib(0) = 1 .
eq sfib(NzX) = fib(NzX) + fib(p NzX) .
--
red fib(10) .
red fib(20) .
red fib(30) . -- can be computed, although it takes time.

close

op _+_ : Nat Nat -> Nat .
vars X Y : Nat .
eq X + Y = addition of X & Y .

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Ackerman

12

open NAT .
op ack : Nat Nat -> Nat .
var Y : Nat .
vars NzX NzY : NzNat .
eq ack(0,Y) = Y + 1 .
eq ack(NzX,0) = ack(p NzX,1) .
eq ack(NzX,NzY) = ack(p NzX,ack(NzX,p NzY)) .
--
red ack(0,0) .
red ack(1,1) .
red ack(2,2) .
red ack(3,2) .
red ack(3,3) .

close

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Sorts

13

Interpreted as sets and correspond to types in programming
languages.

Nat, NzNat, Zero and Bool are sorts that are interpreted as
the following sets respectively:

0 1 2 3 … 1 2 3 … 0
true
false

May be used as the sets as which the sorts are interpreted.

Declared by enclosing them with [and], such as

[NatList]

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Operators

14

Interpreted as functions and declared as follows:

op f : S1 … Sn -> S .

sorts

arity
co-arity

rank

f is interpreted as a function from S1×…×Sn to S.

where n ≧ 0

When n = 0, f is called a constant of S.

op cond : Bool Nat Nat -> Nat .
op g : Nat Nat -> Nat .
op oedc-fact : Nat -> Nat .

are interpreted as functions from
Bool×Nat×Nat to Nat, Nat×Nat to Nat
and Nat to Nat.

May be used as the functions as which they are interpreted.

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Variables

15

Declared as follows:

var V : S .

sorts

Multiple variables of a same sort can be declared as follows:

vars V1 … Vn : S .

vars X Y : Nat .
var NzX : NzNat .

X & Y are variables of Nat, and NzX is a
variable of NzNat.

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Terms

16

Constructed from operators and variables.

Have sorts.

gcd(X,0)

gcd(NzY,X rem NzY)

a term of sort Nat

gcd(X,NzY) a term of sort Nat

a term of sort Nat

X a term of sort Nat

0 a term of sort Zero

NzY a term of sort NzNat

X rem NzY a term of sort Nat

Note that a term of sort Zero is also a term of sort Nat and a term of sort
NzNat is also a term of sort Nat.

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Terms

17

Inductively defined as follows:

(1) A variable of sort S is a term of sort S.

(2) For an operator f : S1 … Sn -> S, if t1, …, tn are term of
sorts S1, …, Sn, then f(t1, …, tn) is a term of sort S.

Note that when n = 0, f() is a term of sort S and because ()
may be omitted (must be omitted in CafeOBJ), f itself is a
term of sort S (called a constant of sort S).

Note that terms of sort Zero or NzNat are also terms of sort
Nat.

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Terms

18

gcd(X,0) is a term of sort Nat because gcd is an operator
whose rank is Nat Nat -> Nat, X is a term of sort Nat and 0 is a
term of sort Nat.

X is a term of sort Nat because X is a variable of sort Nat.

open NAT .
op gcd : Nat Nat -> Nat .
var X : Nat .
var NzY : NzNat .
…

0 is a term of sort Nat because 0 is a term of sort Zero.

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Equations

19

eq gcd(X,0) = X .

eq gcd(X,NzY) = gcd(NzY,X rem NzY) .

says that for all natural numbers X, gcd(X,0) equals X.

gcd(0,0) = 0
gcd(1,0) = 1
gcd(2,0) = 2

says that for all natural numbers X & all non-zero natural numbers NxY,
gcd(X,NzY) equals gcd(NzY,X rem NzY).

gcd(3,1) = gcd(1,3 rem 1) .

gcd(31031,2015) = gcd(2015, 31031 rem 2015) .

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Equations

20

Declared as follows:

eq LeftTerm = RightTerm .

where LeftTerm and RightTerm are terms of a same sort.

If variables X1, X2, … of sorts S1, S2, … occur in the equation,
then the equation says that for all X1 of S1, all X2 of S2, …
LeftTerm equals RightTerm.

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

(Precisely, the least sort of RightTerm is the same as or a sub-sort of the
lest sort of LeftTerm, or equivalently the least sort of LeftTerm is a sort
of RightTerm. See lecture note 2 for the least sort and lecture note 3 for
the condition.)

Mix-fix Operators

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations 21

The operators used in 3 + 4, p 1 and 10 ! are called infix,
prefix and postfix operators, which are declared as follows:

op _+_ : Nat Nat -> Nat .
op p_ : NzNat -> Nat .
op _! : Nat -> Nat .

Moreover, the operator (called a mix-fix operator) used in
if X > Y then { g(X,2 * Y) * g(sd(X,Y),2 * Y) } else { X }
can be used and declared as follows:

op if_then {_} else {_} : Bool Nat Nat -> Nat .

Some Commands of CafeOBJ

22

Command in

Programs written in CafeOBJ are saved as text files whose
names have the extension .cafe, such as gcd.cafe and
fact.cafe. The command takes a file name and loads the
programs in it.

CafeOBJ> in gcd.cafe

The extension can be omitted.

CafeOBJ> in gcd

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Some Commands of CafeOBJ

23

Command open & close

open takes a module (a unit of programs in CafeOBJ) and
makes it available.

CafeOBJ> open NAT .

where NAT is the built-in module in which natural numbers
and functions over them are described and the prompt
becomes %NAT> after opening NAT. Note that a period is
needed.
close makes the currently open module close and the
prompt back to CafeOBJ>.

%NAT> close

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Some Commands of CafeOBJ

24

Command red

red takes a term and computes it with the equations
available.

%NAT> red 3 + 4 .

Note that a period is needed.
Note that spaces around + are needed.

Its result is (7):NzNat, where the sort NzNat is the
important part of the result.

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

A typical mistake is to forget a period (red 3 + 4) and spaces
(red 3+ 4 . or red 3 +4 . or red 3+4 .).

Some Commands of CafeOBJ

25

Command full-reset

It fully resets the system.

CafeOBJ> full-reset

Command ?

It displays a list of commands available.

CafeOBJ> ?

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Comments

26

A comment starts with the first occurrence -- on a line and
continues to the end of the line.

-- This is a comment.

A segment that starts with a double quotation mark and ends
with a double quotation mark is also a comment.

"This is another way
to write a comment."

When you want to use a double quotation mark in the
segment, a backslash should be used in front of it.

"You can use \"double quotation
marks\" in a comment."

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Exercises

27

1. Type each piece of programs in the slides as one file, feed it
into CafeOBJ, and do some testing. Note that the extension of
a file name in which CafeOBJ programs are written is .cafe,
such as fact.cafe.

2. Explain in which way fact(5) is computed.

3. Explain in which way oedc-fact(5) is computed.

4. Write two versions of programs computing the summation
0+1+2+…+n for a given number n, where one corresponds to
fact and the other corresponds to oedc-fact and do some
testing for both versions.

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Exercises

28

5. Write a program in CafeoBJ that corresponds to the following
and do some testing

ext-fib(n) =

0
1
2
ext-fib(n–1) + ext-fib(n–2) + ext-fib(n–3)

if n = 0
if n = 1

if n = 2
otherwise

You should not use sd. You should not use any user defined function
that does the same thing as sd. When you use p t, you should explicitly
guarantee that the least sort of t is NzNat. Hint: you can consult the
program of fib, where one sub-function is used to split the natural
numbers into (1) 0, (2) 1 and (3) 2 or larger ones. You can use two sub-
functions to split natural numbers into (1) 0, (2) 1, (3) 2 and (4) 3 or
larger ones.

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations

Exercises

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations 29

6. Revise the program in which the factorial function is
defined such that instead of fact the following postfix
operator is used:

op _! : Nat -> Nat .

7. Revise the program in which the odd-even divide &
conquer factorial function is defined such that instead of
oedc-fact and cond the following postfix and mix-fix operators
are used:

op _! : Nat -> Nat .

op if_then {_} else {_} : Bool Nat Nat -> Nat .

Exercises

i217 Functional Programming - 1. Sorts, Operators, Terms & Equations 30

8. Investigate why it takes times to compute Ackerman
function with even small natural numbers, such as ack(5,5)
and ack(10,10).

9. Find the definition of Takeuchi function, describe it in
CafeOBJ and run it with some natural numbers. Investigate
why it takes time to compute Takeuchi function with even
small natural numbers.

10. Write the programs found in the lecture note in another
functional programming language, such as Standard ML, and
run them with its processor, such as SML#.

