
I217: Functional Programming

10. A Programming Language Processor –

Compiler

Kazuhiro Ogata, Canh Minh Do

Roadmap

• Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

2

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

The compiler translates programs written in Minila into lists of
instructions that can be executed by the virtual machine.

3

We first describe how to generate lists of instructions for
expressions and then how to generate lists of instructions for
statements.

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

4

Given an expression e, genForExp generates a list of
instructions for e such that executing the instruction list
makes the result of e left at the top of the stack.

op genForExp : Exp -> IList .

vars E E1 E2 : Exp .
vars S S1 S2 : Stm .
var V : Var .
var N : Nat .
var IL : IList .

In what follows, the following variables are used:

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

5

Executing push(N) leaves N at the top of the stack.

eq genForExp(n(N)) = push(N) | iln .
the empty list of instructions

eq genForExp(V) = load(V) | iln .

Executing load(V) leaves the natural number associated with
V in a given environment at the top of the stack. If the
environment does not have any entry whose key is V, then
errNat is pushed onto the stack, which will become errStack.

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

6

Executing the instruction list generated by
genForExp(E1) leaves the result n1 of
calculating E1 at the top of the stack.

eq genForExp(E1 + E2)
= genForExp(E1) @ genForExp(E2) @ (add | iln) .

n1

Executing the instruction list generated by
genForExp(E2) leaves the result n2 of
calculating E2 at the top of the stack.

n1

n2

Executing add leaves the result of
calculating n1 + n2 at the top of the stack.

n1 + n2

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

7

For the remaining expressions, equations can be described
likewise for genForExp.

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

8

Given a program in Minila, compile generates the list of instructions for
the program (a statement) with generate and adds quit to the list at the
end.

op compile : Stm -> IList .
eq compile(S) = generate(S) @ (quit | iln) .

op generate : Stm -> IList .

eq generate(estm) = iln .

If the program is estm, then it generates the empty list of instructions.

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

9

If the program is V := E ;, then it generates the list of instructions for E
and adds store(V) to the list at the end.

store(V)the list of instructions for E

generate(x := n(3) + n(4) * n(5) ;) generates the following:

(push(3) | (push(4) | (push(5) | (multiply | (add | (store(x) | iln)))))):IList

n(3) + n(4) * n(5)

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

10

If the program is if E {S1} else {S2}, then it generates the following list
of instructions:

DjumpOnCond(2)the list of instructions for E Djump(len1+2)

the list of instructions for S1 Djump(len2+1)

the list of instructions for S2

len1

len2

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

11

You can use len to calculate the length of an instruction list il:

len(il)

If you want to know the length of the instruction list that is generated
from a statement s, then all you have to do is as follows:

len(generate(s))

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

12

generate(if tmp * tmp > x {z := tmp - n(1) ;} else {y := tmp ;})
generates the following:

(load(tmp) | (load(tmp) | (multiply | (load(x) | (greaterThan |

(jumpOnCond(2) | (jump(6) |

(load(tmp) | (push(1) | (minus | (store(z) | (jump(3) |

(load(tmp) | (store(y) | iln)))))))))))))):IList

tmp * tmp > x

z := tmp - n(1) ;

y := tmp ;

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

13

generate(if ((z - y) % n(2)) === n(0) {tmp := y + (z - y) / n(2) ;}
else {tmp := y + ((z - y) / n(2)) + n(1) ;})

generates the following:

(load(z) | (load(y) | (minus | (push(2) | (mod | (push(0) | (equal |

((z - y) % n(2)) === n(0)
(jumpOnCond(2) | (jump(10) |
(load(y) | (load(z) | (load(y) | (minus | (push(2) | (divide | (add | (store(tmp) | (jump(11) |

tmp := y + (z - y) / n(2) ;

(load(y) | (load(z) | (load(y) | (minus | (push(2) | (divide | (add | (push(1) | (add | (store(tmp) |

iln)))))))))))))))))))))))))))):IList

tmp := y + ((z - y) / n(2)) + n(1) ;

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

14

If the program is while E {S1}, then it generates the following list of
instructions:

DjumpOnCond(2)the list of instructions for E Djump(len2+2)

the list of instructions for S1 Dbjump(len1+len2+2)

len1

len2

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

15

generate(while y < n(10) || y === n(10) {x := x * y ; y := y + n(1) ;})
generates the following:

(load(y) | (push(10) | (lessThan | (load(y) | (push(10) | (equal | (or |

(jumpOnCond(2) | (jump(10) |

y < n(10) || y === n(10)

x := x * y ;

(load(x) | (load(y) | (multiply | (store(x) |

(load(y) | (push(1) | (add | (store(y) | (bjump(17) | iln)))))))))))))))))):IList

y := y + n(1) ;

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

16

for V E1 E2 {S1}

is equivalent to

This can be used to describe the equation to generate the list of
instructions for the for statement.

V := E1 ;
while V < E2 || V === E2 {
S1
V := V + n(1) ;

}

in that the result (the environment) obtained by interpreting the
former is exactly the same as the one obtained by interpreting the
latter.

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

17

Given two statements s1 and s2 that are equivalent,

the instruction list generate(s2) generated from s2 can be used as the
one generate(s1) generated from s1.

Namely,
eq generate(s1) = generate(s2) .

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

18

If the program is for V E1 E2 {S1}, then it generates the following list of
instructions:

the list of instructions for V := E1 ;

the list of instructions for

while V < E2 || V === E2 { S1 V := V + n(1) ;}

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

19

generate(for y n(1) n(10) {x := y * x ;})
generates the following:

(push(1) | (store(y) |

(load(y) | (push(10) | (lessThan | (load(y) | (push(10) | (equal | (or |

y := n(1) ;

y < n(10) || y === n(10)

(jumpOnCond(2) | (jump(10) | (load(y) | (load(x) | (multiply | (store(x) | (load(y) |

x := y * x ;

(push(1) | (add | (store(y) | (bjump(17) | iln)))))))))))))))))))):IList

y := y + n(1) ;

while y < n(10) || y === n(10)
{ x := y * x ; y := y + n(1) ; }

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

20

If the program is S1 S2, then it generates the following list of
instructions:

the list of instructions for S1 the list of instructions for S2

You can use _@_ to combine two instruction lists il1 and il2:

il1 @ il2

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

21

generate(x := y * x ; y := y + n(1) ;) generates the following:

(load(y) | (load(x) | (multiply | (store(x) |

x := y * x ;

y := y + n(1) ;

(load(y) | (push(1) | (add | (store(y) | iln)))))))):IList

Compiler

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

22

generate(y := n(1) ; while y < n(10) || y === n(10) { x := y * x ; y := y
+ n(1) ; }) generates the following:

(push(1) | (store(y) |

(load(y) | (push(10) | (lessThan | (load(y) | (push(10) | (equal | (or |

y := n(1) ;

y < n(10) || y === n(10)

(jumpOnCond(2) | (jump(10) | (load(y) | (load(x) | (multiply | (store(x) | (load(y) |

x := y * x ;

(push(1) | (add | (store(y) | (bjump(17) | iln)))))))))))))))))))):IList

y := y + n(1) ;

while y < n(10) || y === n(10)
{ x := y * x ; y := y + n(1) ; }

Exercises

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

1. Complete the compiler and do some tests for the compiler.

23

2. Extend the compiler so that arrays of natural numbers can
be supported.

3. Extend the compiler so that functions (or procedures) can
be supported.

4. Extend the compiler so that many other program
constructs can be supported.

You may consult the Java compiler.

Appendices

i217 Functional Programming - 8. A Programming Language Processor -
Interpreter

x := n(1) ;
for y n(1) n(10) {
x := y * x ;

}

The compiler translates the program

into the lists of instructions

(push(1) | (store(x) | (push(1) | (store(y) | (load(y) | (push(10) |
(lessThan | (load(y) | (push(10) | (equal | (or | (jumpOnCond(2) |
(jump(10) | (load(y) | (load(x) | (multiply | (store(x) | (load(y) | (push(1)
| (add | (store(y) | (bjump(17) | (quit | iln))))))))))))))))))))))):IList

24

Appendices

i217 Functional Programming - 8. A Programming Language Processor -
Interpreter

The compiler translates the program

into the lists of instructions

(push(24) | (store(x) | (push(30) | (store(y) | (load(y) | (push(0) |
(notEqual | (jumpOnCond(2) | (jump(10) | (load(x) | (load(y) | (mod |
(store(z) | (load(y) | (store(x) | (load(z) | (store(y) | (bjump(13) | (quit |
iln))))))))))))))))))):IList

25

x := n(24) ; y := n(30) ;
while y =!= n(0) {
z := x % y ; x := y ; y := z ;

}

Appendices

i217 Functional Programming - 8. A Programming Language Processor -
Interpreter

x := n(20000000000000000) ;
y := n(0) ;
z := x ;
while y =!= z {

if ((z - y) % n(2)) === n(0) {
tmp := y + (z - y) / n(2) ;

} else { tmp := y + ((z - y) / n(2)) + n(1) ; }
if tmp * tmp > x { z := tmp - n(1) ; }
else { y := tmp ; }

}

The compiler translates the program

26

Appendices

i217 Functional Programming - 8. A Programming Language Processor -
Interpreter

into the lists of instructions

(push(20000000000000000) | (store(x) | (push(0) | (store(y) | (load(x) |
(store(z) | (load(y) | (load(z) | (notEqual | (jumpOnCond(2) | (jump(44)
| (load(z) | (load(y) | (minus | (push(2) | (mod | (push(0) | (equal |
(jumpOnCond(2) | (jump(10) | (load(y) | (load(z) | (load(y) | (minus |
(push(2) | (divide | (add | (store(tmp) | (jump(11) | (load(y) | (load(z) |
(load(y) | (minus | (push(2) | (divide | (add | (push(1) | (add | (store(tmp)
| (load(tmp) | (load(tmp) | (multiply | (load(x) | (greaterThan |
(jumpOnCond(2) | (jump(6) | (load(tmp) | (push(1) | (minus | (store(z) |
(jump(3) | (load(tmp) | (store(y) | (bjump(47) | (quit |
iln))):IList

27

