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The compiler translates programs written in Minila into lists of
instructions that can be executed by the virtual machine.

We first describe how to generate lists of instructions for
expressions and then how to generate lists of instructions for
statements.
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Given an expression €, genForExp generates a list of
instructions for e such that executing the instruction list
makes the result of e left at the top of the stack.

op genForExp : Exp -> IList .

In what follows, the following variables are used:

vars EEl E2 : Exp .
vars S S1S2: Stm.
var V : Var.

var N : Nat .

var IL : IList .
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eq genForExp(n(N)) = push(N) | iln .

Executing push(N) leaves N at the top of the stack.

eq genForExp(V) =load(V) | iln .

Executing load(V) leaves the natural number associated with
V' in a given environment at the top of the stack. If the
environment does not have any entry whose key is V, then
errNat is pushed onto the stack, which will become errStack.
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eq genForExp(E1 + E2)
= genForExp(El) @ genForExp(E2) @ (add | iln) .

Executing the instruction list generated by

genForExp(E1) leaves the result n, of n,
calculating E1 at the top of the stack.

Executing the instruction list generated by n,
genForExp(E2) leaves the result n, of n
calculating E2 at the top of the stack.

Executing add leaves the result of n, +n,
calculating n, + n, at the top of the stack.
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For the remaining expressions, equations can be described
likewise for genForExp.
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Given a program in Minila, compile generates the list of instructions for

the program (a statement) with generate and adds quit to the list at the
end.

op compile : Stm -> [List .
eq compile(S) = generate(S) @ (quit | iln) .

op generate : Stm -> [List .

eq generate(estm) = iln .

If the program is estm, then it generates the empty list of instructions.
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If the program is V := E ;, then it generates the list of instructions for E
and adds store(V) to the list at the end.

the list of instructions for E store(V)

generate(x :=n(3) + n(4) * n(5) ;) generates the following:

(push(3) | (push(4) | (push(5) | (multiply | (add | (store(x) | iln)))))):IList
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If the programis if E {S1} else {S2}, then it generates the following list
of instructions:

the list of instructions for E |jumpOnCond(2) | jump(len,+2)

—

the list of instructions for S1 | jump(len,+1)

(

the list of instructions for S2
( J
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You can use len to calculate the length of an instruction list il:
len(il)

If you want to know the length of the instruction list that is generated
from a statement s, then all you have to do is as follows:

len(generate(s))
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generate(if tmp * tmp > x {z :=tmp - n(1) ;} else {y :=tmp ;})
generates the following:

(load(tmp) | (load(tmp) | (multiply | (load(x) | (greaterThan |

(jumpOnCond(2) | Gump(6) |

(load(tmp) | (push(1) | (minus | (store(z) | Gump(3) |

(load(tmp) | (store(y) | iln)))))))))))))):IList
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generate(if ((z - y) % n(2)) ===n(0) {tmp ==y + (z-y)/n(2) ;}

else {tmp :==y + ((z-y)/n(2)) + n(1) ;}
generates the following:

(load(z) | (load(y) | (minus | (push(2) | (mod | (push(0) | (equal |

(GumpOnCond(2) | (jump(10) |
(load(y) | (Ioad(z) | (load(y) | (minus | (push(2) | (divide | (add | (store(tmp) | Gump(11) |

(load(y) | (load(z) | (load(y) | (minus | (push(2) | (divide | (add | (push(1) | (add | (store(tmp) |

i) IList
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If the program is while E {S1}, then it generates the following list of

instructions:
len,

A
( |

the list of instructions for E | jumpOnCond(2) | jump(len,+2)

S N

the list of instructions for S1 | bjump(len,+len,+2)

| J
I

len,
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generate(while y <n(10) || y==n(10) {x :=x*y;y:=y+n(l);}
generates the following:

(load(y) | (push(10) | (lessThan | (load(y) | (push(10) | (equal | (or |

(GumpOnCond(2) | Gump(10) |
(load(x) | (load(y) | (multiply | (store(x) |

(load(y) | (push(1) | (add | (store(y) | (bjump(17) | iln)))))))))))))))):IList
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for VE1 E2 {S1}

is equivalent to

V=El;

while V<E2||V==E2 {
S1
V:=V+n(l);

1
s

in that the result (the environment) obtained by interpreting the
former is exactly the same as the one obtained by interpreting the
latter.

This can be used to describe the equation to generate the list of
instructions for the for statement.
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Given two statements s, and s, that are equivalent,

the instruction list generate(s,) generated from s, can be used as the
one generate(s,) generated from s,.

Namely,
eq generate(S;) = generate(s,) .
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If the program is for V E1 E2 {S1}, then it generates the following list of
instructions:

the list of instructions for V := E1

the list of instructions for

while V<E2||V==E2 {S1 V:=V+n(l);}
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generate(for y n(1) n(10) {x :==y *x;})
generates the following:

(push(1) | (store(y) |
(load(v) | (push(10) | (lessThan | (load(y) | (push(10) | (equal | (or |

(umpOnCond(2) | Gump(10) | (load(v)| (load(x) | (multiply | (store(z) | (load(v) |

(push(1)

(add | (store(y) | (bjump(17) | tln))))N)M))HH)N)))):IList
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If the program is S1 S2, then it generates the following list of
instructions:

the list of instructions for S1 |the list of instructions for S2

You can use (@ _ to combine two instruction lists il, and il:

il, @il
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generate(x ==y *x; y:=y+n(l);) generates the following:

(load(y) | (load(x) | (multiply | (store(x) |

(load(y) | (push(1) | (add | (store(y) | iln)))))):IList
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generate(y :=n(1) ; whiley <n(10) [|[y==n(10) { x =y *x; y:==y
+n(l); }) generates the following:

(push(1) | (store(y) |
(load(v) | (push(10) | (IessThan | (load(y) | (push(10) | (equal | (or |
(umpOnCond(2) | Gump(10) | (load(v)| (load(x) | (multiply | (store(x) | (load(v) |

(push(1) | (add | (store(y) | (bjump(17) | iln)))MHINNNNIN)))):IList
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Exercises

1. Complete the compiler and do some tests for the compiler.
2. Extend the compiler so that arrays of natural numbers can
be supported.

3. Extend the compiler so that functions (or procedures) can
be supported.

4. Extend the compiler so that many other program
constructs can be supported.

You may consult the Java compiler.
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Appendices
The compiler translates the program

x:=n(l);

for y n(1) n(10) {
X:=y*x;

\

s

into the lists of instructions

(push(1) | (store(x) | (push(1) | (store(y) | (load(y) | (push(10) |
(lessThan | (load(y) | (push(10) | (equal | (or | GumpOnCond(2) |

(ump(10) | (load(y) | (load(x) | (multiply | (store(x) | (load(y) | (push(1)
| (add | (store(y) | (bjump(17) | (quit | iln))))))))))))))))))))))):IList
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The compiler translates the program
x:=n(24); y:=n(30);
while y =1=n(0) {

z=X%y; X:=y; y=z,;
}.

into the lists of instructions

(push(24) | (store(x) | (push(30) | (store(y) | (load(y) | (push(0) |
(notEqual | GumpOnCond(2) | Gump(10) | (load(x) | (load(y) | (mod |
(store(z) | (load(y) | (store(x) | (load(z) | (store(y) | (bjump(13) | (quit |
iIn))))))))))))))))):IList
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The compiler translates the program
x :=n(20000000000000000) ;

y =n(0);
Z:=X;
whiley ==z {

if (z - y) % n(2)) ===n(0) {
tmp :=y +(z-y)/n(2);
belse {tmp:=y+((z-y)/n?))+n(l); }
iftmp *tmp>x{ z:=tmp-n(1);}
else { y:=tmp; }

}
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into the lists of instructions

(push(20000000000000000) | (store(x) | (push(0) | (store(y) | (load(x) |
(store(z) | (load(y) | (load(z) | (notEqual | GumpOnCond(2) | (jump(44)
| (load(z) | (load(y) | (minus | (push(2) | (mod | (push(0) | (equal |
(JumpOnCond(2) | Gump(10) | (load(y) | (load(z) | (load(y) | (minus |
(push(2) | (divide | (add | (store(tmp) | Gump(11) | (load(y) | (load(z) |
(load(y) | (minus | (push(2) | (divide | (add | (push(1) | (add | (store(tmp)
| (load(tmp) | (load(tmp) | (multiply | (load(x) | (greaterThan |
(JumpOnCond(2) | Gump(6) | (load(tmp) | (push(1) | (minus | (store(z) |
(Gump(3) | (load(tmp) | (store(y) | (bjump(47) | (quit |
)N IList




