1217: Functional Programming
10. A Programming Language Processor —

Compiler

Kazuhiro Ogata, Canh Minh Do

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

Roadmap

e Compiler

i217 Functional Programming - 10. A Programming Language Processor
Compiler

Compiler

The compiler translates programs written in Minila into lists of
instructions that can be executed by the virtual machine.

We first describe how to generate lists of instructions for
expressions and then how to generate lists of instructions for
statements.

i217 Functional Programming - 10. A Programming Language Processor - 4
Compiler

Compiler

Given an expression €, genForExp generates a list of
instructions for e such that executing the instruction list
makes the result of e left at the top of the stack.

op genForExp : Exp -> IList .

In what follows, the following variables are used:

vars EEl E2 : Exp .
vars S S1S2: Stm.
var V : Var.

var N : Nat .

var IL : IList .

i217 Functional Programming - 10. A Programming Language Processor
Compiler

Compiler

eq genForExp(n(N)) = push(N) | iln .

Executing push(N) leaves N at the top of the stack.

eq genForExp(V) =load(V) | iln .

Executing load(V) leaves the natural number associated with
V' in a given environment at the top of the stack. If the
environment does not have any entry whose key is V, then
errNat is pushed onto the stack, which will become errStack.

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

Compiler

eq genForExp(E1 + E2)
= genForExp(El) @ genForExp(E2) @ (add | iln) .

Executing the instruction list generated by

genForExp(E1) leaves the result n, of n,
calculating E1 at the top of the stack.

Executing the instruction list generated by n,
genForExp(E2) leaves the result n, of n
calculating E2 at the top of the stack.

Executing add leaves the result of n, +n,
calculating n, + n, at the top of the stack.

i217 Functional Programming - 10. A Programming Language Processor
Compiler

Compiler

For the remaining expressions, equations can be described
likewise for genForExp.

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

Compiler

Given a program in Minila, compile generates the list of instructions for

the program (a statement) with generate and adds quit to the list at the
end.

op compile : Stm -> [List .
eq compile(S) = generate(S) @ (quit | iln) .

op generate : Stm -> [List .

eq generate(estm) = iln .

If the program is estm, then it generates the empty list of instructions.

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

Compiler

If the program is V := E ;, then it generates the list of instructions for E
and adds store(V) to the list at the end.

the list of instructions for E store(V)

generate(x :=n(3) + n(4) * n(5) ;) generates the following:

(push(3) | (push(4) | (push(5) | (multiply | (add | (store(x) | iln)))))):IList

i217 Functional Programming - 10. A Programming Language Processor -

Compiler 10

Compiler

If the programis if E {S1} else {S2}, then it generates the following list
of instructions:

the list of instructions for E |jumpOnCond(2) | jump(len,+2)

—

the list of instructions for S1 | jump(len,+1)

(

the list of instructions for S2
(J

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

Compiler

You can use len to calculate the length of an instruction list il:
len(il)

If you want to know the length of the instruction list that is generated
from a statement s, then all you have to do is as follows:

len(generate(s))

11

i217 Functional Programming - 10. A Programming Language Processor -
Compiler

Compiler

generate(if tmp * tmp > x {z :=tmp - n(1) ;} else {y :=tmp ;})
generates the following:

(load(tmp) | (load(tmp) | (multiply | (load(x) | (greaterThan |

(jumpOnCond(2) | Gump(6) |

(load(tmp) | (push(1) | (minus | (store(z) | Gump(3) |

(load(tmp) | (store(y) | iln)))))))))))))):IList

12

i217 Functional Programming - 10. A Programming Language Processor -

. 13
Compiler

Compiler

generate(if ((z - y) % n(2)) ===n(0) {tmp ==y + (z-y)/n(2) ;}

else {tmp :==y + ((z-y)/n(2)) + n(1) ;}
generates the following:

(load(z) | (load(y) | (minus | (push(2) | (mod | (push(0) | (equal |

(GumpOnCond(2) | (jump(10) |
(load(y) | (Ioad(z) | (load(y) | (minus | (push(2) | (divide | (add | (store(tmp) | Gump(11) |

(load(y) | (load(z) | (load(y) | (minus | (push(2) | (divide | (add | (push(1) | (add | (store(tmp) |

i) IList

i217 Functional Programming - 10. A Programming Language Processor -

1
Compiler 4

Compiler

If the program is while E {S1}, then it generates the following list of

instructions:
len,

A
(|

the list of instructions for E | jumpOnCond(2) | jump(len,+2)

S N

the list of instructions for S1 | bjump(len,+len,+2)

| J
I

len,

i217 Functional Programming - 10. A Programming Language Processor - 15
Compiler

Compiler

generate(while y <n(10) || y==n(10) {x :=x*y;y:=y+n(l);}
generates the following:

(load(y) | (push(10) | (lessThan | (load(y) | (push(10) | (equal | (or |

(GumpOnCond(2) | Gump(10) |
(load(x) | (load(y) | (multiply | (store(x) |

(load(y) | (push(1) | (add | (store(y) | (bjump(17) | iln)))))))))))))))):IList

i217 Functional Programming - 10. A Programming Language Processor - 16
Compiler

Compiler

for VE1 E2 {S1}

is equivalent to

V=El;

while V<E2||V==E2 {
S1
V:=V+n(l);

1
s

in that the result (the environment) obtained by interpreting the
former is exactly the same as the one obtained by interpreting the
latter.

This can be used to describe the equation to generate the list of
instructions for the for statement.

i217 Functional Programming - 10. A Programming Language Processor -

. 17
Compiler

Compiler

Given two statements s, and s, that are equivalent,

the instruction list generate(s,) generated from s, can be used as the
one generate(s,) generated from s,.

Namely,
eq generate(S;) = generate(s,) .

i217 Functional Programming - 10. A Programming Language Processor -

Compiler 18

Compiler

If the program is for V E1 E2 {S1}, then it generates the following list of
instructions:

the list of instructions for V := E1

the list of instructions for

while V<E2||V==E2 {S1 V:=V+n(l);}

i217 Functional Programming - 10. A Programming Language Processor - 19
Compiler

Compiler

generate(for y n(1) n(10) {x :==y *x;})
generates the following:

(push(1) | (store(y) |
(load(v) | (push(10) | (lessThan | (load(y) | (push(10) | (equal | (or |

(umpOnCond(2) | Gump(10) | (load(v)| (load(x) | (multiply | (store(z) | (load(v) |

(push(1)

(add | (store(y) | (bjump(17) | tln))))N)M))HH)N)))):IList

i217 Functional Programming - 10. A Programming Language Processor - 20
Compiler

Compiler

If the program is S1 S2, then it generates the following list of
instructions:

the list of instructions for S1 |the list of instructions for S2

You can use (@ _ to combine two instruction lists il, and il:

il, @il

i217 Functional Programming - 10. A Programming Language Processor - 21
Compiler

Compiler

generate(x ==y *x; y:=y+n(l);) generates the following:

(load(y) | (load(x) | (multiply | (store(x) |

(load(y) | (push(1) | (add | (store(y) | iln)))))):IList

i217 Functional Programming - 10. A Programming Language Processor - 2
Compiler

Compiler

generate(y :=n(1) ; whiley <n(10) [|[y==n(10) { x =y *x; y:==y
+n(l); }) generates the following:

(push(1) | (store(y) |
(load(v) | (push(10) | (IessThan | (load(y) | (push(10) | (equal | (or |
(umpOnCond(2) | Gump(10) | (load(v)| (load(x) | (multiply | (store(x) | (load(v) |

(push(1) | (add | (store(y) | (bjump(17) | iln)))MHINNNNIN)))):IList

i217 Functional Programming - 10. A Programming Language Processor
Compiler

23

Exercises

1. Complete the compiler and do some tests for the compiler.
2. Extend the compiler so that arrays of natural numbers can
be supported.

3. Extend the compiler so that functions (or procedures) can
be supported.

4. Extend the compiler so that many other program
constructs can be supported.

You may consult the Java compiler.

i217 Functional Programming - 8. A Programming Language Processor -
Interpreter

24

Appendices
The compiler translates the program

x:=n(l);

for y n(1) n(10) {
X:=y*x;

\

s

into the lists of instructions

(push(1) | (store(x) | (push(1) | (store(y) | (load(y) | (push(10) |
(lessThan | (load(y) | (push(10) | (equal | (or | GumpOnCond(2) |

(ump(10) | (load(y) | (load(x) | (multiply | (store(x) | (load(y) | (push(1)
| (add | (store(y) | (bjump(17) | (quit | iln))))))))))))))))))))))):IList

i217 Functional Programming - 8. A Programming Language Processor -
Interpreter

Appendices

The compiler translates the program
x:=n(24); y:=n(30);
while y =1=n(0) {

z=X%y; X:=y; y=z,;
}.

into the lists of instructions

(push(24) | (store(x) | (push(30) | (store(y) | (load(y) | (push(0) |
(notEqual | GumpOnCond(2) | Gump(10) | (load(x) | (load(y) | (mod |
(store(z) | (load(y) | (store(x) | (load(z) | (store(y) | (bjump(13) | (quit |
iIn))))))))))))))))):IList

25

i217 Functional Programming - 8. A Programming Language Processor -
Interpreter

Appendices

The compiler translates the program
x :=n(20000000000000000) ;

y =n(0);
Z:=X;
whiley ==z {

if (z - y) % n(2)) ===n(0) {
tmp :=y +(z-y)/n(2);
belse {tmp:=y+((z-y)/n?))+n(l); }
iftmp *tmp>x{ z:=tmp-n(1);}
else { y:=tmp; }

}

26

i217 Functional Programming - 8. A Programming Language Processor -

27
Interpreter

Appendices

into the lists of instructions

(push(20000000000000000) | (store(x) | (push(0) | (store(y) | (load(x) |
(store(z) | (load(y) | (load(z) | (notEqual | GumpOnCond(2) | (jump(44)
| (load(z) | (load(y) | (minus | (push(2) | (mod | (push(0) | (equal |
(JumpOnCond(2) | Gump(10) | (load(y) | (load(z) | (load(y) | (minus |
(push(2) | (divide | (add | (store(tmp) | Gump(11) | (load(y) | (load(z) |
(load(y) | (minus | (push(2) | (divide | (add | (push(1) | (add | (store(tmp)
| (load(tmp) | (load(tmp) | (multiply | (load(x) | (greaterThan |
(JumpOnCond(2) | Gump(6) | (load(tmp) | (push(1) | (minus | (store(z) |
(Gump(3) | (load(tmp) | (store(y) | (bjump(47) | (quit |
)N IList

