
I217: Functional Programming

11. Program Verification – Natural Numbers

Kazuhiro Ogata, Canh Minh Do

Roadmap

• Natural Numbers a la Peano

• Associativity of _+_

• Commutativity of _+_

• Associativity of _*_

• Commutativity of _*_

• Correctness of a Tail Recursive Factorial

i217 Functional Programming - 11. Program Verification - Natural Numbers 2

Natural Numbers a la Peano

i217 Functional Programming - 11. Program Verification - Natural Numbers 3

Natural numbers have been formalized by Giuseppe Peano
(1858 – 1932), an Italian mathematician.

Inductively defined as follows:

(1) 0 is a natural number.

(2) If n is a natural number, then the successor of n,
denoted s(n), is also a natural number.

0 s(0) s(s(0)) s(s(s(0))) s(s(s(s(0))))

0 1 2 3 4

Natural Numbers a la Peano

i217 Functional Programming - 11. Program Verification - Natural Numbers 4

Natural numbers can be specified in CafeOBJ as follows:

mod! PNAT1 {
[PNat]
op 0 : -> PNat {constr} .
op s : PNat -> PNat {constr} .
...

}

Terms 0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))) denote
0, 1, 2, 3, 4.

Natural Numbers a la Peano

i217 Functional Programming - 11. Program Verification - Natural Numbers 5

For every sort S, the following operator and equations are
prepared in the built-in module EQL that is imported by
BOOL: op _=_ : S S -> Bool {comm} .

eq (X = X) = true .
eq (true = false) = false .

where X is a variable of S.

We declare the following equations in PNAT1 for PNat:

eq (0 = s(Y)) = false .
eq (s(X) = s(Y)) = (X = Y) .

where X and Y are variables of PNat.

Let X, Y and Z be variables of PNat in the rest of the slides.

Natural Numbers a la Peano

i217 Functional Programming - 11. Program Verification - Natural Numbers 6

Addition of natural numbers is defined as follows:

op _+_ : PNat PNat -> PNat .
eq 0 + Y = Y . -- (+1)
eq s(X) + Y = s(X + Y) . -- (+2)

s(s(s(0))) + s(s(s(s(0))))
→ s(s(s(0)) + s(s(s(s(0)))))
→ s(s(s(0) + s(s(s(s(0))))))
→ s(s(s(0 + s(s(s(s(0)))))))
→ s(s(s(s(s(s(s(0)))))))

by (+2)
by (+2)
by (+2)
by (+1)

Natural Numbers a la Peano

i217 Functional Programming - 11. Program Verification - Natural Numbers 7

Multiplication of natural numbers is defined as follows:

op _*_ : PNat PNat -> PNat .
eq 0 * Y = 0 . -- (*1)
eq s(X) * Y = (X * Y) + Y . -- (*2)

s(s(0)) * s(s(0))
→ (s(0) * s(s(0))) + s(s(0))
→ ((0 * s(s(0))) + s(s(0))) + s(s(0))
→ (0 + s(s(0))) + s(s(0))
→ s(s(0)) + s(s(0))
→ s(s(0) + s(s(0)))
→ s(s(0 + s(s(0))))
→ s(s(s(s(0))))

by (*2)
by (*2)
by (*1)
by (+1)
by (+2)
by (+2)
by (+1)

Natural Numbers a la Peano

i217 Functional Programming - 11. Program Verification - Natural Numbers 8

Factorial function can be defined as follows:

op fact1 : PNat -> PNat .
eq fact1(0) = s(0) . -- (f1-1)
eq fact1(s(X)) = s(X) * fact1(X) . -- (f1-2)

Another implementation (a tail recursive version) of Factorial
function is as follows:

op fact2 : PNat -> PNat .
op sfact2 : PNat PNat -> PNat .
eq fact2(X) = sfact2(X,s(0)) . -- (f2)
eq sfact2(0,Y) = Y . -- (sf2-1)
eq sfact2(s(X),Y) = sfact2(X,s(X) * Y) . -- (sf2-2)

Natural Numbers a la Peano

i217 Functional Programming - 11. Program Verification - Natural Numbers 9

Let l(X) and r(X) be terms of a same sort (say PNat) in which
a variable X of PNat occurs. Then, the following (A) and (B)
are equivalent:

(A) (∀X:PNat) l(X) = r(X)

(B) I. l(0) = r(0)

II. If l(x) = r(x), then l(s(x)) = r(s(x)), where x is a fresh
constant of PNat.

It suffices to prove (B) so as to prove (A). This is called proof
by structural induction on natural number X. I is called the
base case, II is called the induction case, and l(x) = r(x) is
called the induction hypothesis.

Associativity of _+_

i217 Functional Programming - 11. Program Verification - Natural Numbers 10

(X + Y) + Z equals X + (Y + Z) for all natural numbers X,Y,Z.
This is what we will prove by structural induction on X.

Theorem 1 [Associativity of _+_ (assoc+)]
(∀ X:PNat) (∀Y,Z:PNat) ((X + Y) + Z = X + (Y + Z))

In the rest of the slides, the universal quantifiers, such as (∀
X:PNat) and (∀ Y,Z:PNat), are omitted, and the above
formula is written as follows:

(X + Y) + Z = X + (Y + Z)

Associativity of _+_

i217 Functional Programming - 11. Program Verification - Natural Numbers 11

Proof of Theorem 1 By structural induction on X.

Let x,y,z be fresh constants of PNat.

by (+1)

I. Base case

What to show is (0 + y) + z = 0 + (y + z).
(0 + y) + z → y + z 0 + (y + z) → y + z by (+1)

II. Induction case

What to show is (s(x) + y) + z = s(x) + (y + z)
assuming the induction hypothesis (x + Y) + Z = x + (Y + Z) -- (IH)

(s(x) + y) + z → s(x + y) + z
→ s((x + y) + z)
→ s(x + (y + z))

by (+2)
by (+2)
by (IH)

s(x) + (y + z) → s(x + (y + z)) by (+2)
End of Proof of Theorem 1

Associativity of _+_

i217 Functional Programming - 11. Program Verification - Natural Numbers 12

Part of the proof is written in CafeOBJ. Proofs written in CafeOBJ are
called proof scores.

Proof of Theorem 1 By structural induction on X.

I. Base case

open PNAT1 .
-- fresh constants
ops y z : -> PNat .
-- check
red (0 + y) + z = 0 + (y + z) .
close

open PNAT1 .
-- fresh constants
ops x y z : -> PNat .
-- IH
eq (x + Y) + Z = x + (Y + Z) .
-- check
red (s(x) + y) + z = s(x) + (y + z) .
close

II. Induction case

End of Proof of Theorem 1 Please see the appendices for the proof score.

Appendices

i217 Functional Programming - 11. Program Verification - Natural Numbers

The proof score of Theorem 1 is as follows:

"Theorem 1 [associativity of _+_ (assoc+)]
(X + Y) + Z = X + (Y + Z)

Proof of Theorem 1. By structural induction on X.
I. Base case"

open PNAT1 .
-- fresh constants
ops y z : -> PNat .
-- check
red (0 + y) + z = 0 + (y + z) .

close

13

Appendices

i217 Functional Programming - 11. Program Verification - Natural Numbers

"II. Induction case"

open PNAT1 .
-- fresh constants
ops x y z : -> PNat .
-- IH
eq (x + Y) + Z = x + (Y + Z) .
-- check
red (s(x) + y) + z = s(x) + (y + z) .

close

"End of Proof of Theorem 1"

14

Commutativity of _+_

i217 Functional Programming - 11. Program Verification - Natural Numbers 15

Proof of Theorem 2 By structural induction on X.

Let x,y be fresh constants of PNat.

by (+1)

I. Base case

What to show is 0 + y = y + 0.
0 + y → y

Theorem 2 [Commutativity of _+_ (comm+)] X + Y = Y + X

Since y + 0 cannot be rewritten, we need a lemma that makes it
possible to conclude that y + 0 equals y. We conjecture the following
lemma:

X + 0 = X -- (rz+)

y + 0 → y by (rz+)

(The lemma will be proved later.)

Commutativity of _+_

i217 Functional Programming - 11. Program Verification - Natural Numbers 16

II. Induction case

What to show is s(x) + y = y + s(x)
assuming the induction hypothesis x + Y = Y + x -- (IH)

s(x) + y → s(x + y)
→ s(y + x)

by (+2)
by (IH)

y + s(x) cannot be rewritten, and then we need a lemma that makes it
possible to conclude that y + s(x) equals s(y + x). We conjecture the
following lemma:

X + s(Y) = s(X + Y) -- (rs+)

y + s(x) → s(y + x) by (rs+)

End of Proof of Theorem 2
(The lemma will be proved later.)

Commutativity of _+_

i217 Functional Programming - 11. Program Verification - Natural Numbers 17

Proof of Lemma 1 By structural induction on X.

Let x be fresh constants of PNat.

by (+1)

I. Base case

What to show is 0 + 0 = 0.
0 + 0 → 0

Lemma 1 [Right zero of _+_ (rz+)] X + 0 = X

II. Induction case

What to show is s(x) + 0 = s(x)
assuming the induction hypothesis x + 0 = x -- (IH)

s(x) + 0 → s(x + 0)
→ s(x)

by (+2)
by (IH)

End of Proof of Lemma 1

Commutativity of _+_

i217 Functional Programming - 11. Program Verification - Natural Numbers 18

Proof of Lemma 2 By structural induction on X.

Let x,y be fresh constants of PNat.

by (+1)

I. Base case

What to show is 0 + s(y) = s(0 + y).
0 + s(y) → s(y)

Lemma 2 [Right successor of _+_ (rs+)] X + s(Y) = s(X + Y)

II. Induction case

What to show is s(x) + s(y) = s(s(x) + y)
assuming the induction hypothesis x + s(Y) = s(x + Y) -- (IH)

s(x) + s(y) → s(x + s(y))
→ s(s(x + y))

by (+2)
by (IH)

End of Proof of Lemma 2

by (+1)s(0 + y) → s(y)

s(s(x) + y) → s(s(x + y)) by (+2)

Commutativity of _+_

i217 Functional Programming - 11. Program Verification - Natural Numbers 19

Proof of Lemma 1 By structural induction on X.

I. Base case

Lemma 1 [Right zero of _+_ (rz+)] X + 0 = X

open PNAT1 .
-- check
red 0 + 0 = 0 .
close

open PNAT1 .
-- fresh constants
op x : -> PNat .
-- IH
eq x + 0 = x .
-- check
red s(x) + 0 = s(x) .
close

II. Induction case

End of Proof of Lemma 1

Commutativity of _+_

i217 Functional Programming - 11. Program Verification - Natural Numbers 20

I. Base case

open PNAT1 .
-- fresh constants
op y : -> PNat .
-- check
red 0 + s(y) = s(0 + y) .
close

open PNAT1 .
-- fresh constants
ops x y : -> PNat .
-- IH
eq x + s(Y) = s(x + Y) .
-- check
red s(x) + s(y) = s(s(x) + y) .
close

II. Induction case

End of Proof of Lemma 2

Proof of Lemma 2 By structural induction on X.

Lemma 2 [Right successor of _+_ (rs+)] X + s(Y) = s(X + Y)

Commutativity of _+_

i217 Functional Programming - 11. Program Verification - Natural Numbers 21

I. Base case

open PNAT1 .
-- fresh constants
op y : -> PNat .
-- lemmas
eq X + 0 = X . -- (rz+)
-- check
red 0 + y = y + 0 .
close

open PNAT1 .
-- fresh constants
ops x y : -> PNat .
-- lemmas
eq X + s(Y) = s(X + Y) . -- (rs+)
-- IH
eq x + Y = Y + x .
-- check
red s(x) + y = y + s(x) .
close

II. Induction case

End of Proof of Theorem 2

Proof of Theorem 2 By structural induction on X.

Theorem 2 [Commutativity of _+_ (comm+)] X + Y = Y + X

Associativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 22

I. Base case

Proof of Theorem 3 By structural induction on X.

Theorem 3 [Associativity of _*_ (assoc*)] (X * Y) * Z = X * (Y * Z)

Let x,y,z be fresh constants of PNat.

What to show is (0 * y) * z = 0 * (y * z).

by (*1)
by (*1)

(0 * y) * z → 0 * z
→ 0

by (*1)0 * (y * z) → 0

Associativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 23

II. Induction case

What to show is (s(x) * y) * z = s(x) * (y * z)
assuming the induction hypothesis (x * Y) * Z = x * (Y * Z) -- (IH)

by (*2)(s(x) * y) * z → ((x * y) + y) * z

s(x) * (y * z) → (x * (y * z)) + (y * z) by (*2)
We cannot make the two terms rewritten to a same term and then need
a lemma to do so. It seems sufficient to conjecture the following one:

(X + Y) * Z = (X * Z) + (Y * Z) -- (d*o+)

((x * y) + y) * z → ((x * y) * z) + (y * z)
→ (x * (y * z)) + (y * z)

by (d*o+)
by (IH)

End of Proof of Theorem 3

Associativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 24

I. Base case

Proof of Lemma 3 By structural induction on X.

Lemma 3 [Distributive law of _*_ over _+_ (d*o+)]
(X + Y) * Z = (X * Z) + (Y * Z)

Let x,y,z be fresh constants of PNat.

What to show is (0 + y) * z = (0 * z) + (y * z).

by (+1)(0 + y) * z → y * z

by (*1)
by (+1)

(0 * z) + (y * z) → 0 + (y * z)
→ y * z

Associativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 25

II. Induction case

What to show is (s(x) + y) * z = (s(x) * z) + (y * z)
assuming the induction hypothesis
(x + Y) * Z = (x * Z) + (Y * Z) -- (IH)

by (+2)
by (*2)
by (IH)
by (assoc+)
by (comm+)

(s(x) + y) * z → s(x + y) * z
→ ((x + y) * z) + z
→ ((x * z) + (y * z)) + z
→ (x * z) + ((y * z) + z)
→ (x * z) + (z + (y * z))

(s(x) * z) + (y * z) → ((x * z) + z) + (y * z)
→ (x * z) + (z + (y * z))

by (*2)
by (assoc+)

End of Proof of Lemma 3

Associativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 26

Proof of Lemma 3 By structural induction on X.

Lemma 3 [Distributive law of _*_ over _+_ (d*o+)]
(X + Y) * Z = (X * Z) + (Y * Z)

open PNAT2 .
-- fresh constants
ops y z : -> PNat .
-- check
red (0 + y) * z = (0 * z) + (y * z) .
close

open PNAT2 .
-- fresh constants
ops x y z : -> PNat .
-- IH
eq (x + Y) * Z = (x * Z) + (Y * Z) .
-- check
red (s(x) + y) * z = (s(x) * z) + (y * z) .
close

II. Induction caseI. Base case

Note that PNAT2 is PNAT1 in which _+_ is declared as follows:

op _+_ : PNat PNat -> PNat {assoc comm} .

End of Proof of Lemma 3

Associativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 27

Proof of Theorem 3 By structural induction on X.

open PNAT2 .
-- fresh constants
ops y z : -> PNat .
-- check
red (0 * y) * z = 0 * (y * z) .
close

open PNAT2 .
-- fresh constants
ops x y z : -> PNat .
-- lemmas
eq (X + Y) * Z = (X * Z) + (Y * Z) . -- (d*o+)
-- IH
eq (x * Y) * Z = x * (Y * Z) .
-- check
red (s(x) * y) * z = s(x) * (y * z) .
close

II. Induction caseI. Base case

End of Proof of Theorem 3

Theorem 3 [Associativity of _*_ (assoc*)] (X * Y) * Z = X * (Y * Z)

Commutativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 28

I. Base case

Proof of Theorem 4 By structural induction on X.

Theorem 4 [Commutativity of _*_ (comm*)] X * Y = Y * X

Let x,y be fresh constants of PNat.

What to show is 0 * y = y * 0.

by (*1)0 * y → 0

We need the following lemma to make progress in the proof:

X * 0 = 0 -- (rz*)

y * 0 → 0 by (rz*)

Commutativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 29

II. Induction case

What to show is s(x) * y = y * s(x)
assuming the induction hypothesis x * Y = Y * x -- (IH)

s(x) * y → (x * y) + y
→ (y * x) + y

by (*2)
by (IH)

We need the following lemma to make progress in the proof:

X * s(Y) = (X * Y) + X -- (rs*)

y * s(x) → (y * x) + y by (rs*)

End of Proof of Theorem 4

Commutativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 30

I. Base case

Proof of Lemma 4 By structural induction on X.

Lemma 4 [Right zero of _*_ (rz*)] X * 0 = 0

Let x be a fresh constants of PNat.

What to show is 0 * 0 = 0.

by (*1)0 * 0 → 0

II. Induction case
What to show is s(x) * 0 = 0
assuming the induction hypothesis x * 0 = 0 -- (IH)
s(x) * 0 → (x * 0) + 0

→ 0 + 0
→ 0

by (*2)
by (IH)
by (+1)

End of Proof of Lemma 4

Commutativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 31

I. Base case

Proof of Lemma 5 By structural induction on X.

Lemma 5 [Right successor of _*_ (rs*)] X * s(Y) = (X * Y) + X

Let x,y be a fresh constants of PNat.

What to show is 0 * s(y) = (0 * y) + 0.

by (*1)0 * s(y) → 0

(0 * y) + 0 → 0 + 0
→ 0

by (*1)
by (+1)

Commutativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 32

II. Induction case
What to show is s(x) * s(y) = (s(x) * y) + s(x)
assuming the induction hypothesis x * s(Y) = (x * Y) + x -- (IH)

s(x) * s(y) → (x * s(y)) + s(y)
→ ((x * y) + x) + s(y)
→ s(y) + ((x * y) + x)
→ s(y + ((x * y) + x))

by (*2)
by (IH)
by (comm +)
by (+2)

End of Proof of Lemma 5

(s(x) * y) + s(x) → ((x * y) + y) + s(x)
→ s(x) + ((x * y) + y)
→ s(x + ((x * y) + y))
→ s(((x * y) + y) + x)
→ s((y + (x * y)) + x)
→ s(y + ((x * y) + x))

by (*2)
by (comm+)
by (+2)
by (comm+)
by (comm+)
by (assoc+)

Commutativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 33

Proof of Lemma 4 By structural induction on X.

open PNAT2 .
-- check
red 0 * 0 = 0 .
close

open PNAT2 .
-- fresh constants
op x : -> PNat .
-- IH
eq x * 0 = 0 .
-- check
red s(x) * 0 = 0 .
close

II. Induction caseI. Base case

End of Proof of Lemma 4

Lemma 4 [Right zero of _*_ (rz*)] X * 0 = 0

Commutativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 34

Proof of Lemma 5 By structural induction on X.

open PNAT2 .
-- fresh constants
op y : -> PNat .
-- check
red 0 * s(y) = (0 * y) + 0 .
close

open PNAT2 .
-- fresh constants
ops x y : -> PNat .
-- IH
eq x * s(Y) = (x * Y) + x .
-- check
red s(x) * s(y) = (s(x) * y) + s(x) .
close

II. Induction caseI. Base case

End of Proof of Lemma 5

Lemma 5 [Right successor of _*_ (rs*)] X * s(Y) = (X * Y) + X

Commutativity of _*_

i217 Functional Programming - 11. Program Verification - Natural Numbers 35

Proof of Theorem 4 By structural induction on X.

open PNAT2 .
-- fresh constants
op y : -> PNat .
-- lemmas
eq X * 0 = 0 . -- (rz*)
-- check
red 0 * y = y * 0 .
close

open PNAT2 .
-- fresh constants
ops x y : -> PNat .
-- lemmas
eq X * s(Y) = (X * Y) + X . -- (rs*)
-- IH
eq x * Y = Y * x .
-- check
red s(x) * y = y * s(x) .
close

II. Induction caseI. Base case

End of Proof of Theorem 4

Theorem 4 [Commutativity of _*_ (comm*)] X * Y = Y * X

Correctness of a Tail Recursive Factorial

i217 Functional Programming - 11. Program Verification - Natural Numbers 36

I. Base case

Proof of Theorem 5 By structural induction on X.

Theorem 5 [Correctness of a Tail Recursive Factorial (trf)]
fact1(X) = fact2(X)

Let x be fresh constants of PNat.

What to show is fact1(0) = fact2(0).

by (f1-1)fact1(0) → s(0)

fact2(0) → sfact2(0,s(0))
→ s(0)

by (f2)
by (sf2-1)

Correctness of a Tail Recursive Factorial

i217 Functional Programming - 11. Program Verification - Natural Numbers 37

by (f1-2)
by (IH)
by (f2)

fact1(s(x)) → s(x) * fact1(x)
→ s(x) * fact2(x)
→ s(x) * sfact2(x,s(0))

by (f2)
by (sf2-2)

II. Induction case
What to show is fact1(s(x)) = fact2(s(x))
assuming the induction hypothesis fact1(x) = fact2(x) -- (IH)

fact2(s(x)) → sfact2(s(x),s(0))
→ sfact2(x,s(x) * s(0))

We cannot make the two terms equal only by rewriting, and need a lemma.
The following is one candidate:

s(X) * sfact2(X,s(0)) = sfact2(X,s(X) * s(0))
This is so specific that the proof of this lemma needs another lemma.
Therefore, we make it more generic as follows:

Y * sfact2(X,Z) = sfact2(X,Y * Z) -- (p-sf2)

s(x) * sfact2(x,s(0)) → sfact2(x,s(x) * s(0)) by (p-sf2)

End of Proof of Theorem 5

Correctness of a Tail Recursive Factorial

i217 Functional Programming - 11. Program Verification - Natural Numbers 38

I. Base case

Proof of Lemma6 By structural induction on X.

Lemma 6 [Property of sfact2 (p-sf2)] Y * sfact2(X,Z) = sfact2(X,Y * Z)

Let x,y,z be fresh constants of PNat.

What to show is y * sfact2(0,z) = sfact2(0,y * z).

by (sf2-1)y * sfact2(0,z) → y * z

sfact2(0,y * z) → y * z by (sf2-1)

Correctness of a Tail Recursive Factorial

i217 Functional Programming - 11. Program Verification - Natural Numbers 39

by (sf2-2)
by (IH)

y * sfact2(s(x),z) → y * sfact2(x,s(x) * z)
→ sfact2(x.y * (s(x) * z))

by (sf2-2)
by (assoc*)
by (comm*)
by (assoc*)

II. Induction case
What to show is y * sfact2(s(x),z) = sfact2(s(x),y * z)
assuming the induction hypothesis
Y * sfact2(x,Z) = sfact2(x,Y * Z) -- (IH)

sfact2(s(x),y * z) → sfact2(x,s(x) * (y * z))
→ sfact2(x,(s(x) * y) * z)
→ sfact2(x,(y * s(x)) * z)
→ sfact2(x,y * (s(x) * z))

End of Proof of Lemma 6

Correctness of a Tail Recursive Factorial

i217 Functional Programming - 11. Program Verification - Natural Numbers 40

Proof of Lemma 6 By structural induction on X.

open PNAT3 .
-- fresh constants
ops y z : -> PNat .
-- check
red y * sfact2(0,z)

= sfact2(0,y * z) .
close

open PNAT3 .
-- fresh constants
ops x y z : -> PNat .
-- lemmas
eq (X + Y) * Z = (X * Z) + (Y * Z) . -- (d*o+)
-- IH
eq Y * sfact2(x,Z) = sfact2(x,Y * Z) .
-- check
red y * sfact2(s(x),z) = sfact2(s(x),y * z) .

close

II. Induction caseI. Base case

End of Proof of Lemma 6

Lemma 6 [Property of sfact2 (p-sf2)] Y * sfact2(X,Z) = sfact2(X,Y * Z)

Note that we need to use the
lemma that was not used in
the manual proof.

Note that PNAT3 is PNAT2 in which _*_ is declared as follows:

op _*_ : PNat PNat -> PNat {assoc comm} .

Correctness of a Tail Recursive Factorial

i217 Functional Programming - 11. Program Verification - Natural Numbers 41

Proof of Theorem 5 By structural induction on X.

open PNAT3 .
-- check
red fact1(0) = fact2(0) .

close

open PNAT3 .
-- fresh constants
op x : -> PNat .
-- lemmas
eq Y * sfact2(X,Z) = sfact2(X,Y * Z) . -- (sf2-p)
-- IH
eq fact1(x) = fact2(x) .
-- check
red fact1(s(x)) = fact2(s(x)) .

close

II. Induction caseI. Base case

End of Proof of Theorem 5

Theorem 5 [Correctness of a Tail Recursive Factorial (trf)]
fact1(X) = fact2(X)

Exercises

i217 Functional Programming - 11. Program Verification - Natural Numbers

1. Write the specifications and proof scores used in the slides
and feed them to the CafeOBJ systems. Write all proofs on the
on the slides by hand as well.

42

2. Write two functions sum1 and sum2 that calculate the sum
of natural numbers up to a given natural numbers (inclusive)
that correspond to fact1 and fact2, write manual proofs
verifying that sum1(X) equals sum2(X) for all natural
numbers X, and write proof scores formally verifying that
sum1(X) equals sum2(X) for all natural numbers X.

Exercises

i217 Functional Programming - 11. Program Verification - Natural Numbers

3. Do you think that humans understand natural numbers? If
yes, describe why. If no, describe why not.

43

4. What is understanding somethings, such as natural
numbers? Describe your opinions on it.

Appendices

i217 Functional Programming - 11. Program Verification - Natural Numbers

The proof score of Theorem 1 is as follows:

"Theorem 1 [associativity of _+_ (assoc+)]
(X + Y) + Z = X + (Y + Z)

Proof of Theorem 1. By structural induction on X.
I. Base case"

open PNAT1 .
-- fresh constants
ops y z : -> PNat .
-- check
red (0 + y) + z = 0 + (y + z) .

close

44

Appendices

i217 Functional Programming - 11. Program Verification - Natural Numbers

"II. Induction case"

open PNAT1 .
-- fresh constants
ops x y z : -> PNat .
-- IH
eq (x + Y) + Z = x + (Y + Z) .
-- check
red (s(x) + y) + z = s(x) + (y + z) .

close

"End of Proof of Theorem 1"

45

