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Lists can be specified in CafeOBJ as follows:

mod! LIST1 (E :: TRIV) {
[List]
op nil : -> List {constr}
op _|_ : Elt.E List -> List {constr} .
…

}

Terms nil, e1 | nil, e1 | e2 | nil, e1 | e2 | e3 | nil, e1 | e2 | e3 | e4 
| nil denote lists that consist of 0, 1, 2, 3, 4 elements, 
respectively, if e1, e2, e3, e4 are terms of Elt.E.

Lists
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For every sort S, the following operator and equations are  
prepared in the built-in module EQL that is imported by 
BOOL: op _=_ : S S -> Bool {comm} .

eq (X = X) = true .
eq (true = false) = false .

where X is a variable of S.

We declare the following equations in LIST1 for List:

eq (nil = E | L1) = false .
eq (E | L1 = E2 | L2) = (E = E2) and (L1 = L2) .

where E,E2 are variables of Elt.E and L1,L2 are those of List.

Let L3 be a variable of List in the rest of the slides as well.
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Concatenation of lists is defined as follows:

op _@_ : List List -> List .
eq nil @ L2 = L2 .                                -- (@1)
eq (E | L1) @ L2 = E | (L1 @ L2) .      -- (@2)

(e1 | e2 | nil) @ (e3 | e4 | nil)
→ e1 | ((e2 | nil) @ (e3 | e4 | nil))
→ e1 | e2 | (nil @ (e3 | e4 | nil))
→ e1 | e2 | e3 | e4 | nil

by (@2)
by (@2)
by (@1)

Lists
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Reverse of lists is defined as follows:
op rev1 : List -> List .
eq rev1(nil) = nil .                                   -- (r1-1)
eq rev1(E | L1) = rev1(L1) @ (E | nil) .  -- (r1-2)

rev1(e1 | e2 | e3 | nil)
→ rev1(e2 | e3 | nil) @ (e1 | nil)
→ (rev1(e3 | nil) @ (e2 | nil)) @ (e1 | nil)
→ ((rev1(nil) @ (e3 | nil)) @ (e2 | nil)) @ (e1 | nil)
→ ((nil @ (e3 | nil)) @ (e2 | nil)) @ (e1 | nil)
→ ((e3 | nil) @ (e2 | nil)) @ (e1 | nil)
→ (e3 | (nil @ (e2 | nil))) @ (e1 | nil)
→ (e3 | e2 | nil) @ (e1 | nil)
→ e3 | ((e2 | nil) @ (e1 | nil))
→ e3 | e2 | (nil @ (e1 | nil))
→ e3 | e2 | e1 | nil

by (r1-2)
by (r1-2)
by (r1-2)
by (r1-1
by (@2)
by (@2)
by (@1)
by (@2)
by (@2)
by (@1)
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A tail recursive reverse of lists is defined as follows:
op rev2 : List -> List .
op sr2 : List List -> List .
eq rev2(L1) = sr2(L1,nil) .                  -- (r2)
eq sr2(nil,L2) = L2 .                            -- (sr2-1)
eq sr2(E | L1,L2) = sr2(L1,E | L2) .    -- (sr2-2)

rev2(e1 | e2 | e3 | nil)
→ sr2(e1 | e2 | e3 | nil, nil)
→ sr2(e2 | e3 | nil, e1 | nil)
→ sr2(e3 | nil, e2 | e1 | nil)
→ sr2(nil, e3 | e2 | e1 | nil)
→ e3 | e2 | e1 | nil

by (r2)
by (sr2-2)
by (sr2-2)
by (sr2-2)
by (sr2-1)
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Let l(L) and r(L) be terms of a same sort in which a variable L
of List occurs. Then, the following (A) and (B) are equivalent:

(A) (∀L:List) l(L) = r(L)

(B) I. l(nil) = r(nil)

II. If l(l) = r(l), then l(e | l) = r(e | l), where e is a fresh 
constant of Elt.E and l is a fresh constant of List.

It suffices to prove (B) so as to prove (A). This is called proof 
by structural induction on List L. I is called the base case, II is 
called the induction case, and l(l) = r(l) is called the induction 
hypothesis.
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(L1 @ L2) @ L3 equals L1 @ (L2 @ L3) for lists L1,L2,L3. This is 
what we will prove by structural induction on L1. 

Theorem 1 [Associativity of _@_ (assoc@)]
(L1 @ L2) @ L3 = L1 @ (L2 @ L3)

Let e be a fresh constant of Elt.E, l1,l2,l3 be fresh constants of List.

Proof of Theorem 1 By structural induction on L1.

I. Base case
What to show is (nil @ l2) @ l3 = nil @ (l2 @ l3). 

(nil @ l2) @ l3
→ l2 @ l3

nil @ (l2 @ l3)
→ l2 @ l3by (@1) by (@1)

Associativity of _@_
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II. Induction case
What to show is ((e | l1) @ l2) @ l3 = (e | l1) @ (l2 @ l3)
assuming the induction hypothesis  
(l1 @ L2) @ L3 = l1 @ (L2 @ L3)    -- (IH)

((e | l1) @ l2) @ l3
→ (e | (l1 @ l2)) @ l3
→ e | ((l1 @ l2) @ l3)
→ e | (l1 @ (l2 @ l3))

(e | l1) @ (l2 @ l3)
→ e | (l1 @ (l2 @ l3))

by (@2)
by (@2)
by (IH)

by (@2)

End of Proof of Theorem 1
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Theorem 1 [Associativity of _@_ (assoc@)]
(L1 @ L2) @ L3 = L1 @ (L2 @ L3)

Proof of Theorem 1 By structural induction on L1.

open LIST1 .
-- fresh constants
ops l2 l3 : -> List .
-- check
red (nil @ l2) @ l3 = nil @ (l2 @ l3) .
close

I. Base case

Associativity of _@_
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open LIST1 .
-- fresh constants
ops l1 l2 l3 : -> List .
op e : -> Elt.E .
-- induction hypothesis
eq (l1 @ L2) @ L3 = l1 @ (L2 @ L3) .
-- check
red ((e | l1) @ l2) @ l3 = (e | l1) @ (l2 @ l3) .
close

II. Induction case

End of Proof of Theorem 1
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Theorem 2 [Correctness of a tail recursive reverse (ctrr)]
rev1(L1) = rev2(L1)

Let e be a fresh constant of Elt.E, l1 be a fresh constant of List.

Proof of Theorem 2 By structural induction on L1.

I. Base case

What to show is rev1(nil) = rev2(nil). 

rev1(nil)
→ nil by (r1-1)

rev2(nil)
→ sr2(nil,nil)
→ nil

by (r2)
by (sr2-1)

Correctness of a Tail Recursive Reverse
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II. Induction case
What to show is rev1(e | l1) = rev2(e | l1)
assuming the induction hypothesis  
rev1(l1) = rev2(l1)    -- (IH)

rev1(e | l1)
→ rev1(l1) @ (e | nil)
→ rev2(l1) @ (e | nil)
→ sr2(l1,nil) @ (e | nil)

rev2(e | l1)
→ sr2(e | l1,nil)
→ sr2(l1,e | nil)

by (r1-2)
by (IH)
by (r2)

by (r2)
by (r2-2)
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Both sr2(l1,nil) @ (e | nil) and sr2(l1,e | nil) cannot be rewritten any 
more, and then we need a lemma. One possible candidate is as 
follows:

sr2(L1,E | nil) = sr2(L1,nil) @ (E | nil)

However, this seems too specific. Therefore, we make it more 
generic:

sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2)    -- (p-sr2)

sr2(l1,e | nil)
→ sr2(l1,nil) @ (e | nil) by (p-sr2)

End of Proof of Theorem 2

Correctness of a Tail Recursive Reverse
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Lemma 1 [A property of sr2 (p-sr2)]
sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2)

Let e,e2 be fresh constants of Elt.E, l1,l2 be fresh constants of List.

Proof of Lemma 1 By structural induction on L1.

I. Base case

What to show is sr2(nil,e2 | l2) = sr2(nil,nil) @ (e2 | l2). 

sr2(nil,e2 | l2)
→ e2 | l2 by (sr2-1)

sr2(nil,nil) @ (e2 | l2)
→ nil @ (e2 | l2)
→ e2 | l2

by (sr2-1)
by (@1)
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II. Induction case
What to show is sr2(e | l1,e2 | l2) = sr2(e | l1,nil) @ (e2 | l2)
assuming the induction hypothesis  
sr2(l1,E2 | L2) = sr2(l1,nil) @ (E2 | L2) -- (IH)

sr2(e | l1,e2 | l2)
→ sr2(l1,e | e2 | l2)
→ sr2(l1,nil) @ (e | e2 | l2)

by (sr2-2)
by (IH)

Correctness of a Tail Recursive Reverse
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by (sr2-2)
by (IH)
by (assoc@)
by (@2)
by (@1)

sr2(e | l1,nil) @ (e2 | l2) 
→ sr2(l1,e | nil) @ (e2 | l2)
→ (sr2(l1,nil) @ (e | nil)) @ (e2 | l2)
→ sr2(l1,nil) @ ((e | nil) @ (e2 | l2))
→ sr2(l1,nil) @ (e | (nil @ (e2 | l2))
→ sr2(l1,nil) @ (e | e2 | l2)

End of Proof of Lemma 1
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Lemma 1 [A property of sr2 (p-sr2)]
sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2)

Proof of Lemma 1 By structural induction on L1.

I. Base case

open LIST2 .
-- fresh constants
op l2 : -> List .
op e2 : -> Elt.E .
-- check
red sr2(nil,e2 | l2) = sr2(nil,nil) @ (e2 | l2) .
close

Correctness of a Tail Recursive Reverse
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open LIST2 .
-- fresh constants
ops l1 l2 : -> List .
ops e e2 : -> Elt.E .
-- induction hypothesis
eq sr2(l1,E2 | L2) = sr2(l1,nil) @ (E2 | L2) .
-- check
red sr2(e | l1,e2 | l2) = sr2(e | l1,nil) @ (e2 | l2) .
close

II. Induction case

End of Proof of Lemma 1
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I. Base case

open LIST2 .
-- check
red rev1(nil) = rev2(nil) .
close

Theorem 2 [Correctness of a tail recursive reverse (ctrr)]
rev1(L1) = rev2(L1)

Proof of Theorem 2 By structural induction on L1.

Correctness of a Tail Recursive Reverse
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open LIST2 .
-- fresh constants
op l1 : -> List .
op e : -> Elt.E .
-- induction hypothesis
eq rev1(l1) = rev2(l1) .
-- lemmas
eq sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) .
-- check
red rev1(e | l1) = rev2(e | l1) .
close

II. Induction case

End of Proof of Theorem 2
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1. Write the specifications and proof scores used in the slides 
and feed them to the CafeOBJ systems. Write all proofs used 
on the slides by hand as well.
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2. Write manual proofs verifying that rev1(rev1((L)) equals L
for all lists L, and write proof scores formally verifying that 
rev1(rev1((L)) equals L for all lists L.

3. Conjecture many things on lists that seem to be true and 
prove them.


