1217: Functional Programming

12. Program Verification — Lists

Kazuhiro Ogata, Canh Minh Do

i217 Functional Programming - 12. Program Verification - Lists

Roadmap

e Lists
* Associativity of @
e Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 3

Lists

Lists can be specified in CafeOBJ as follows:

mod! LIST1 (E :: TRIV) {
[List]
op nil : -> List {constr}
op | :EIt.E List -> List {constr} .

}...

Termsnil, el |nil,el |e2 | nil, el |e2|e3 |nil, el |e2|e3|e4
| nil denote lists that consist of 0, 1, 2, 3, 4 elements,
respectively, if 1, e2, 3, e4 are terms of Elt.E.

i217 Functional Programming - 12. Program Verification - Lists 4

Lists

For every sort S, the following operator and equations are
prepared in the built-in module EQL that is imported by
BOOL: op = :S S->Bool {comm} .
eq (X =X) =true.
eq (true = false) = false .
where X is a variable of S.
We declare the following equations in LIST1 for List:
eq (nil=E|L1)=false.
eq(E|L1=E2|L2)=(E=E2)and (L1 =L1L2).
where E,E2 are variables of Elt.E and LL1,L.2 are those of List.

Let L3 be a variable of List in the rest of the slides as well.

i217 Functional Programming - 12. Program Verification - Lists

Lists

Concatenation of lists is defined as follows:

op (@ :ListList->List.

eqnil @ L2=L2. - (@1)

eq(E|ILH)@L2=E| (L1 @L2). --(@2)
(el |e2|nil) @ (e3]|e4|nil)
— el | ((e2|nil) @ (e3 | e4 | nil)) by (@2)
— el |e2 | (nil @ (e3 |e4|nil)) by (@2)
—el|e2|e3|ed|nil by (@1)

Lists
Reverse of lists is defined as follows:
op revl : List -> List .
eq revl(nil) =nil . -~ (rl-1)

eqrevl(E|L1)=revl(Ll) @ (E | nil). -- (r1-2)

revl(el | e2 | e3 | nil)

—revl(e2|e3 |nil) @ (el | nil)

— (revl(e3 | nil) @ (e2 | nil)) @ (el | nil)

— ((revl(nil) @ (e3 | nil)) @ (e2 | nil)) @ (el | nil)
— ((nil @ (e3 | nil)) @ (e2 | nil)) @ (el | nil)

— ((e3 | nil) @ (e2 | nil)) @ (el | nil)

— (€3 | (nil@ (e2 | nil))) @ (el | nil)

— (€3] e2 | nil) @ (el | nil)

—e3 | ((e2 | nil) @ (el | nil))

—e3|e2 | (nil @ (el |nil))

—e3|e2|el |nil

by (r1-2)
by (r1-2)
by (r1-2)
by (r1-1

by (@2)
by (@2)
by (@1)
by (@2)
by (@2)
by (@1)

i217 Functional Programming - 12. Program Verification - Lists

Lists

A tail recursive reverse of lists is defined as follows:
op rev2 : List -=> List .
op sr2 : List List -> List .
eq rev2(L1) =sr2(L1,nil) . - (12)
eq sr2(nil,LL2) =12 . - (sr2-1)
eqsr2(E | L1,L.2) =sr2(L1,E | L2). --(sr2-2)

rev2(el | e2 | e3 | nil)

— sr2(el [e2 | e3 | nil, nil) by (12)
— sr2(e2 | e3 | nil, el | nil) by (sr2-2)
— sr2(e3 | nil, e2 | el [nil) by (sr2-2)
— sr2(nil, e3 | e2 | el [nil) by (sr2-2)
—e3|e2]el |nil by (sr2-1)
Lists

Let I(L) and r(L) be terms of a same sort in which a variable L
of List occurs. Then, the following (A) and (B) are equivalent:

(A) (VL:List) (L) =r(L)

(B) L. I(nil) = r(nil)
IL If I(1) = r(1), then I(e | 1) = r(e | 1), where ¢ is a fresh
constant of Elt.E and l is a fresh constant of List.

It suffices to prove (B) so as to prove (A). This is called proof
by structural induction on List L. I is called the base case, 11 is
called the induction case, and I(1) = r(l) is called the induction
hypothesis.

i217 Functional Programming - 12. Program Verification - Lists 9

Associativity of @

(LT @ L2) @ L3 equals L1 @ (L2 (@ L3) for lists L1,L.2,1.3. This is
what we will prove by structural induction on L1.

Theorem 1 [Associativity of @ (assoc@)]
(L1 @L2) @ L3=L1 @ (L2 @ L3)
Proof of Theorem 1 By structural induction on L1.

Let e be a fresh constant of Elt.E, 11,12,13 be fresh constants of List.

I. Base case
What to show is (nil @ 12) @ 13 =nil @ (12 @ 13).
(nil @ 12) @ 13 nil @ (12 @ 13)
—1R2@l3 by (@1) —>R@l3 by (@1)

i217 Functional Programming - 12. Program Verification - Lists 10

Associativity of @

II. Induction case
What toshowis ((e|11) @ 12) @ 13 =(e|11) @ (12 @ 13)
assuming the induction hypothesis

l@L2)@L3=11 @ (L2 @L3) --(IH)
(e|1) @12) @13

— (|l @12) @13 by (@2)
—e|((lL@12) @13) by (@2)
—e|(l @ (12 @13)) by (IH)

(e|11) @ (12 @13)
—e|(l @2@13)) by (@2)

End of Proof of Theorem 1

i217 Functional Programming - 12. Program Verification - Lists

Associativity of @

Theorem 1 [Associativity of @ _ (assoc@)]
(L1 @L2) @L3=L1 @ (L2 @ L3)

Proof of Theorem 1 By structural induction on L 1.

I. Base case

open LISTI .

-- fresh constants

ops 12 13 : -> List .

-- check

red (nil @ 12) @ 13 =nil @ (12 @ 13) .
close

11

i217 Functional Programming - 12. Program Verification - Lists

Associativity of @

II. Induction case

open LISTI .

-- fresh constants

ops 111213 : > List.

ope:->EItE.

-- induction hypothesis

eq(Il @ L2y @ L3=11 @ (L2 @ L3).

-- check

red (|l @) @B=(c|11) @ (12 @13).
close

End of Proof of Theorem 1

12

i217 Functional Programming - 12. Program Verification - Lists

Correctness of a Tail Recursive Reverse

Theorem 2 [Correctness of a tail recursive reverse (ctrr)]
revl(L1) =rev2(L1)

Proof of Theorem 2 By structural induction on L 1.

Let e be a fresh constant of Elt.E, 11 be a fresh constant of List.

I. Base case
What to show is rev1(nil) = rev2(nil).

revl(nil) rev2(nil)
— nil by (rl-1) — sr2(nil,nil) by (12)
— nil by (sr2-1)

13

i217 Functional Programming - 12. Program Verification - Lists

Correctness of a Tail Recursive Reverse

II. Induction case

What to show isrevi(e | 11)=rev2(e | 11)
assuming the induction hypothesis
revl(ll) =rev2(ll) -- (IH)

revli(e |11)

— revl(1l) @ (e | nil) by (r1-2)
— rev2(1l) @ (e | nil) by (IH)
— sr2(11,nil) @ (e | nil) by (2)

rev2(e | 11)
— sr2(e | 11.nil) by (12)
— sr2(11,e | nil) by (12-2)

14

i217 Functional Programming - 12. Program Verification - Lists 15

Correctness of a Tail Recursive Reverse

Both sr2(11,nil) @ (e | nil) and sr2(11.e | nil) cannot be rewritten any
more, and then we need a lemma. One possible candidate is as
follows:)))

sr2(L1,E | nil) = sr2(L1,nil) @ (E | nil)
However, this seems too specific. Therefore, we make it more
generic:

sr2(L1,E2 | L2) =sr2(L1,nil) @ (E2 | L2) -- (p-sr2)

sr2(11.e | nil)
— sr2(11,nil) @ (e | nil) by (p-sr2)

End of Proof of Theorem 2

i217 Functional Programming - 12. Program Verification - Lists 16

Correctness of a Tail Recursive Reverse
Lemma 1 [A property of sr2 (p-sr2)]

sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2)

Proof of Lemma 1 By structural induction on L1.

Let e,e2 be fresh constants of Elt.E, 11,12 be fresh constants of List.

I. Base case
What to show is sr2(nil,e2 | 12) = sr2(nil,nil) @ (e2 | 12).
sr2(nil.e2 [12) sr2(nil.nil) @ (e2 | 12)

—e2 |12 by (sr2-1) — nil @ (e2]12) by (sr2-1)
—e2 |12 by (@1)

i217 Functional Programming - 12. Program Verification - Lists

Correctness of a Tail Recursive Reverse

II. Induction case

What to show is sr2(e | 11,e2 | 12) = sr2(e | I1,nil) @ (e2 | 12)
assuming the induction hypothesis

sr2(11,E2 | L2) = sr2(11,nil) @ (E2 | L2) -- (IH)

sr2(e | 11,e2 | 12)
— sr2(ll.e |e2 | 12) by (sr2-2)
— sr2(11,nil) @ (e | €2 | 12) by (IH)

17

i217 Functional Programming - 12. Program Verification - Lists

Correctness of a Tail Recursive Reverse

sr2(e | 11.nil) @ (e2 | 12)

— sr2(11.e | nil) @ (e2 | 12) by (sr2-2)
— (sr2(11,nil) @ (e | nil)) @ (e2 | 12) by (IH)

— sr2(11,nil) @ ((e | nil) @ (e2 | 12)) by (assoc@)
— sr2(11,nil) @ (e | (nil @ (e2 | 12)) by (@?2)

— sr2(11,nil) @ (e | e2 | 12) by (@1)

End of Proof of Lemma 1

18

i217 Functional Programming - 12. Program Verification - Lists 19

Correctness of a Tail Recursive Reverse

Lemma 1 [A property of sr2 (p-sr2)]
sr2(L1,E2 | L2) =sr2(L1,nil) @ (E2 | L2)

Proof of Lemma 1 By structural induction on L1.

I. Base case

open LIST2 .

-- fresh constants

opl2:->List.

ope2:->EIE.

-- check

red sr2(nil,e2 | 12) = sr2(nil,nil) @ (e2 | 12) .
close

i217 Functional Programming - 12. Program Verification - Lists 20

Correctness of a Tail Recursive Reverse

II. Induction case

open LIST2 .

-- fresh constants

ops 1112 : -> List.

opsee2:->EItE.

-- induction hypothesis

eq sr2(11,E2 | L2) = sr2(11,nil) @ (E2 | L2) .

-- check

red sr2(e | 11,e2 | 12) = sr2(e | 11,nil) @ (e2 | 12) .
close

End of Proof of Lemma 1

i217 Functional Programming - 12. Program Verification - Lists

Correctness of a Tail Recursive Reverse

Theorem 2 [Correctness of a tail recursive reverse (ctrr)]
revl(L1) =rev2(L1)

Proof of Theorem 2 By structural induction on L 1.

I. Base case

open LIST2 .

-- check

red revl(nil) = rev2(nil) .
close

21

i217 Functional Programming - 12. Program Verification - Lists

Correctness of a Tail Recursive Reverse

II. Induction case

open LIST2 .
-- fresh constants
opll:->List.
ope:->EItE.
-- induction hypothesis
eq revl(ll) =rev2(1l) .

-- lemmas
eq sr2(L1,E2 | L2) =sr2(L1,nil) @ (E2 | L2) .
-- check
red revi(e |11) =rev2(e|1l).
close

End of Proof of Theorem 2

22

i217 Functional Programming - 12. Program Verification - Lists

Exercises

1. Write the specifications and proof scores used in the slides
and feed them to the CafeOBJ systems. Write all proofs used
on the slides by hand as well.

2. Write manual proofs verifying that revl(revl((L)) equals L
for all lists L, and write proof scores formally verifying that
revl(revl((L)) equals L for all lists L.

3. Conjecture many things on lists that seem to be true and
prove them.

