
I217: Functional Programming

12. Program Verification – Lists

Kazuhiro Ogata, Canh Minh Do

Roadmap

• Lists

• Associativity of _@_

• Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 2

Lists

i217 Functional Programming - 12. Program Verification - Lists 3

Lists can be specified in CafeOBJ as follows:

mod! LIST1 (E :: TRIV) {
[List]
op nil : -> List {constr}
op _|_ : Elt.E List -> List {constr} .
…

}

Terms nil, e1 | nil, e1 | e2 | nil, e1 | e2 | e3 | nil, e1 | e2 | e3 | e4
| nil denote lists that consist of 0, 1, 2, 3, 4 elements,
respectively, if e1, e2, e3, e4 are terms of Elt.E.

Lists

i217 Functional Programming - 12. Program Verification - Lists 4

For every sort S, the following operator and equations are
prepared in the built-in module EQL that is imported by
BOOL: op _=_ : S S -> Bool {comm} .

eq (X = X) = true .
eq (true = false) = false .

where X is a variable of S.

We declare the following equations in LIST1 for List:

eq (nil = E | L1) = false .
eq (E | L1 = E2 | L2) = (E = E2) and (L1 = L2) .

where E,E2 are variables of Elt.E and L1,L2 are those of List.

Let L3 be a variable of List in the rest of the slides as well.

Lists

i217 Functional Programming - 12. Program Verification - Lists 5

Concatenation of lists is defined as follows:

op _@_ : List List -> List .
eq nil @ L2 = L2 . -- (@1)
eq (E | L1) @ L2 = E | (L1 @ L2) . -- (@2)

(e1 | e2 | nil) @ (e3 | e4 | nil)
→ e1 | ((e2 | nil) @ (e3 | e4 | nil))
→ e1 | e2 | (nil @ (e3 | e4 | nil))
→ e1 | e2 | e3 | e4 | nil

by (@2)
by (@2)
by (@1)

Lists

i217 Functional Programming - 12. Program Verification - Lists 6

Reverse of lists is defined as follows:
op rev1 : List -> List .
eq rev1(nil) = nil . -- (r1-1)
eq rev1(E | L1) = rev1(L1) @ (E | nil) . -- (r1-2)

rev1(e1 | e2 | e3 | nil)
→ rev1(e2 | e3 | nil) @ (e1 | nil)
→ (rev1(e3 | nil) @ (e2 | nil)) @ (e1 | nil)
→ ((rev1(nil) @ (e3 | nil)) @ (e2 | nil)) @ (e1 | nil)
→ ((nil @ (e3 | nil)) @ (e2 | nil)) @ (e1 | nil)
→ ((e3 | nil) @ (e2 | nil)) @ (e1 | nil)
→ (e3 | (nil @ (e2 | nil))) @ (e1 | nil)
→ (e3 | e2 | nil) @ (e1 | nil)
→ e3 | ((e2 | nil) @ (e1 | nil))
→ e3 | e2 | (nil @ (e1 | nil))
→ e3 | e2 | e1 | nil

by (r1-2)
by (r1-2)
by (r1-2)
by (r1-1
by (@2)
by (@2)
by (@1)
by (@2)
by (@2)
by (@1)

Lists

i217 Functional Programming - 12. Program Verification - Lists 7

A tail recursive reverse of lists is defined as follows:
op rev2 : List -> List .
op sr2 : List List -> List .
eq rev2(L1) = sr2(L1,nil) . -- (r2)
eq sr2(nil,L2) = L2 . -- (sr2-1)
eq sr2(E | L1,L2) = sr2(L1,E | L2) . -- (sr2-2)

rev2(e1 | e2 | e3 | nil)
→ sr2(e1 | e2 | e3 | nil, nil)
→ sr2(e2 | e3 | nil, e1 | nil)
→ sr2(e3 | nil, e2 | e1 | nil)
→ sr2(nil, e3 | e2 | e1 | nil)
→ e3 | e2 | e1 | nil

by (r2)
by (sr2-2)
by (sr2-2)
by (sr2-2)
by (sr2-1)

Lists

i217 Functional Programming - 12. Program Verification - Lists 8

Let l(L) and r(L) be terms of a same sort in which a variable L
of List occurs. Then, the following (A) and (B) are equivalent:

(A) (∀L:List) l(L) = r(L)

(B) I. l(nil) = r(nil)

II. If l(l) = r(l), then l(e | l) = r(e | l), where e is a fresh
constant of Elt.E and l is a fresh constant of List.

It suffices to prove (B) so as to prove (A). This is called proof
by structural induction on List L. I is called the base case, II is
called the induction case, and l(l) = r(l) is called the induction
hypothesis.

Associativity of _@_

i217 Functional Programming - 12. Program Verification - Lists 9

(L1 @ L2) @ L3 equals L1 @ (L2 @ L3) for lists L1,L2,L3. This is
what we will prove by structural induction on L1.

Theorem 1 [Associativity of _@_ (assoc@)]
(L1 @ L2) @ L3 = L1 @ (L2 @ L3)

Let e be a fresh constant of Elt.E, l1,l2,l3 be fresh constants of List.

Proof of Theorem 1 By structural induction on L1.

I. Base case
What to show is (nil @ l2) @ l3 = nil @ (l2 @ l3).

(nil @ l2) @ l3
→ l2 @ l3

nil @ (l2 @ l3)
→ l2 @ l3by (@1) by (@1)

Associativity of _@_

i217 Functional Programming - 12. Program Verification - Lists 10

II. Induction case
What to show is ((e | l1) @ l2) @ l3 = (e | l1) @ (l2 @ l3)
assuming the induction hypothesis
(l1 @ L2) @ L3 = l1 @ (L2 @ L3) -- (IH)

((e | l1) @ l2) @ l3
→ (e | (l1 @ l2)) @ l3
→ e | ((l1 @ l2) @ l3)
→ e | (l1 @ (l2 @ l3))

(e | l1) @ (l2 @ l3)
→ e | (l1 @ (l2 @ l3))

by (@2)
by (@2)
by (IH)

by (@2)

End of Proof of Theorem 1

Associativity of _@_

i217 Functional Programming - 12. Program Verification - Lists 11

Theorem 1 [Associativity of _@_ (assoc@)]
(L1 @ L2) @ L3 = L1 @ (L2 @ L3)

Proof of Theorem 1 By structural induction on L1.

open LIST1 .
-- fresh constants
ops l2 l3 : -> List .
-- check
red (nil @ l2) @ l3 = nil @ (l2 @ l3) .
close

I. Base case

Associativity of _@_

i217 Functional Programming - 12. Program Verification - Lists 12

open LIST1 .
-- fresh constants
ops l1 l2 l3 : -> List .
op e : -> Elt.E .
-- induction hypothesis
eq (l1 @ L2) @ L3 = l1 @ (L2 @ L3) .
-- check
red ((e | l1) @ l2) @ l3 = (e | l1) @ (l2 @ l3) .
close

II. Induction case

End of Proof of Theorem 1

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 13

Theorem 2 [Correctness of a tail recursive reverse (ctrr)]
rev1(L1) = rev2(L1)

Let e be a fresh constant of Elt.E, l1 be a fresh constant of List.

Proof of Theorem 2 By structural induction on L1.

I. Base case

What to show is rev1(nil) = rev2(nil).

rev1(nil)
→ nil by (r1-1)

rev2(nil)
→ sr2(nil,nil)
→ nil

by (r2)
by (sr2-1)

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 14

II. Induction case
What to show is rev1(e | l1) = rev2(e | l1)
assuming the induction hypothesis
rev1(l1) = rev2(l1) -- (IH)

rev1(e | l1)
→ rev1(l1) @ (e | nil)
→ rev2(l1) @ (e | nil)
→ sr2(l1,nil) @ (e | nil)

rev2(e | l1)
→ sr2(e | l1,nil)
→ sr2(l1,e | nil)

by (r1-2)
by (IH)
by (r2)

by (r2)
by (r2-2)

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 15

Both sr2(l1,nil) @ (e | nil) and sr2(l1,e | nil) cannot be rewritten any
more, and then we need a lemma. One possible candidate is as
follows:

sr2(L1,E | nil) = sr2(L1,nil) @ (E | nil)

However, this seems too specific. Therefore, we make it more
generic:

sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) -- (p-sr2)

sr2(l1,e | nil)
→ sr2(l1,nil) @ (e | nil) by (p-sr2)

End of Proof of Theorem 2

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 16

Lemma 1 [A property of sr2 (p-sr2)]
sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2)

Let e,e2 be fresh constants of Elt.E, l1,l2 be fresh constants of List.

Proof of Lemma 1 By structural induction on L1.

I. Base case

What to show is sr2(nil,e2 | l2) = sr2(nil,nil) @ (e2 | l2).

sr2(nil,e2 | l2)
→ e2 | l2 by (sr2-1)

sr2(nil,nil) @ (e2 | l2)
→ nil @ (e2 | l2)
→ e2 | l2

by (sr2-1)
by (@1)

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 17

II. Induction case
What to show is sr2(e | l1,e2 | l2) = sr2(e | l1,nil) @ (e2 | l2)
assuming the induction hypothesis
sr2(l1,E2 | L2) = sr2(l1,nil) @ (E2 | L2) -- (IH)

sr2(e | l1,e2 | l2)
→ sr2(l1,e | e2 | l2)
→ sr2(l1,nil) @ (e | e2 | l2)

by (sr2-2)
by (IH)

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 18

by (sr2-2)
by (IH)
by (assoc@)
by (@2)
by (@1)

sr2(e | l1,nil) @ (e2 | l2)
→ sr2(l1,e | nil) @ (e2 | l2)
→ (sr2(l1,nil) @ (e | nil)) @ (e2 | l2)
→ sr2(l1,nil) @ ((e | nil) @ (e2 | l2))
→ sr2(l1,nil) @ (e | (nil @ (e2 | l2))
→ sr2(l1,nil) @ (e | e2 | l2)

End of Proof of Lemma 1

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 19

Lemma 1 [A property of sr2 (p-sr2)]
sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2)

Proof of Lemma 1 By structural induction on L1.

I. Base case

open LIST2 .
-- fresh constants
op l2 : -> List .
op e2 : -> Elt.E .
-- check
red sr2(nil,e2 | l2) = sr2(nil,nil) @ (e2 | l2) .
close

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 20

open LIST2 .
-- fresh constants
ops l1 l2 : -> List .
ops e e2 : -> Elt.E .
-- induction hypothesis
eq sr2(l1,E2 | L2) = sr2(l1,nil) @ (E2 | L2) .
-- check
red sr2(e | l1,e2 | l2) = sr2(e | l1,nil) @ (e2 | l2) .
close

II. Induction case

End of Proof of Lemma 1

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 21

I. Base case

open LIST2 .
-- check
red rev1(nil) = rev2(nil) .
close

Theorem 2 [Correctness of a tail recursive reverse (ctrr)]
rev1(L1) = rev2(L1)

Proof of Theorem 2 By structural induction on L1.

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 12. Program Verification - Lists 22

open LIST2 .
-- fresh constants
op l1 : -> List .
op e : -> Elt.E .
-- induction hypothesis
eq rev1(l1) = rev2(l1) .
-- lemmas
eq sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) .
-- check
red rev1(e | l1) = rev2(e | l1) .
close

II. Induction case

End of Proof of Theorem 2

Exercises

i217 Functional Programming - 12. Program Verification - Lists

1. Write the specifications and proof scores used in the slides
and feed them to the CafeOBJ systems. Write all proofs used
on the slides by hand as well.

23

2. Write manual proofs verifying that rev1(rev1((L)) equals L
for all lists L, and write proof scores formally verifying that
rev1(rev1((L)) equals L for all lists L.

3. Conjecture many things on lists that seem to be true and
prove them.

