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CafeOBJ is equipped with a proof assistant called CafeOBJ
CITP that supports to conduct theorem proving. 

Writing proof scores manually, existing constants may be used 
as fresh constants – human errors.

CafeOBJ CITP can reduce such human errors. 

CafeOBJ CITP provides a set of commands for supporting to 
conduct theorem proving. 

Proofs written by using such commands are called proof 
scripts.
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:goal { eqs } where eqs is a set of (conditional) equations (senteces) 
to prove

E.g. 

A module Spec is supposed to be opened.

An initial current goal Spec |– eqs (that eqs is derived or proved 
from Spec) is defined.

:ind on X:S where X is a variable of a (constrained) sort S

A variable X is specified to which (simultaneous) structural 
induction is applied.

:goal { eq [assoc+] : (X + Y) + Z = X + (Y + Z) . }

The label of the equation

The commands used in this course:
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:apply (si)

(Simultaneous) structural induction is applied to the current goal 
on the variable X specified with :ind on, replacing the current 
goal with n sub-goals, where n is the number of the constructors 
of the sort S of X, and introducing fresh constants for the non-
constant constructors.

Each variable in the sentences of the current goal is replaced 
with a fresh constant. If the current goal has two or more 
sentences, say n, then the goal is replaced with n sub-goals.

:apply (tc)

:apply (rd)
The sentence to be proved in the current goal is reduced. If it 
reduces to true, then the current goal is discharged.
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:show proof

An outline of the proof conducted so far is shown. The current goal 
is marked with >.

:desc proof

The sub-goals generated so far are shown.

:desc .

The current sub-goal is shown.
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mod! PNAT1 {
[PNat]
op 0 : -> PNat {constr} .
op s : PNat -> PNat {constr} .
vars X Y Z : PNat .
eq (0 = s(Y)) = false .
eq (s(X) = s(Y)) = (X = Y) .
op _+_ : PNat PNat -> PNat .
eq 0 + Y = Y .                         -- (+1)
eq s(X) + Y = s(X + Y) .        -- (+2)
op _*_ : PNat PNat -> PNat .
eq 0 * Y = 0 .                           -- (*1)
eq s(X) * Y = (X * Y) + Y .     -- (*2)
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op fact1 : PNat -> PNat .
eq fact1(0) = s(0) .                               -- (f1-1)
eq fact1(s(X)) = s(X) * fact1(X) .       -- (f1-2)
op fact2 : PNat -> PNat .
op sfact2 : PNat PNat -> PNat .
eq fact2(X) = sfact2(X,s(0)) .                     -- (f2)
eq sfact2(0,Y) = Y .                                    -- (sf2-1)
eq sfact2(s(X),Y) = sfact2(X,s(X) * Y) .    -- (sf2-2)

}
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"Theorem 1. [_+_ is associative (assoc+)]
(X + Y) + Z = X + (Y + Z)
Proof. By induction on X."
open PNAT1 .
:goal { eq [assoc+] : (X + Y) + Z = X + (Y + Z) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Theorem 1"
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open PNAT1 .
:goal { eq [assoc+] : (X + Y) + Z = X + (Y + Z) . }

:desc .

:goal { ** root -----------------------------------------
-- context module: %
-- sentence to be proved
eq [assoc+]: (X:PNat + Y:PNat) + Z:PNat

= X + (Y + Z) .
}

The equation to be proved is set.

This is the goal to be proved.



Associativity of _+_

i217 Functional Programming - 14. Proof Assistant 11

:ind on (X:PNat)
:apply (si)

:desc .

[si]=>
:goal { ** 1 -----------------------------------------

-- context module: %
-- induction variable
X:PNat

-- sentence to be proved
eq [assoc+]: (0 + Y:PNat) + Z:PNat = 0 + (Y + Z) .

}

X is set as the induction variable.

Structural induction is applied to the 
induction variable, generating two goals: 
one for the base case and the other for the 
induction case.

This is the goal for the base case.
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:apply (tc)

:desc .

[tc]=>
:goal { ** 1-1 -----------------------------------------

-- context module: %
-- induction variable
X:PNat

-- introduced constants
op Y@PNat : -> PNat { prec: 0 }
op Z@PNat : -> PNat { prec: 0 }

-- sentence to be proved
eq [TC assoc+]: (0 + Y@PNat) + Z@PNat

= 0 + (Y@PNat + Z@PNat) .
}

Variables are replaced with fresh constants.
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:apply (rd)

:desc .

[si]=>
:goal { ** 2 -----------------------------------------
-- context module: %
-- induction variable

X:PNat
-- constant for induction

op X#PNat : -> PNat { prec: 0 }
-- introduced axiom

eq [SI assoc+]: (X#PNat + Y:PNat) + Z:PNat
= X#PNat + (Y + Z) .

-- sentence to be proved
eq [assoc+]: (s(X#PNat) + Y:PNat) + Z:PNat

= s(X#PNat) + (Y + Z) .
}

The first goal is discharged.

This is the goal for the induction case.

The induction hypothesis
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:apply (tc)
:desc .

[tc]=>
:goal { ** 2-1 -----------------------------------------
-- context module: %
-- induction variable
X:PNat

-- introduced constants
op Y@PNat : -> PNat { prec: 0 }
op Z@PNat : -> PNat { prec: 0 }

-- constant for induction
op X#PNat : -> PNat { prec: 0 }

-- introduced axiom
eq [SI assoc+]: (X#PNat + Y:PNat) + Z:PNat

= X#PNat + (Y + Z) .
-- sentence to be proved
eq [TC assoc+]: (s(X#PNat) + Y@PNat) + Z@PNat

= s(X#PNat) + (Y@PNat + Z@PNat) .
}

Variables are replaced with fresh constants.
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:apply (rd) The second goal is discharged.

Then, the main goal is discharged.

We have proved that _+_ is associative.

Commutativity of _+_
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"Lemma 1. [Right zero of _+_ (rz+)]
X + 0 = X
Proof. By induction on X."
open PNAT1 .
:goal { eq [rz+] : X + 0 = X . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (rd)
-- II. Induction case
:apply (rd)
close
"End of Proof of Lemm 1"
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"Lemma 2. [Right successor of _+_ (rs+)]
X + s(Y) = s(X + Y)
Proof. By induction on X."
open PNAT1 .
:goal { eq [rs+] : X + s(Y) = s(X + Y) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Lemma 2"
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mod! PNAT1-RZRS+ {
pr(PNAT1)
vars X Y : PNat .
eq X + 0 = X .
eq X + s(Y) = s(X + Y) .

}

To use the two lemmas that have been proved in the proof that 
_+_ is commutative, the following module is prepared:
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"Theorem 2. [Commutativity of _+_ (comm+)]
X + Y = Y + X
Proof. By induction on X."
open PNAT1-RZRS+ .
:goal { eq [comm+] : X + Y = Y + X . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Theorem 2"
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Since we have proved that _+_ is associative and commutative, 
we give _+_ the operator attributes assoc and comm.

mod! PNAT2 {
…
op _+_ : PNat PNat -> PNat {assoc comm} .
…

}
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"Lemma 4 [distributive law of _*_ over _+_ (d*o+)]
(X + Y) * Z = (X * Z) + (Y * Z)
Proof. By induction on X."
open PNAT2 .
:goal { eq [d*o+] : (X + Y) * Z = (X * Z) + (Y * Z) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Lemma 4"
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mod! PNAT2-D*O+ {
pr(PNAT2)
vars X Y Z : PNat .
eq (X + Y) * Z = (X * Z) + (Y * Z) .

}

To use the lemma that has been proved in the proof that _*_ is 
associative, the following module is prepared:
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"Theorem 3 [Associativity of _*_ (assoc*)]
(X * Y) * Z = X * (Y * Z)
Proof. By induction on X."
open PNAT2-D*O+ .
:goal { eq [assoc*] : (X * Y) * Z = X * (Y * Z) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Theorem 3"
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"Lemma 4 [Right zero of _*_ (rz*)]
X * 0 = 0
Proof. By induction on X."
open PNAT2 .
:goal { eq [rz*] : X * 0 = 0 . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (rd)
-- II. Induction case
:apply (rd)
close
"End of Proof of Lemma 4"
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"Lemma 5 [Right successor of _*_ (rs*)]
X * s(Y) = (X * Y) + X
Proof. By induction on X."
open PNAT2 .
:goal { eq [rs*] : X * s(Y) = (X * Y) + X . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Lemma 5"
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mod! PNAT2-RZRS* {
pr(PNAT2)
vars X Y : PNat .
eq X * 0 = 0 .
eq X * s(Y) = (X * Y) + X .

}

To use the two lemmas that have been proved in the proof that 
_*_ is commutative, the following module is prepared:
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"Theorem 4. [Commutativity of _*_ (comm*)]
X * Y = Y * X
Proof. By induction on X."
open PNAT2-RZRS* .
:goal { eq [comm*] : X * Y = Y * X . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Theorem 4"
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Since we have proved that _*_ is associative and commutative, 
we give _*_ the operator attributes assoc and comm.

mod! PNAT3 {
…
op _*_ : PNat PNat -> PNat {assoc comm} .
…

}

The proof of the next lemma needs Lemma 4, and then the 
following module is prepared: 

mod! PNAT3-D*O+ {
pr(PNAT3)
vars X Y Z : PNat .
eq (X + Y) * Z = (X * Z) + (Y * Z) .

}
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"Lemma 6 [Property of sfact2 (sf2-p)]
Y * sfact2(X,Z) = sfact2(X,Y * Z)
Proof. By induction on X."
open PNAT3-D*O+ .
:goal { eq [sf2-p] : Y * sfact2(X,Z) = sfact2(X,Y * Z) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Lemma 6"

Correctness of a Tail Recursive Factorial

i217 Functional Programming - 14. Proof Assistant 30

mod! PNAT3-SF2-P {
pr(PNAT3)
vars X Y Z : PNat .
eq [sf2-p] : Y * sfact2(X,Z) = sfact2(X,Y * Z) .

}

To use the lemma that has been proved in the proof that the tail 
recursive factorial is correct, the following module is prepared:
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"Theorem 5 [Correctness of tail recursive fact (ctrf)]
fact1(X) = fact2(X)
Proof. By induction on X."
open PNAT3-SF2-P .
:goal { eq [ctrf] : fact1(X) = fact2(X) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (rd)
-- II. Induction case
:apply (rd)
close
"End of Proof of Theorem 5"
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mod! LIST1 (E :: TRIV) {
[List]
op nil : -> List {constr}
op _|_ : Elt.E List -> List {constr} .
op _@_ : List List -> List .
op rev1 : List -> List .
op rev2 : List -> List .
op sr2 : List List -> List .
vars E E2 : Elt.E .
vars L1 L2 L3 : List .
eq (nil = E | L1) = false .
eq (E | L1 = E2 | L2) = (E = E2) and (L1 = L2) .
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eq nil @ L2 = L2 .                     -- (@1)
eq (E | L1) @ L2 = E | (L1 @ L2) .      -- (@2)
eq rev1(nil) = nil .                -- (r1-1)
eq rev1(E | L1) = rev1(L1) @ (E | nil) .  -- (r1-2)
eq rev2(L1) = sr2(L1,nil) .           -- (r2)
eq sr2(nil,L2) = L2 .               -- (sr2-1)
eq sr2(E | L1,L2) = sr2(L1,E | L2) .    -- (sr2-2)

}
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"Theorem 7. [Associativity of _@_ (assoc@)]
(L1 @ L2) @ L3 = L1 @ (L2 @ L3)
Proof. By induction on L1."
open LIST1 .
:goal { eq [assoc@] : (L1 @ L2) @ L3 = L1 @ (L2 @ L3) .}
:ind on (L1:List)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Theorem 7"
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Since we have proved that _@_ is associative, we give _@_ the 
operator attribute assoc.

mod! LIST2 {
…
op _@_ : List List -> List {assoc} .
…

}

Correctness of a Tail Recursive Reverse
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"Lemma 8 [Property of sr2 (sr2-p)]
sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2)
Proof. By induction on L1."
open LIST2 .
:goal { eq [sr2-p] : sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) . }
:ind on (L1:List)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Lemma 8"
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mod! LIST2-SR2-P {
pr(LIST2)
vars E E2 : Elt.E .
vars L1 L2 : List .
eq [sr2-p] : sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) .

}

To use the lemma that has been proved in the proof that the tail 
recursive reverse is correct, the following module is prepared:
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"Theorem 8. [Correctness of a tail recursive rev (ctrr)]
rev1(L1) = rev2(L1)
Proof. By induction on L1."
open LIST2-SR2-P .
:goal { eq [ctrr] : rev1(L1) = rev2(L1) . }
:ind on (L1:List)
:apply (si)
-- I. Base case
:apply (rd)
-- II. Induction case
:apply (rd)
close
"End of Proof of Theorem 8"
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1. Type all proofs as well as all specifications in the lecture 
note and feed them into CafeOBJ.
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2. Make comparison of manual proofs, proof scores in 
CafeOBJ and proof scripts for CafeOBJ CITP, writing your 
opinions on the three approaches to program verification.
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3. Investigate CafeInMaude, CafeInMaude Proof Assistant 
(CiMPA), CafeInMaude Proof Generator (CiMPG, CIMPG+F).

40

https://doi.org/10.1145/3208951

https://doi.org/10.1016/j.jss.2022.111302

4. Investigate some other proof assistants, such as Coq, 
Isabelle/HOL, PVS, and ACL2.
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5. Investigate automated theorem provers, such as E, 
Vampire, and Otter. 

41

6. Investigate SMT solvers, such as Z3 and Yices.

7. Investigate any other tools that support/automate theorem 
proving.

8. Investigate the proof of the four-color problem conducted 
with Coq.

https://doi.org/10.1007/978-3-540-87827-8_28

https://www.ams.org/notices/200811/tx081101382p.pdf

https://github.com/coq-community/fourcolor


