1217: Functional Programming

14. Proof Assistant

Kazuhiro Ogata, Canh Minh Do

i217 Functional Programming - 14. Proof Assistant

Roadmap

* CafeOBJ CITP: Proof Assistant for CafeOBJ
e Associativity of +

e Commutativity of +

e Associativity of _*

e Commutativity of *

* Correctness of a Tail Recursive Factorial

* Associativity of @

* Correctness of a Tail Recursive Reverse

i217 Functional Programming - 14. Proof Assistant

CafeOBJ CITP:Proof Assistant for CafeOBJ

CafeOBlJ is equipped with a proof assistant called CafeOBJ
CITP that supports to conduct theorem proving.

Writing proof scores manually, existing constants may be used
as fresh constants — human errors.

CafeOBJ CITP can reduce such human errors.

CafeOBJ CITP provides a set of commands for supporting to
conduct theorem proving.

Proofs written by using such commands are called proof
scripts.

i217 Functional Programming - 14. Proof Assistant 4

Proof Assistant for CafeOBJ

The commands used in this course:

:goal { Qs | where eQs is a set of (conditional) equations (senteces)
to prove

E.g. :goal {eq[assoct]: X+Y)+Z=X+(Y+2).}

A module Spec is supposed to be opened.

An initial current goal Spec |- egs (that eqs is derived or proved
from Spec) is defined.

:ind on X:S where X is a variable of a (constrained) sort S

A variable X is specified to which (simultaneous) structural
induction is applied.

i217 Functional Programming - 14. Proof Assistant

Proof Assistant for CafeOBJ

:apply (si)
(Simultaneous) structural induction is applied to the current goal
on the variable X specified with :ind on, replacing the current
goal with n sub-goals, where n is the number of the constructors
of the sort S of X, and introducing fresh constants for the non-
constant constructors.

:apply (tc)
Each variable in the sentences of the current goal is replaced
with a fresh constant. If the current goal has two or more
sentences, say N, then the goal is replaced with n sub-goals.

:apply (rd)
The sentence to be proved in the current goal is reduced. If it
reduces to true, then the current goal is discharged.

i217 Functional Programming - 14. Proof Assistant

Proof Assistant for CafeOBJ

:show proof

An outline of the proof conducted so far is shown. The current goal
is marked with >.

:desc proof

The sub-goals generated so far are shown.

:desc .

The current sub-goal is shown.

Associativity of +

mod! PNAT]I {
[PNat]
op 0 : -> PNat {constr} .
op s : PNat -> PNat {constr} .
vars XY Z : PNat .
eq (0 =s(Y)) = false .
eq (s(X) =s(Y)) =(X=Y).
op + :PNatPNat->PNat.

eq0+Y=Y. - (+1)
eqs(X)+Y=s(X+Y). - (+2)
op * :PNat PNat->PNat.

eq0*Y=0. - (*1)

eqsX)*Y=(X*Y)+Y. - (*2)

i217 Functional Programming - 14. Proof Assistant

Associativity of +

op factl : PNat -> PNat .

eq fact1(0) =s(0) . - (f1-1)

eq factl(s(X)) = s(X) * factl(X) . - (f1-2)

op fact2 : PNat -> PNat .

op sfact2 : PNat PNat -> PNat .

eq fact2(X) = sfact2(X,s(0)) . -- (12)

eq sfact2(0,Y) =Y . -- (sf2-1)
eq sfact2(s(X),Y) = sfact2(X,s(X) *Y) . --(sf2-2)

i217 Functional Programming - 14. Proof Assistant

Associativity of +

"Theorem 1. [+ is associative (assoc+t)]
X+Y)+Z=X+(Y+2)

Proof. By induction on X."

open PNATTI .

:goal { eq[assoct+] : (X +Y)+Z=X+(Y+Z).}
:ind on (X:PNat)

:apply (si)

-- I. Base case

:apply (tc)

:apply (rd)

-- II. Induction case

:apply (tc)

:apply (rd)

close

"End of Proof of Theorem 1"

Associativity of +

open PNATI .
:goal { eq[assoct]: (X+Y)+Z=X+(Y+2Z).}

:desc .

:goal { ** root
-- context module: %
-- sentence to be proved
eq [assoct]: (X:PNat + Y:PNat) + Z:PNat
=X+(Y+2Z).

10

i217 Functional Programming - 14. Proof Assistant

Associativity of +

:ind on (X:PNat)
:apply (si)

:desc .

[si]=>
:goal { ** 1
-- context module: %
-- induction variable
X:PNat
-- sentence to be proved
eq [assoct]: (0 + Y:PNat) + Z:PNat=0+ (Y + Z) .
}

i217 Functional Programming - 14. Proof Assistant

Associativity of +

:apply (tc)
:desc .

[tc]=
:goal { ** 1-1
-- context module: %
-- induction variable
X:PNat
-- introduced constants
op Y@PNat : -> PNat { prec: 0 }
op Z@PNat : -> PNat { prec: 0 }
-- sentence to be proved
eq [TC assoct]: (0 + Y@PNat) + Z@PNat
=0+ (Y@PNat + Z@PNat) .

i217 Functional Programming - 14. Proof Assistant

Associativity of +

:apply (rd)
:desc .

[si]=>
:goal { **2
-- context module: %
-- induction variable
X:PNat
-- constant for induction
op X#PNat : -> PNat { prec: 0 }
-- introduced axiom
eq [ST assoc+]: (X#PNat + Y:PNat) + Z:PNat
=X#PNat+ (Y +27).
-- sentence to be proved
eq [assoct]: (s(X#PNat) + Y:PNat) + Z:PNat
=s(X#PNat) + (Y +Z).

13

i217 Functional Programming - 14. Proof Assistant

Associativity of +

:apply (tc)
:desc .

[tc]=>
:goal { ** 2-1
-- context module: %
-- induction variable
X:PNat
-- introduced constants
op Y@PNat : -> PNat { prec: 0 }
op Z@PNat : -> PNat { prec: 0 }
-- constant for induction
op X#PNat : -> PNat { prec: 0 }
-- introduced axiom
eq [SI assoct+]: (X#PNat + Y:PNat) + Z:PNat
=X#PNat+ (Y +Z) .
-- sentence to be proved
eq [TC assoc+]: (s(X#PNat) + Y@PNat) + Z@PNat
= s(X#PNat) + (Y@PNat + Z@PNat) .

i217 Functional Programming - 14. Proof Assistant

Associativity of +

:apply (rd)

We have proved that + is associative.

15

i217 Functional Programming - 14. Proof Assistant

Commutativity of +

"Lemma 1. [Right zero of + (rz+)]
X+0=X

Proof. By induction on X."
open PNATI .

:goal {eq[rzt] : X+0=X.}
:ind on (X:PNat)

:apply (si)

-- [. Base case

:apply (rd)

-- II. Induction case

:apply (rd)

close

"End of Proof of Lemm 1"

16

i217 Functional Programming - 14. Proof Assistant

Commutativity of +

"Lemma 2. [Right successor of + (rs+)]
X+s(Y)=s(X+Y)

Proof. By induction on X."

open PNATTI .

:goal {eq [rst]: X+s(Y)=s(X+Y).}
:ind on (X:PNat)

:apply (si)

-- I. Base case

:apply (tc)

:apply (rd)

-- II. Induction case

:apply (tc)

:apply (rd)

close

"End of Proof of Lemma 2"

17

i217 Functional Programming - 14. Proof Assistant

Commutativity of +

To use the two lemmas that have been proved in the proof that
_+ is commutative, the following module is prepared:

mod! PNAT1-RZRS+ {
pr(PNATTI)
vars X Y : PNat .
eq X+0=X.
eq X +s(Y)=s(X+Y).

!
s

18

i217 Functional Programming - 14. Proof Assistant

Commutativity of +

"Theorem 2. [Commutativity of + (comm+)]
X+Y=Y+X

Proof. By induction on X."

open PNATI-RZRS+ .

:goal { eq [comm+] : X+Y=Y+X.}
:ind on (X:PNat)

:apply (si)

-- 1. Base case

:apply (tc)

:apply (rd)

-- II. Induction case

:apply (tc)

:apply (rd)

close

"End of Proof of Theorem 2"

19

i217 Functional Programming - 14. Proof Assistant

Associativity of *

Since we have proved that + is associative and commutative,
we give + the operator attributes assoc and comm.

mod! PNAT? {

op + :PNatPNat->PNat {assoc comm} .

20

i217 Functional Programming - 14. Proof Assistant

Associativity of *

"Lemma 4 [distributive law of * over + (d*o+)]
X+Y)*Z=X*2)+(Y *Z)

Proof. By induction on X."

open PNAT?2 .

:goal { eq [d*o+] : (X+Y)*Z=X*2)+(Y*Z).}
:ind on (X:PNat)

:apply (si)

-- I. Base case

:apply (tc)

:apply (rd)

-- II. Induction case

:apply (tc)

:apply (rd)

close

"End of Proof of Lemma 4"

21

i217 Functional Programming - 14. Proof Assistant

Associativity of *

To use the lemma that has been proved in the proof that _* is
associative, the following module is prepared:

mod! PNAT2-D*O+ {
pr(PNAT?2)
vars XY Z : PNat .
eqX+Y)*Z=X*2)+(Y*Z).
1
s

22

i217 Functional Programming - 14. Proof Assistant

Associativity of *

"Theorem 3 [Associativity of * (assoc*)]
X*Y)*Z=X*(Y*Z)

Proof. By induction on X."

open PNAT2-D*O+ .

:goal { eq [assoc*]: (X *Y)*Z=X*(Y*Z).}
:ind on (X:PNat)

:apply (si)

-- I. Base case

:apply (tc)

:apply (rd)

-- II. Induction case

:apply (tc)

:apply (rd)

close

"End of Proof of Theorem 3"

23

i217 Functional Programming - 14. Proof Assistant

Commutativity of *

"Lemma 4 [Right zero of * (rz*)]
X*0=0

Proof. By induction on X."
open PNAT2 .

:goal {eq [rz*]: X *0=0.}
:ind on (X:PNat)

:apply (si)

-- 1. Base case

:apply (rd)

-- II. Induction case

:apply (rd)

close

"End of Proof of Lemma 4"

24

i217 Functional Programming - 14. Proof Assistant

Commutativity of *

"Lemma 5 [Right successor of * (rs*)]
X*s(Y)=(X*Y)+X

Proof. By induction on X."

open PNAT2 .

:goal {eq [rs*] : X *s(V)=(X*Y)+X.}
:ind on (X:PNat)

:apply (si)

-- I. Base case

:apply (tc)

:apply (rd)

-- II. Induction case

:apply (tc)

:apply (rd)

close

"End of Proof of Lemma 5"

25

i217 Functional Programming - 14. Proof Assistant

Commutativity of *

To use the two lemmas that have been proved in the proof that
_* is commutative, the following module is prepared:

mod! PNAT2-RZRS* {
pr(PNAT?2)
vars X Y : PNat .
eq X*¥0=0.
eq X *s(Y)=(X*Y)+X.

!
s

26

i217 Functional Programming - 14. Proof Assistant

Commutativity of *

"Theorem 4. [Commutativity of * (comm*)]
X*Y=Y*X

Proof. By induction on X."

open PNAT2-RZRS* .

:goal { eq [comm™*]: X *Y=Y *X .}
:ind on (X:PNat)

:apply (si)

-- I. Base case

:apply (tc)

:apply (rd)

-- II. Induction case

:apply (tc)

:apply (rd)

close

"End of Proof of Theorem 4"

27

i217 Functional Programming - 14. Proof Assistant

Correctness of a Tail Recursive Factorial

Since we have proved that * is associative and commutative,
we give * the operator attributes assoc and comm.

mod! PNAT3 {

op * :PNatPNat->PNat {assoc comm} .

b
The proof of the next lemma needs Lemma 4, and then the
following module is prepared:
mod! PNAT3-D*O+ {
pr(PNAT3)
vars XY Z : PNat .
eqX+Y)*Z=X*2)+(Y*Z).
j

28

i217 Functional Programming - 14. Proof Assistant

Correctness of a Tail Recursive Factorial

"Lemma 6 [Property of sfact2 (sf2-p)]
Y * sfact2(X,Z2) = sfact2(X,Y * Z)
Proof. By induction on X."

open PNAT3-D*O+ .

:goal { eq [sf2-p] : Y * sfact2(X,Z) = sfact2(X,Y * Z) . }
:ind on (X:PNat)

:apply (si)

-- I. Base case

:apply (tc)

:apply (rd)

-- II. Induction case

:apply (tc)

:apply (rd)

close

"End of Proof of Lemma 6"

29

i217 Functional Programming - 14. Proof Assistant

Correctness of a Tail Recursive Factorial

To use the lemma that has been proved in the proof that the tail
recursive factorial is correct, the following module is prepared:

mod! PNAT3-SF2-P {
pr(PNAT3)
vars XY Z : PNat .
eq [sf2-p] : Y * sfact2(X,Z) = sfact2(X,Y * Z) .

!
S

30

i217 Functional Programming - 14. Proof Assistant

Correctness of a Tail Recursive Factorial

"Theorem 5 [Correctness of tail recursive fact (ctrf)]
fact1(X) = fact2(X)

Proof. By induction on X."

open PNAT3-SF2-P .

:goal { eq [ctrf] : factl(X) = fact2(X) . }
:ind on (X:PNat)

:apply (si)

-- I. Base case

:apply (rd)

-- II. Induction case

:apply (rd)

close

"End of Proof of Theorem 5"

31

i217 Functional Programming - 14. Proof Assistant

Associativity of @

mod! LIST1 (E :: TRIV) {
[List]
op nil : -> List {constr}
op | :EIt.E List -> List {constr} .
op (@ : ListList->List.
op revl : List > List .
op rev2 : List > List .
op sr2 : List List -> List .
vars E E2 : EIt.E .
vars L1 L2 L3 : List.
eq (nil=E | L1) =false .
eq(E|L1=E2|L2)=(E=E2)and (L1 =L12).

32

i217 Functional Programming - 14. Proof Assistant

Associativity of @

eqnil @L2=1L12. - (@1)
eq(E|ILH@L2=E|(Ll @L2). --(@2)
eq revl(nil) =nil . -- (r1-1)
eqrevl(E|Ll)=revl(Ll) @ (E | nil) . -- (r1-2)
eq rev2(L1) =sr2(L1,nil). -~ (12)

eq sr2(nil,L2) =12 . -- (sr2-1)

eqsr2(E | L1,L2)=sr2(LLLE | L2). --(sr2-2)

-

i217 Functional Programming - 14. Proof Assistant

Associativity of @

"Theorem 7. [Associativity of @ _ (assoc@)]
Ll@L2) @ L3=L1 @ (L2 @L3)

Proof. By induction on L1."

open LISTI .

:goal { eq [assoc@] : (L1 @ L2) @ L3=L1 @ (L2 @ L3) .}
:ind on (L1:List)

:apply (si)

-- I. Base case

:apply (tc)

:apply (rd)

-- II. Induction case

:apply (tc)

:apply (rd)

close

"End of Proof of Theorem 7"

i217 Functional Programming - 14. Proof Assistant

Correctness of a Tail Recursive Reverse

Since we have proved that (@ _is associative, we give (@_ the
operator attribute assoc.

mod! LIST2 {

op (@ :ListList->List {assoc} .

35

i217 Functional Programming - 14. Proof Assistant

Correctness of a Tail Recursive Reverse

"Lemma 8 [Property of sr2 (sr2-p)]
sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2)
Proof. By induction on L1."

open LIST2 .

:goal { eq [sr2-p] : sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) .}
:ind on (L1:List)

:apply (si)

-- I. Base case

:apply (tc)

:apply (rd)

-- II. Induction case

:apply (tc)

:apply (rd)

close

"End of Proof of Lemma 8"

36

i217 Functional Programming - 14. Proof Assistant

Correctness of a Tail Recursive Reverse

To use the lemma that has been proved in the proof that the tail
recursive reverse is correct, the following module is prepared:

mod! LIST2-SR2-P {

pr(LIST2)

vars E E2 : Elt.E .

vars L1 L2 : List.

eq [sr2-p] : sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) .
H

37

i217 Functional Programming - 14. Proof Assistant

Correctness of a Tail Recursive Reverse

"Theorem 8. [Correctness of a tail recursive rev (ctrr)]
revl(L1) =rev2(L1)

Proof. By induction on L1."

open LIST2-SR2-P .

:goal { eq [ctrr] : revl(L1) =rev2(L1). }
:ind on (L1:List)

:apply (si)

-- I. Base case

:apply (rd)

-- II. Induction case

:apply (rd)

close

"End of Proof of Theorem 8"

38

i217 Functional Programming - 14. Proof Assistant

Exercises

1. Type all proofs as well as all specifications in the lecture
note and feed them into CafeOB..

2. Make comparison of manual proofs, proof scores in
CafeOBJ and proof scripts for CafeOBJ CITP, writing your
opinions on the three approaches to program verification.

Exercises

3. Investigate CafelnMaude, CafelInMaude Proof Assistant
(CiMPA), CafelnMaude Proof Generator (CiMPG, CIMPG+F).

https://doi.org/10.1145/3208951

https://doi.org/10.1016/].js5.2022.111302

4. Investigate some other proof assistants, such as Coq,
Isabelle/HOL, PVS, and ACL2.

40

i217 Functiona | Programmin; g - 14. Proof Assistant 41

Exercises
5. Investigate automated theorem provers, such as E,
Vampire, and Otter.
6. Investigate SMT solvers, such as Z3 and Yices.

7. Investigate any other tools that support/automate theorem
proving.

8. Investigate the proof of the four-color problem conducted
with Coq.

https://doi.org/10.1007/978-3-540-87827-8 28
https://www.ams.org/notices/200811/tx081101382p.pdf

https://github.com/cog-community/fourcolor

