
I217: Functional Programming

14. Proof Assistant

Kazuhiro Ogata, Canh Minh Do

Roadmap

• CafeOBJ CITP: Proof Assistant for CafeOBJ

• Associativity of _+_
• Commutativity of _+_
• Associativity of _*_
• Commutativity of _*_
• Correctness of a Tail Recursive Factorial

• Associativity of _@_
• Correctness of a Tail Recursive Reverse

i217 Functional Programming - 14. Proof Assistant 2

CafeOBJ CITP:Proof Assistant for CafeOBJ

i217 Functional Programming - 14. Proof Assistant 3

CafeOBJ is equipped with a proof assistant called CafeOBJ
CITP that supports to conduct theorem proving.

Writing proof scores manually, existing constants may be used
as fresh constants – human errors.

CafeOBJ CITP can reduce such human errors.

CafeOBJ CITP provides a set of commands for supporting to
conduct theorem proving.

Proofs written by using such commands are called proof
scripts.

Proof Assistant for CafeOBJ

i217 Functional Programming - 14. Proof Assistant 4

:goal { eqs } where eqs is a set of (conditional) equations (senteces)
to prove

E.g.

A module Spec is supposed to be opened.

An initial current goal Spec |– eqs (that eqs is derived or proved
from Spec) is defined.

:ind on X:S where X is a variable of a (constrained) sort S

A variable X is specified to which (simultaneous) structural
induction is applied.

:goal { eq [assoc+] : (X + Y) + Z = X + (Y + Z) . }

The label of the equation

The commands used in this course:

Proof Assistant for CafeOBJ

i217 Functional Programming - 14. Proof Assistant 5

:apply (si)

(Simultaneous) structural induction is applied to the current goal
on the variable X specified with :ind on, replacing the current
goal with n sub-goals, where n is the number of the constructors
of the sort S of X, and introducing fresh constants for the non-
constant constructors.

Each variable in the sentences of the current goal is replaced
with a fresh constant. If the current goal has two or more
sentences, say n, then the goal is replaced with n sub-goals.

:apply (tc)

:apply (rd)
The sentence to be proved in the current goal is reduced. If it
reduces to true, then the current goal is discharged.

Proof Assistant for CafeOBJ

i217 Functional Programming - 14. Proof Assistant 6

:show proof

An outline of the proof conducted so far is shown. The current goal
is marked with >.

:desc proof

The sub-goals generated so far are shown.

:desc .

The current sub-goal is shown.

Associativity of _+_

i217 Functional Programming - 14. Proof Assistant 7

mod! PNAT1 {
[PNat]
op 0 : -> PNat {constr} .
op s : PNat -> PNat {constr} .
vars X Y Z : PNat .
eq (0 = s(Y)) = false .
eq (s(X) = s(Y)) = (X = Y) .
op _+_ : PNat PNat -> PNat .
eq 0 + Y = Y . -- (+1)
eq s(X) + Y = s(X + Y) . -- (+2)
op _*_ : PNat PNat -> PNat .
eq 0 * Y = 0 . -- (*1)
eq s(X) * Y = (X * Y) + Y . -- (*2)

Associativity of _+_

i217 Functional Programming - 14. Proof Assistant 8

op fact1 : PNat -> PNat .
eq fact1(0) = s(0) . -- (f1-1)
eq fact1(s(X)) = s(X) * fact1(X) . -- (f1-2)
op fact2 : PNat -> PNat .
op sfact2 : PNat PNat -> PNat .
eq fact2(X) = sfact2(X,s(0)) . -- (f2)
eq sfact2(0,Y) = Y . -- (sf2-1)
eq sfact2(s(X),Y) = sfact2(X,s(X) * Y) . -- (sf2-2)

}

Associativity of _+_

i217 Functional Programming - 14. Proof Assistant 9

"Theorem 1. [_+_ is associative (assoc+)]
(X + Y) + Z = X + (Y + Z)
Proof. By induction on X."
open PNAT1 .
:goal { eq [assoc+] : (X + Y) + Z = X + (Y + Z) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Theorem 1"

Associativity of _+_

i217 Functional Programming - 14. Proof Assistant 10

open PNAT1 .
:goal { eq [assoc+] : (X + Y) + Z = X + (Y + Z) . }

:desc .

:goal { ** root ---
-- context module: %
-- sentence to be proved
eq [assoc+]: (X:PNat + Y:PNat) + Z:PNat

= X + (Y + Z) .
}

The equation to be proved is set.

This is the goal to be proved.

Associativity of _+_

i217 Functional Programming - 14. Proof Assistant 11

:ind on (X:PNat)
:apply (si)

:desc .

[si]=>
:goal { ** 1 ---

-- context module: %
-- induction variable
X:PNat

-- sentence to be proved
eq [assoc+]: (0 + Y:PNat) + Z:PNat = 0 + (Y + Z) .

}

X is set as the induction variable.

Structural induction is applied to the
induction variable, generating two goals:
one for the base case and the other for the
induction case.

This is the goal for the base case.

Associativity of _+_

i217 Functional Programming - 14. Proof Assistant 12

:apply (tc)

:desc .

[tc]=>
:goal { ** 1-1 ---

-- context module: %
-- induction variable
X:PNat

-- introduced constants
op Y@PNat : -> PNat { prec: 0 }
op Z@PNat : -> PNat { prec: 0 }

-- sentence to be proved
eq [TC assoc+]: (0 + Y@PNat) + Z@PNat

= 0 + (Y@PNat + Z@PNat) .
}

Variables are replaced with fresh constants.

Associativity of _+_

i217 Functional Programming - 14. Proof Assistant 13

:apply (rd)

:desc .

[si]=>
:goal { ** 2 ---
-- context module: %
-- induction variable

X:PNat
-- constant for induction

op X#PNat : -> PNat { prec: 0 }
-- introduced axiom

eq [SI assoc+]: (X#PNat + Y:PNat) + Z:PNat
= X#PNat + (Y + Z) .

-- sentence to be proved
eq [assoc+]: (s(X#PNat) + Y:PNat) + Z:PNat

= s(X#PNat) + (Y + Z) .
}

The first goal is discharged.

This is the goal for the induction case.

The induction hypothesis

Associativity of _+_

i217 Functional Programming - 14. Proof Assistant 14

:apply (tc)
:desc .

[tc]=>
:goal { ** 2-1 ---
-- context module: %
-- induction variable
X:PNat

-- introduced constants
op Y@PNat : -> PNat { prec: 0 }
op Z@PNat : -> PNat { prec: 0 }

-- constant for induction
op X#PNat : -> PNat { prec: 0 }

-- introduced axiom
eq [SI assoc+]: (X#PNat + Y:PNat) + Z:PNat

= X#PNat + (Y + Z) .
-- sentence to be proved
eq [TC assoc+]: (s(X#PNat) + Y@PNat) + Z@PNat

= s(X#PNat) + (Y@PNat + Z@PNat) .
}

Variables are replaced with fresh constants.

Associativity of _+_

i217 Functional Programming - 14. Proof Assistant 15

:apply (rd) The second goal is discharged.

Then, the main goal is discharged.

We have proved that _+_ is associative.

Commutativity of _+_

i217 Functional Programming - 14. Proof Assistant 16

"Lemma 1. [Right zero of _+_ (rz+)]
X + 0 = X
Proof. By induction on X."
open PNAT1 .
:goal { eq [rz+] : X + 0 = X . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (rd)
-- II. Induction case
:apply (rd)
close
"End of Proof of Lemm 1"

Commutativity of _+_

i217 Functional Programming - 14. Proof Assistant 17

"Lemma 2. [Right successor of _+_ (rs+)]
X + s(Y) = s(X + Y)
Proof. By induction on X."
open PNAT1 .
:goal { eq [rs+] : X + s(Y) = s(X + Y) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Lemma 2"

Commutativity of _+_

i217 Functional Programming - 14. Proof Assistant 18

mod! PNAT1-RZRS+ {
pr(PNAT1)
vars X Y : PNat .
eq X + 0 = X .
eq X + s(Y) = s(X + Y) .

}

To use the two lemmas that have been proved in the proof that
+ is commutative, the following module is prepared:

Commutativity of _+_

i217 Functional Programming - 14. Proof Assistant 19

"Theorem 2. [Commutativity of _+_ (comm+)]
X + Y = Y + X
Proof. By induction on X."
open PNAT1-RZRS+ .
:goal { eq [comm+] : X + Y = Y + X . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Theorem 2"

Associativity of _*_

i217 Functional Programming - 14. Proof Assistant 20

Since we have proved that _+_ is associative and commutative,
we give _+_ the operator attributes assoc and comm.

mod! PNAT2 {
…
op _+_ : PNat PNat -> PNat {assoc comm} .
…

}

Associativity of _*_

i217 Functional Programming - 14. Proof Assistant 21

"Lemma 4 [distributive law of _*_ over _+_ (d*o+)]
(X + Y) * Z = (X * Z) + (Y * Z)
Proof. By induction on X."
open PNAT2 .
:goal { eq [d*o+] : (X + Y) * Z = (X * Z) + (Y * Z) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Lemma 4"

Associativity of _*_

i217 Functional Programming - 14. Proof Assistant 22

mod! PNAT2-D*O+ {
pr(PNAT2)
vars X Y Z : PNat .
eq (X + Y) * Z = (X * Z) + (Y * Z) .

}

To use the lemma that has been proved in the proof that _*_ is
associative, the following module is prepared:

Associativity of _*_

i217 Functional Programming - 14. Proof Assistant 23

"Theorem 3 [Associativity of _*_ (assoc*)]
(X * Y) * Z = X * (Y * Z)
Proof. By induction on X."
open PNAT2-D*O+ .
:goal { eq [assoc*] : (X * Y) * Z = X * (Y * Z) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Theorem 3"

Commutativity of _*_

i217 Functional Programming - 14. Proof Assistant 24

"Lemma 4 [Right zero of _*_ (rz*)]
X * 0 = 0
Proof. By induction on X."
open PNAT2 .
:goal { eq [rz*] : X * 0 = 0 . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (rd)
-- II. Induction case
:apply (rd)
close
"End of Proof of Lemma 4"

Commutativity of _*_

i217 Functional Programming - 14. Proof Assistant 25

"Lemma 5 [Right successor of _*_ (rs*)]
X * s(Y) = (X * Y) + X
Proof. By induction on X."
open PNAT2 .
:goal { eq [rs*] : X * s(Y) = (X * Y) + X . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Lemma 5"

Commutativity of _*_

i217 Functional Programming - 14. Proof Assistant 26

mod! PNAT2-RZRS* {
pr(PNAT2)
vars X Y : PNat .
eq X * 0 = 0 .
eq X * s(Y) = (X * Y) + X .

}

To use the two lemmas that have been proved in the proof that
* is commutative, the following module is prepared:

Commutativity of _*_

i217 Functional Programming - 14. Proof Assistant 27

"Theorem 4. [Commutativity of _*_ (comm*)]
X * Y = Y * X
Proof. By induction on X."
open PNAT2-RZRS* .
:goal { eq [comm*] : X * Y = Y * X . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Theorem 4"

Correctness of a Tail Recursive Factorial

i217 Functional Programming - 14. Proof Assistant 28

Since we have proved that _*_ is associative and commutative,
we give _*_ the operator attributes assoc and comm.

mod! PNAT3 {
…
op _*_ : PNat PNat -> PNat {assoc comm} .
…

}

The proof of the next lemma needs Lemma 4, and then the
following module is prepared:

mod! PNAT3-D*O+ {
pr(PNAT3)
vars X Y Z : PNat .
eq (X + Y) * Z = (X * Z) + (Y * Z) .

}

Correctness of a Tail Recursive Factorial

i217 Functional Programming - 14. Proof Assistant 29

"Lemma 6 [Property of sfact2 (sf2-p)]
Y * sfact2(X,Z) = sfact2(X,Y * Z)
Proof. By induction on X."
open PNAT3-D*O+ .
:goal { eq [sf2-p] : Y * sfact2(X,Z) = sfact2(X,Y * Z) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Lemma 6"

Correctness of a Tail Recursive Factorial

i217 Functional Programming - 14. Proof Assistant 30

mod! PNAT3-SF2-P {
pr(PNAT3)
vars X Y Z : PNat .
eq [sf2-p] : Y * sfact2(X,Z) = sfact2(X,Y * Z) .

}

To use the lemma that has been proved in the proof that the tail
recursive factorial is correct, the following module is prepared:

Correctness of a Tail Recursive Factorial

i217 Functional Programming - 14. Proof Assistant 31

"Theorem 5 [Correctness of tail recursive fact (ctrf)]
fact1(X) = fact2(X)
Proof. By induction on X."
open PNAT3-SF2-P .
:goal { eq [ctrf] : fact1(X) = fact2(X) . }
:ind on (X:PNat)
:apply (si)
-- I. Base case
:apply (rd)
-- II. Induction case
:apply (rd)
close
"End of Proof of Theorem 5"

Associativity of _@_

i217 Functional Programming - 14. Proof Assistant 32

mod! LIST1 (E :: TRIV) {
[List]
op nil : -> List {constr}
op _|_ : Elt.E List -> List {constr} .
op _@_ : List List -> List .
op rev1 : List -> List .
op rev2 : List -> List .
op sr2 : List List -> List .
vars E E2 : Elt.E .
vars L1 L2 L3 : List .
eq (nil = E | L1) = false .
eq (E | L1 = E2 | L2) = (E = E2) and (L1 = L2) .

Associativity of _@_

i217 Functional Programming - 14. Proof Assistant 33

eq nil @ L2 = L2 . -- (@1)
eq (E | L1) @ L2 = E | (L1 @ L2) . -- (@2)
eq rev1(nil) = nil . -- (r1-1)
eq rev1(E | L1) = rev1(L1) @ (E | nil) . -- (r1-2)
eq rev2(L1) = sr2(L1,nil) . -- (r2)
eq sr2(nil,L2) = L2 . -- (sr2-1)
eq sr2(E | L1,L2) = sr2(L1,E | L2) . -- (sr2-2)

}

Associativity of _@_

i217 Functional Programming - 14. Proof Assistant 34

"Theorem 7. [Associativity of _@_ (assoc@)]
(L1 @ L2) @ L3 = L1 @ (L2 @ L3)
Proof. By induction on L1."
open LIST1 .
:goal { eq [assoc@] : (L1 @ L2) @ L3 = L1 @ (L2 @ L3) .}
:ind on (L1:List)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Theorem 7"

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 14. Proof Assistant 35

Since we have proved that _@_ is associative, we give _@_ the
operator attribute assoc.

mod! LIST2 {
…
op _@_ : List List -> List {assoc} .
…

}

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 14. Proof Assistant 36

"Lemma 8 [Property of sr2 (sr2-p)]
sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2)
Proof. By induction on L1."
open LIST2 .
:goal { eq [sr2-p] : sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) . }
:ind on (L1:List)
:apply (si)
-- I. Base case
:apply (tc)
:apply (rd)
-- II. Induction case
:apply (tc)
:apply (rd)
close
"End of Proof of Lemma 8"

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 14. Proof Assistant 37

mod! LIST2-SR2-P {
pr(LIST2)
vars E E2 : Elt.E .
vars L1 L2 : List .
eq [sr2-p] : sr2(L1,E2 | L2) = sr2(L1,nil) @ (E2 | L2) .

}

To use the lemma that has been proved in the proof that the tail
recursive reverse is correct, the following module is prepared:

Correctness of a Tail Recursive Reverse

i217 Functional Programming - 14. Proof Assistant 38

"Theorem 8. [Correctness of a tail recursive rev (ctrr)]
rev1(L1) = rev2(L1)
Proof. By induction on L1."
open LIST2-SR2-P .
:goal { eq [ctrr] : rev1(L1) = rev2(L1) . }
:ind on (L1:List)
:apply (si)
-- I. Base case
:apply (rd)
-- II. Induction case
:apply (rd)
close
"End of Proof of Theorem 8"

Exercises

i217 Functional Programming - 14. Proof Assistant

1. Type all proofs as well as all specifications in the lecture
note and feed them into CafeOBJ.

39

2. Make comparison of manual proofs, proof scores in
CafeOBJ and proof scripts for CafeOBJ CITP, writing your
opinions on the three approaches to program verification.

Exercises

i217 Functional Programming - 14. Proof Assistant

3. Investigate CafeInMaude, CafeInMaude Proof Assistant
(CiMPA), CafeInMaude Proof Generator (CiMPG, CIMPG+F).

40

https://doi.org/10.1145/3208951

https://doi.org/10.1016/j.jss.2022.111302

4. Investigate some other proof assistants, such as Coq,
Isabelle/HOL, PVS, and ACL2.

Exercises

i217 Functional Programming - 14. Proof Assistant

5. Investigate automated theorem provers, such as E,
Vampire, and Otter.

41

6. Investigate SMT solvers, such as Z3 and Yices.

7. Investigate any other tools that support/automate theorem
proving.

8. Investigate the proof of the four-color problem conducted
with Coq.

https://doi.org/10.1007/978-3-540-87827-8_28

https://www.ams.org/notices/200811/tx081101382p.pdf

https://github.com/coq-community/fourcolor

