
I217: Functional Programming

2. Modules, Order Sorts & Lists of Natural

Numbers

Kazuhiro Ogata, Canh Minh Do

Roadmap

• Modules

• Order Sorts

– Error or Exception Handling

• Lists of Natural Numbers

– Quicksort

– Sieve of Eratosthenes

• Exercises

2
i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Modules

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

3

Units of programs in CafeOBJ. In a module, sorts, operators,
variables & equations can be declared. In a module, other
existing modules can also be imported (reused).

Declared as follows:

mod! MOD-NAME { … }

the name of the module

In the place …, module imports, sorts, operators, variables &
equations are declared.

A module declared as this can be reused in other modules like
built-in modules, such as NAT.

Modules

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

4

mod! GCD {
-- imports
pr(NAT)
-- signature
op gcd : Nat Zero -> Nat .
op gcd : Nat NzNat -> NzNat .
op gcd : Nat Nat -> Nat .
-- CafeOBJ vars
var X : Nat .
var NzY : NzNat .
-- equations
eq gcd(X,0) = X .
eq gcd(X,NzY) = gcd(NzY,X rem NzY) .

}

The built-in module NAT is
imported.

pr stands for protecting,
meaning that a module is
imported with the
protecting mode.

Will you please confirm that
if the 2nd argument of gcd is
a non-zero natural number,
then the result is a non-zero
natural number?

Modules

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

5

open GCD .
red gcd(24,36) . -- compute the gcd of 24 & 36
red gcd(2015,31031) . -- compute the gcd of 2015 & 31031

close

Modules

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

6

mod! LCM {
pr(GCD)
op lcm : Nat Zero -> Zero .
op lcm : Nat NzNat -> Nat .
op lcm : Nat Nat -> Nat .
var X : Nat .
var NzY : NzNat .
eq lcm(X,0) = 0 .
eq lcm(X,NzY) = (X quo gcd(X,NzY)) * NzY .

}
open LCM .
red lcm(24,36) . -- compute the lcm of 24 & 36
red lcm(2015,31031) . -- compute the lcm of 2015 & 31031

close

GCD is
imported.

If the three op declarations for gcd
in the module GCD are replaced
with the following

op gcd : Nat Nat -> Nat

a warning message on what are
called error sorts is displayed when
feeding the module LCM into the
CafeOBJ system. Why?

Order Sorts

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

7

Nat, Zero & NzNat correspond to {0,1,2,...}, {0} & {1,2,…}.
As {0} & {1,2,…} are sub-sets of {0,1,2,…}, there are similar
relations among Zero & NzNat and Nat: Zero & NzNat are
sub-sorts of Nat (or Nat is a super-sort of Zero & NzNat),
which are declared in the built-in module NAT (precisely, in
NZNAT-VALUE & NAT-VALUE imported by NAT):

[Zero NzNat < Nat]

As 0 is an element of {0,1,2,…} as well as {0} and 1,2,… are
elements of {0,1,2,…} as well as {1,2,…}, terms whose sorts
are Zero or NzNat are also those of the sort Nat.

Order Sorts

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

8

Sub-sort (super-sort) relation is transitive: if a sort S1 is a sub-
sort (super-sort) of a sort S2 and S2 is a sub-sort (super-sort)
of a sort S3, then S1 is a sub-sort (super-sort) of S3.

If a sort S1 is a sub-sort of a sort S2, then any terms of S1 are
also those of S2, but not vice versa.

S2 S1
e1e2

A term (element) of S1

as well as S2

A term (element)
of S2 but not S1

S3

Order Sorts

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

9

Nat, Zero and NzNat form what is called a connected
component.

CafeOBJ automatically adds one sort to each connected
component such that the sort is a super-sort of all sorts in the
connected component and called an error sort of the sorts

The sort ?Nat is automatically added as a
super-sort of Nat, Zero and NzNat and
the error sort of the three sorts.

?Nat

Nat

NzNatZero

Order Sorts

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

10

Operator _quo_ is declared in the built-in module NAT as
follows:

op _quo_ : Nat NzNat -> Nat .

The result of reducing 1 quo 0 is

(1 quo 0):?Nat

which means an error or an exception.

Order Sorts

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

11

Only Nat, Zero & NzNat are taken into account. 0 is a term of
Nat as well as one of Zero, and 1 is a term of Nat as well as
one of NzNat. Zero is the least among Nat & Zero, and NzNat
is the least among Nat & NzNat. The least sort of 0 is Zero,
and the least sort of 1 is NzNat.

Each connected component of sorts should be designed such
that it has the greatest element and each term has the least
sort.

S1

S2 S3S4
S1

S2S3

S1

S2
S3

S4

Error or Exception Handling

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

12

[Nat ErrNat < Nat&Err]

Nat
ErrNat

Nat&Err

…0 1 2 errNat

For a connected component CC of sorts in which S is the
greatest element, two new sorts S&Err and ErrS are added
such that S&Err is a super-sort of S (and then any other sorts
in CC) and ErrS is neither a sub- nor super-sort of S, and a
constant of ErrS is declared.

Note that each connected component of sorts has to have the greatest element.

op errNat : -> ErrNat {constr} .

It stands for constructor,
meaning that errNat is a value
of ErrNat.

Error or Exception Handling

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

13

Some operators and equations are also declared for error or
exception handling.

mod! NAT-ERR { pr(NAT)
[Nat ErrNat < Nat&Err]
op errNat : -> ErrNat {constr} .
op p_ : Zero -> ErrNat .
op p_ : ErrNat -> ErrNat .
op p_ : Nat&Err -> Nat&Err .
op _quo_ : Nat&Err Zero -> ErrNat .
op _quo_ : Nat&Err ErrNat -> ErrNat .
op _quo_ : ErrNat Nat&Err -> ErrNat .
op _quo_ : Nat&Err Nat&Err -> Nat&Err .

var NE : Nat&Err .
eq p 0 = errNat .
eq p errNat = errNat .
eq NE quo 0 = errNat .
eq NE quo errNat = errNat .
eq errNat quo NE = errNat .

}

Error or Exception Handling

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

14

open NAT-ERR .
red p 1 .
red p 0 .
red p errNat .
red 10 quo 3 .
red 10 quo 0 .
red 10 quo errNat .
red errNat quo 3 .
red errNat quo errNat .

close

What are the results of those
reductions?

Lists of Natural Numbers

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

15

Collections of natural numbers such that the order is relevant
and same numbers can appear multiple times.

Inductively defined as follows:

(1) nil is the empty list of natural numbers.

(2) If n is a natural number and l is a list of natural
numbers, then n | l is a list of natural numbers such that n
is the top element of the list.

Why are nil, 0 | nil, 1 | 0 | nil and 2 | 1 | 0 | nil lists of natural
numbers?

List of Natural Numbers

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

16

Declared in CafeOBJ as follows:

mod! NATLIST { pr(NAT)
[NatList]
op nil : -> NatList {constr} .
op _|_ : Nat NatList -> NatList {constr} . }

Terms without any variables are called ground terms.

constr specifies that the operator is a constructor.

Ground constructor terms are ground terms constructed from
constructors only and interpreted as values.

2 | 1 | 0 | nil1 | 0 | nilnil 0 | nil

List of Natural Numbers

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

17

What is the top element of a list of natural number?

What if the list is nil?

It totally depends on the definition.

We deal with it as an error, namely errNat.

Partly because of this, two sorts Nil and NnNatList are added
as sub-sorts of NatList and the two constructors are revised:

mod! NATLIST { pr(NAT-ERR)
[Nil NnNatList < NatList]
op nil : -> Nil {constr} .
op _|_ : Nat NatList -> NnNatList {constr} . }

List of Natural Numbers

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

18

The operator hd that basically returns the top element of a
given list is declared in the module NATLIST as follows:

op hd : Nil -> ErrNat .
op hd : NnNatList -> Nat .
op hd : NatList -> Nat&Err .

The equations for hd are declared as follows:

eq hd(nil) = errNat .
eq hd(X | L) = X .

What are the sorts of hd(nil), hd(0 | nil) and hd(1 | 0 | nil)?

What are the results of reducing hd(nil), hd(0 | nil) and
hd(1 | 0 | nil)?

List of Natural Numbers

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

19

Some more operators:
op tl : NatList -> NatList .
op _@_ : NatList NatList -> NatList .
op [_.._] : Nat Nat -> NatList .
op if_then {_} else {_} : Bool NatList NatList -> NatList .

eq tl(nil) = nil .
eq tl(X | L) = L .
eq nil @ L2 = L2 .
eq (X | L) @ L2 = X | (L @ L2) .
eq [X .. Y] = if X > Y then {nil} else {X | [X + 1 .. Y]} .
eq if true then {L} else {L2} = L .
eq if false then {L} else {L2} = L2 .

What are the sorts of hd(tl(nil)), hd(tl(0 | nil)) and hd(tl(1 | 0 | nil))?

What are the results of reducing hd(tl(nil)), hd(tl(0 | nil)) and hd(tl(1 | 0 | nil))?

Quicksort

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

20

Invented by C. A. R. Hoare:

C. A. R. Hoare: Algorithm 64: Quicksort. Commun. ACM 4(7):
321 (1961)

Given a list l of natural numbers, l is partitioned into two lists
ll and rl such that n is called a pivot that is a number in l, l' is l
from which n is deleted, ll consists of the numbers in l' that
are less than n and rl consists of the other numbers in l', this
partition is repeated to ll and rl until each list obtained by the
partition is empty or a singleton, and then all those empty or
singleton lists and pivots are combined.

Quicksort

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

21

4 | 7 | 5 | 1 | 0 | 3 | 6 | 2 | nil

Based on 4, the list is partitioned.

2 | 3 | 0 | 1 | nil 6 | 5 | 7 | nil4@ (|)

1 | 0 | nil 3 | nil2@ (|) 5 | nil 7 | nil6@ (|)

0 | nil nil1@ (|)

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | nil

Quicksort

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

22

mod! QSORT {
-- imports
pr(NATLIST)
-- signature
op qsort : NatList -> NatList .
op partition : Nat NatList NatList NatList -> NatList .
-- CafeOBJ vars
vars X Y : Nat .
vars L LL RL : NatList .

Quicksort

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

23

-- equations
-- sort
eq qsort(nil) = nil .
eq qsort(X | nil) = X | nil .
eq qsort(X | Y | L) = partition(X,Y | L,nil,nil) .
-- partition
eq partition(X,nil,LL,RL) = qsort(LL) @ (X | qsort(RL)) .
eq partition(X,Y | L,LL,RL)

= if Y < X then {partition(X,L,Y | LL,RL)}
else {partition(X,L,LL,Y | RL)} .

}

Quicksort

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

24

open QSORT .
red qsort(4 | 7 | 5 | 1 | 0 | 3 | 6 | 2 | nil) .

close

Sieve of Eratosthenes

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

25

An algorithm computing all prime numbers up to a given
number.

Given a number n, let l be the list [2 .. n]. If l is nil, then nil is
the result. Otherwise, let m & l' be hd(l) & tl(l), let l'' be l'
from which all multiples of m are deleted, l''' be l'' to which
the process is recursively applied, and then m | l''' is the
result.

Sieve of Eratosthenes

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

26

2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | nil

3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | nil2 |

3 | 5 | 6 | 7 | 8 | 9 | 10 | nil

3 | 5 | 7 | 8 | 9 | 10 | nil

3 | 5 | 7 | 9 | 10 | nil

3 | 5 | 7 | 9 | nil

3 5 | 7 | 9 | nil

5 | 7 | nil

7 | nil5

nil7

|

|

|

2 | 3 | 5 | 7 | nil

Sieve of Eratosthenes

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

27

mod! ERATOSTHENES-SIEVE {
-- imports
pr(NATLIST)
-- signature
op primesUpto : Nat -> NatList .
op sieve : NatList -> NatList .
op check : Nat NatList -> NatList .
-- CafeOBJ vars
vars X Y : Nat .
var NzX : NzNat .
var L : NatList .

Sieve of Eratosthenes

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

28

-- equations
-- primesUpto
eq primesUpto(X) = sieve([2 .. X]) .
-- sieve
eq sieve(nil) = nil .
eq sieve(X | L) = X | sieve(check(X,L)) .
-- check
eq check(0,L) = L .
eq check(NzX,nil) = nil .
eq check(NzX,Y | L)

= if NzX divides Y then {check(NzX,L)}
else {Y | check(NzX,L)} .

}

Sieve of Eratosthenes

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

29

open ERATOSTHENES-SIEVE .
red primesUpto(10) .
red primesUpto(20) .
red primesUpto(50) .
red primesUpto(100) .

close

Exercises

30

1. Type each module used in the slides and some test code
(enclosed with open and close) in one file and feed it into the
CafeOBJ system.

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

3. Write a module in which a function that performs the
merge sort is defined and some test code in one file and feed
it into the CafeOBJ system.

2. Write a module for each piece of programs used in lecture
note 1 and some test code in one file and feed it into the
CafeOBJ system. Among those modules are FACT & OEDC-
FACT.

Exercises

31
i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

4. Write a module in which a function that performs the
bubble sort is defined and some test code in one file and feed
it into the CafeOBJ system.

5. Write a module in which a function that performs the
insertion sort is defined and some test code in one file and
feed it into the CafeOBJ system.

6. Write a module in which a function that performs the
selection sort is defined and some test code in one file and
feed it into the CafeOBJ system.

Exercises

32

7. Write a module in which a function that solves the
Hamming’s problem is defined and some test code in one file
and feed it into the CafeOBJ system. The Hamming’s problem
is as follows. Given a number n, make the following list of
natural numbers.

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

(1) Each element of the list is less than or equal to n.

(2) If n 0, the list is nil; if n 1, the first element of the
list is 1.
(3) If the list contains x, it also contains 2*x, 3*x and 5*x,
provided that they are less than or equal to n.

(4) Each number occurs in the list at most once.

(5) The list is in increasing order.

Exercises

33

8. Arrays available in many existing programming languages,
such as C, are similar to lists but not exactly the same as lists.
Investigate the essence of arrays and the essential difference
between arrays and lists.

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

9. Investigate how to deal with arrays in Math (including how
to define arrays in Math).

