1217: Functional Programming
2. Modules, Order Sorts & Lists of Natural

Numbers

Kazuhiro Ogata, Canh Minh Do

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Roadmap

Modules
Order Sorts

— Error or Exception Handling

Lists of Natural Numbers
— Quicksort
— Sieve of Eratosthenes

Exercises

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural

Modules

Units of programs in CafeOBJ. In a module, sorts, operators,
variables & equations can be declared. In a module, other
existing modules can also be imported (reused).

Declared as follows:

mod! MOD-NAME { ...}

In the place ..., module imports, sorts, operators, variables &
equations are declared.

A module declared as this can be reused in other modules like
built-in modules, such as NAT.

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural

Modules

mod! GCD {
-- imports
pr(NAT) pr stands for protecting,
-- signature meaning that a module is
op gecd : Nat Zero -> Nat . imported with the

op gcd : Nat NzNat -> NzNat . protecting mode.

op gecd : Nat Nat -> Nat .
-- CafeOB]J vars Will you please confirm that
if the 2" argument of ged is

var X : Nat . tural b
a non-zero natural number
var NzY : NzNat . . ’
) then the result is a non-zero
-- equations

natural number?
eq gcd(X,0)=X..

eq gcd(X,NzY) = gcd(NzY,X rem NzY) .

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural

Modules

open GCD .
red gcd(24,36) . -- compute the ged of 24 & 36
red gcd(2015,31031) . -- compute the gcd of 2015 & 31031

close
i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural 6
Numbers
Modules
mod! LCM { If the three op declarations for gcd
pr(GCD) in the module GCD are replaced

op lcm : Nat Zero -> Zero . with the following
op lcm : Nat NzNat -> Nat . op gcd : Nat Nat -> Nat

op lcm : Nat Nat -> Nat. a warning message on what are
var X : Nat . called error sorts is displayed when
var NzY : NzNat . feeding the module LCM into the
eq lem(X,0)=0. CafeOBJ system. Why?
eq lem(X,NzY) = (X quo gcd(X,NzY)) * NzY .

}

open LCM .

red lcm(24,36) . -- compute the Icm of 24 & 36
red Ilcm(2015,31031) . -- compute the lcm of 2015 & 31031
close

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Order Sorts

Nat, Zero & NzNat correspond to {0,1,2,...}, {0} & {1,2,...}.
As {0} & {1,2,...} are sub-sets of {0,1,2,...}, there are similar
relations among Zero & NzNat and Nat: Zero & NzNat are
sub-sorts of Nat (or Nat is a super-sort of Zero & NzNat),
which are declared in the built-in module NAT (precisely, in
NZNAT-VALUE & NAT-VALUE imported by NAT):

[Zero NzNat < Nat]

As 0 is an element of {0,1,2,...} aswellas {0} and 1,2,... are
elements of {0,1,2,...} as well as {1,2,...}, terms whose sorts
are Zero or NzNat are also those of the sort Nat.

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Order Sorts

Sub-sort (super-sort) relation is transitive: if a sort S, is a sub-
sort (super-sort) of a sort S, and S, is a sub-sort (super-sort)
of a sort S;, then S, is a sub-sort (super-sort) of S,.

If a sort S, is a sub-sort of a sort S,, then any terms of S, are
also those of S,, but not vice versa.

S

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Order Sorts

Nat, Zero and NzNat form what is called a connected
component.

CafeOBJ automatically adds one sort to each connected
component such that the sort is a super-sort of all sorts in the
connected component and called an error sort of the sorts

The sort ?Nat is automatically added as a

(?
super-sort of Nat, Zero and NzNat and ’Nat
the error sort of the three sorts. Nat
Zero NzNat

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Order Sorts

Operator quo_is declared in the built-in module NAT as
follows:

op quo_: Nat NzNat -> Nat .
The result of reducing 1 quo 0 is
(1 quo 0):?Nat

which means an error or an exception.

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural

11
Numbers

Order Sorts

Only Nat, Zero & NzNat are taken into account. 0 is a term of
Nat as well as one of Zero, and 1 is a term of Nat as well as
one of NzNat. Zero is the least among Nat & Zero, and NzNat
is the least among Nat & NzNat. The least sort of 0 is Zero,
and the least sort of 1 is NzNat.

Each connected component of sorts should be designed such
that it has the greatest element and each term has the least
sort.

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Error or Exception Handling

For a connected component CC of sorts in which S is the
greatest element, two new sorts S&Err and ErrS are added
such that S&ETrr is a super-sort of S (and then any other sorts
in CC) and ErrS is neither a sub- nor super-sort of S, and a
constant of ErrS is declared.

[Nat ErrNat < Nat&Err] op errNat : -> ErrNat {constr} .
Nat&Err

Nat ErrNat It stands for constructor,
8 meaning that errNat is a value
of ErrNat.

Note that each connected component of sorts has to have the greatest element.

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural

13
Numbers

Error or Exception Handling

Some operators and equations are also declared for error or
exception handling.

mod! NAT-ERR { pr(NAT)
[Nat ErrNat < Nat&Err]
op errNat : -> ErrNat {constr} .
op p_: Zero -> ErrNat .
op p_ : ErrNat -> ErrNat .
op p_ : Nat&Err -> Nat&Err .
op quo_: Nat&Err Zero -> ErrNat .
op quo_: Nat&Err ErrNat -> ErrNat .
op quo_: ErrNat Nat&Err -> ErrNat .
op quo_: Nat&Err Nat&Err -> Nat&Err .

var NE : Nat&Err .

eqp 0=-errNat.

eq p errNat = errNat .

eq NE quo 0 = errNat .

eq NE quo errNat = errNat .
eq errNat quo NE = errNat .

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Error or Exception Handling

open NAT-ERR .
redpl.
redpO.
red p errNat . What are the results of those

red 10 quo 3. reductions?
red 10 quo 0.

red 10 quo errNat .

red errNat quo 3 .

red errNat quo errNat .
close

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural

15
Numbers

Lists of Natural Numbers

Collections of natural numbers such that the order is relevant
and same numbers can appear multiple times.

Inductively defined as follows:

(1) nil is the empty list of natural numbers.

(2) If niis a natural number and | is a list of natural
numbers, then n | | is a list of natural numbers such that n
is the top element of the list.

Why are nil, 0 [nil, 1 |0 |niland 2| 1| 0 | nil lists of natural
numbers?

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

List of Natural Numbers

Declared in CafeOBJ as follows:

mod! NATLIST { pr(NAT)
[NatList]
op nil : -> NatList {constr} .
op | :Nat NatList -> NatList {constr} . }

constr specifies that the operator is a constructor.
Terms without any variables are called ground terms.

Ground constructor terms are ground terms constructed from
constructors only and interpreted as values.

nil 0 | nil 110|nil 2]1]0]nil

i217 Functiona | Programmin; g - 2. Modules, Order Sorts & Lists of Natural 17
Numbers

List of Natural Numbers

What is the top element of a list of natural number?
What if the list is nil?

It totally depends on the definition.
We deal with it as an error, namely errNat.

Partly because of this, two sorts Nil and NnNatList are added
as sub-sorts of NatList and the two constructors are revised:

mod! NATLIST { pr(NAT-ERR)
[Nil NnNatList < NatList]
op nil : -=> Nil {constr} .
op | :Nat NatList -> NnNatList {constr} . }

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural 18
Numbers (

List of Natural Numbers

The operator hd that basically returns the top element of a
given list is declared in the module NATLIST as follows:

op hd : Nil -> ErrNat .
op hd : NnNatList -> Nat .
op hd : NatList -> Nat&Err .

The equations for hd are declared as follows:
eq hd(nil) = errNat .
eq hdX|L)=X.
What are the sorts of hd(nil), hd(0 | nil) and hd(1 | O | nil)?

What are the results of reducing hd(nil), hd(0 | nil) and
hd(1 | 0 | nil)?

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

19

List of Natural Numbers

Some more operators:
op tl : NatList -> NatList .
op (@ _:NatList NatList -> NatList .
op [.. |:NatNat->NatList .
op if then { } else { } : Bool NatList NatList -> NatList .

eq tl(nil) = nil .

eqtl(X|L)=L.

eqnil @ L2=L12.

eqX|Dy@L2=X|(L@L2).

eq [X. Y]=if X>Y then {nil} else {X|[X+1.Y]}.
eq if true then {L} else {L2} =L.

eq if false then {L} else {L2} =L2.

What are the sorts of hd(tl(nil)), hd(tl(O | nil)) and hd(tl(1 | O | nil))?
What are the results of reducing hd(tl(nil)), hd(tl(O | nil)) and hd(tl(1 | O | nil))?

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural

Quicksort

Invented by C. A. R. Hoare:

20

C. A. R. Hoare: Algorithm 64: Quicksort. Commun. ACM 4(7):
321 (1961)

Given a list | of natural numbers, | is partitioned into two lists
Il and rl such that n is called a pivot that is a numberin |, I"is |
from which n is deleted, || consists of the numbers in | that
are less than n and rl consists of the other numbers in |, this
partition is repeated to |l and rl until each list obtained by the
partition is empty or a singleton, and then all those empty or
singleton lists and pivots are combined.

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural 271

Quicksort

4|715|1]0[3]6][2]|nil

Bas n 4, the list is partitioned.

213]0]1|nil @ (4 | 6]/5]7|nil)

L T T

110/nil @ (2] 3/nil)y 5nil @ (6 | 7|nil)

[T

Olnil @ (1] ‘nil)

L 4

0[1]2|3(4]5|6]7nil

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural 2

Quicksort

mod! QSORT {
-- imports
pr(NATLIST)
-- signature
op gsort : NatList -> NatList .
op partition : Nat NatList NatList NatList -> NatList .
-- CafeOBJ vars
vars X Y : Nat.
vars L LL RL : NatList .

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural

Quicksort

-- equations

-- sort

eq gsort(nil) = nil .

eq gsort(X | nil) = X | nil .

eq gsort(X | Y | L) = partition(X,Y | L,nil,nil) .
-- partition

eq partition(X,niLLL,RL) = gsort(LL) @ (X | gsort(RL)) .

eq partition(X,Y | L,LL,RL)
=1f'Y < X then {partition(X,L,Y | LL,RL)}
else {partition(X,L,LL,Y | RL)} .

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural

Quicksort

open QSORT .
red gsort(4|7|5|1/0]3]6]|2|nil).
close

24

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural 25
Numbers

Sieve of Eratosthenes

An algorithm computing all prime numbers up to a given
number.

Given a number n, let | be the list [2 .. n]. If | is nil, then nil is
the result. Otherwise, let m & |' be hd(l) & tl(l), let I" be I
from which all multiples of m are deleted, I"' be I" to which
the process is recursively applied, and then m | I'" is the
result.

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural 2%
Numbers

Sieve of Eratosthenes
21314]5(6]7(8]9[10]nil
P 7777777777777777777777\
2| 31415(6(7(81910 nil

315(6[7[8[9]10|nil
Ve
305(718[9]10 nil
305(719]10 |nil ® 2(3[5]7nil

3151719 |nil
- T

3 | 51719 |nil
Ve

517 |nil

50 7 | nil
4/\
7 | il

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Sieve of Eratosthenes

mod! ERATOSTHENES-SIEVE {
-- imports
pr(NATLIST)
-- signature
op primesUpto : Nat -> NatList .
op sieve : NatList -> NatList .
op check : Nat NatList -> NatList .
-- CafeOBJ vars
vars X Y : Nat.
var NzX : NzNat .
var L : NatList .

27

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural

Sieve of Eratosthenes

-- equations
-- primesUpto
eq primesUpto(X) = sieve([2 .. X]) .
-- sieve
eq sieve(nil) =nil .
eq sieve(X | L) = X | sieve(check(X,L)) .
-- check
eq check(0,L)=L.
eq check(NzX,nil) =nil .
eq check(NzX,Y | L)
= if NzX divides Y then {check(NzX,L)}

else {Y | check(NzX,L)} .

28

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Sieve of Eratosthenes

open ERATOSTHENES-SIEVE .
red primesUpto(10) .
red primesUpto(20) .
red primesUpto(50) .
red primesUpto(100) .
close

29

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural

Exercises

1. Type each module used in the slides and some test code
(enclosed with open and close) in one file and feed it into the
CafeOBJ system.

2. Write a module for each piece of programs used in lecture
note 1 and some test code in one file and feed it into the
CafeOBJ system. Among those modules are FACT & OEDC-
FACT.

3. Write a module in which a function that performs the
merge sort is defined and some test code in one file and feed
it into the CafeOBJ system.

30

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Exercises

4. Write a module in which a function that performs the
bubble sort is defined and some test code in one file and feed
it into the CafeOBJ system.

5. Write a module in which a function that performs the
insertion sort is defined and some test code in one file and
feed it into the CafeOBJ system.

6. Write a module in which a function that performs the
selection sort is defined and some test code in one file and
feed it into the CafeOBJ system.

i217 Functiona
Numbers

Programming - 2. Modules, Order Sorts & Lists of Natural 39

Exercises

7. Write a module in which a function that solves the
Hamming’s problem is defined and some test code in one file
and feed it into the CafeOBJ system. The Hamming’s problem
is as follows. Given a number n, make the following list of
natural numbers.

(1) Each element of the list is less than or equal to n.

(2) If n =0, the list is nil; if n > 1, the first element of the

listis 1.

(3) If the list contains X, it also contains 2*X, 3*X and 5*X,

provided that they are less than or equal to n.

(4) Each number occurs in the list at most once.

(5) The list is in increasing order.

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural
Numbers

Exercises

8. Arrays available in many existing programming languages,
such as C, are similar to lists but not exactly the same as lists.
Investigate the essence of arrays and the essential difference
between arrays and lists.

9. Investigate how to deal with arrays in Math (including how
to define arrays in Math).

