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Units of programs in CafeOBJ. In a module, sorts, operators, 
variables & equations can be declared. In a module, other 
existing modules can also be imported (reused). 

Declared as follows:

mod! MOD-NAME { … }

the name of the module

In the place …, module imports, sorts, operators, variables & 
equations are declared.

A module declared as this can be reused in other modules like 
built-in modules, such as NAT.
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mod! GCD {
-- imports
pr(NAT)
-- signature
op gcd : Nat Zero -> Nat .
op gcd : Nat NzNat -> NzNat .
op gcd : Nat Nat -> Nat .
-- CafeOBJ vars
var X : Nat .
var NzY : NzNat .
-- equations
eq gcd(X,0) = X .
eq gcd(X,NzY) = gcd(NzY,X rem NzY) .

}

The built-in module NAT is 
imported.

pr stands for protecting, 
meaning that a module is 
imported with the 
protecting mode.

Will you please confirm that 
if the 2nd argument of gcd is 
a non-zero natural number, 
then the result is a non-zero 
natural number?



Modules

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural 
Numbers

5

open GCD .
red gcd(24,36) . -- compute the gcd of 24 & 36
red gcd(2015,31031) . -- compute the gcd of 2015 & 31031

close

Modules
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mod! LCM {
pr(GCD)
op lcm : Nat Zero -> Zero .
op lcm : Nat NzNat -> Nat .
op lcm : Nat Nat -> Nat .
var X : Nat .
var NzY : NzNat .
eq lcm(X,0) = 0 .
eq lcm(X,NzY) = (X quo gcd(X,NzY)) * NzY .

}
open LCM .
red lcm(24,36) . -- compute the lcm of 24 & 36
red lcm(2015,31031) . -- compute the lcm of 2015 & 31031

close

GCD is 
imported.

If the three op declarations for gcd
in the module GCD are replaced 
with the following

op gcd : Nat Nat -> Nat

a warning message on what are 
called error sorts is displayed when 
feeding the module LCM into the 
CafeOBJ system. Why?
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Nat, Zero & NzNat correspond to {0,1,2,...}, {0} & {1,2,…}. 
As {0} & {1,2,…} are sub-sets of {0,1,2,…}, there are similar 
relations among Zero & NzNat and Nat: Zero & NzNat are 
sub-sorts of Nat (or Nat is a super-sort of Zero & NzNat), 
which are declared in the built-in module NAT (precisely, in 
NZNAT-VALUE & NAT-VALUE imported by NAT):

[Zero NzNat < Nat]

As 0 is an element of {0,1,2,…} as well as {0} and 1,2,… are 
elements of {0,1,2,…} as well as {1,2,…}, terms whose sorts 
are Zero or NzNat are also those of the sort Nat.

Order Sorts
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Sub-sort (super-sort) relation is transitive: if a sort S1 is a sub-
sort (super-sort) of a sort S2 and S2 is a sub-sort (super-sort) 
of a sort S3, then S1 is a sub-sort (super-sort) of S3. 

If a sort S1 is a sub-sort of a sort S2, then any terms of S1 are 
also those of S2, but not vice versa.

S2 S1
e1e2

A term (element) of S1

as well as S2

A term (element) 
of S2 but not S1

S3
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Nat, Zero and NzNat form what is called a connected 
component.

CafeOBJ automatically adds one sort to each connected 
component such that the sort is a super-sort of all sorts in the 
connected component and called an error sort of the sorts

The sort ?Nat is automatically added as a 
super-sort of Nat, Zero and NzNat and 
the error sort of the three sorts.

?Nat

Nat

NzNatZero

Order Sorts
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Operator _quo_ is declared in the built-in module NAT as 
follows:

op _quo_ : Nat NzNat -> Nat .

The result of reducing 1 quo 0 is

(1 quo 0):?Nat

which means an error or an exception.



Order Sorts

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural 
Numbers

11

Only Nat, Zero & NzNat are taken into account. 0 is a term of 
Nat as well as one of Zero, and 1 is a term of Nat as well as 
one of NzNat. Zero is the least among Nat & Zero, and NzNat
is the least among Nat & NzNat. The least sort of 0 is Zero, 
and the least sort of 1 is NzNat.

Each connected component of sorts should be designed such 
that it has the greatest element and each term has the least 
sort.

S1

S2 S3S4
S1

S2S3

S1

S2
S3

S4
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[Nat ErrNat < Nat&Err]

Nat
ErrNat

Nat&Err

…0 1 2 errNat

For a connected component CC of sorts in which S is the 
greatest element, two new sorts S&Err and ErrS are added 
such that S&Err is a super-sort of S (and then any other sorts 
in CC) and ErrS is neither a sub- nor super-sort of S, and a 
constant of ErrS is declared.  

Note that each connected component of sorts has to have the greatest element.

op errNat : ->  ErrNat {constr} .

It stands for constructor, 
meaning that errNat is a value 
of ErrNat.
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Some operators and equations are also declared for error or 
exception handling.

mod! NAT-ERR {  pr(NAT)
[Nat ErrNat < Nat&Err]
op errNat : -> ErrNat {constr} .
op p_ : Zero -> ErrNat .
op p_ : ErrNat -> ErrNat .
op p_ : Nat&Err -> Nat&Err .
op _quo_ : Nat&Err Zero -> ErrNat .
op _quo_ : Nat&Err ErrNat -> ErrNat .
op _quo_ : ErrNat Nat&Err -> ErrNat .
op _quo_ : Nat&Err Nat&Err -> Nat&Err .

var NE : Nat&Err .
eq p 0 = errNat .
eq p errNat = errNat .
eq NE quo 0 = errNat .
eq NE quo errNat = errNat .
eq errNat quo NE = errNat .

}

Error or Exception Handling
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open NAT-ERR .
red p 1 .
red p 0 .
red p errNat .
red 10 quo 3 .
red 10 quo 0 .
red 10 quo errNat .
red errNat quo 3 .
red errNat quo errNat .

close

What are the results of those 
reductions?
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Collections of natural numbers such that the order is relevant 
and same numbers can appear multiple times.

Inductively defined as follows:

(1) nil is the empty list of natural numbers.

(2) If n is a natural number and l is a list of natural 
numbers, then n | l is a list of natural numbers such that n
is the top element of the list. 

Why are nil, 0 | nil, 1 | 0 | nil and 2 | 1 | 0 | nil lists of natural 
numbers?

List of Natural Numbers
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Declared in CafeOBJ as follows:

mod! NATLIST {  pr(NAT)
[NatList]
op nil : -> NatList {constr} .
op _|_ : Nat NatList -> NatList {constr} . }

Terms without any variables are called ground terms. 

constr specifies that the operator is a constructor.

Ground constructor terms are ground terms constructed from 
constructors only and interpreted as values.

2 | 1 | 0 | nil1 | 0 | nilnil 0 | nil
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What is the top element of a list of natural number?

What if the list is nil?

It totally depends on the definition.

We deal with it as an error, namely errNat.

Partly because of this, two sorts Nil and NnNatList are added 
as sub-sorts of NatList and the two constructors are revised:

mod! NATLIST {  pr(NAT-ERR)
[Nil NnNatList < NatList]
op nil : -> Nil {constr} .
op _|_ : Nat NatList -> NnNatList {constr} . }

List of Natural Numbers
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The operator hd that basically returns the top element of a 
given list is declared in the module NATLIST as follows:

op hd : Nil -> ErrNat .
op hd : NnNatList -> Nat .
op hd : NatList -> Nat&Err .

The equations for hd are declared as follows:

eq hd(nil) = errNat .
eq hd(X | L) = X .

What are the sorts of hd(nil), hd(0 | nil) and hd(1 | 0 | nil)?

What are the results of reducing hd(nil), hd(0 | nil) and 
hd(1 | 0 | nil)?
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Some more operators:
op tl : NatList -> NatList .
op _@_ : NatList NatList -> NatList .
op [_.._] : Nat Nat -> NatList .
op if_then {_} else {_} : Bool NatList NatList -> NatList .

eq tl(nil) = nil .
eq tl(X | L) = L .
eq nil @ L2 = L2 .
eq (X | L) @ L2 = X | (L @ L2) .
eq [X .. Y] = if X > Y then {nil} else {X | [X + 1 .. Y]} .
eq if true then {L} else {L2} = L .
eq if false then {L} else {L2} = L2 .

What are the sorts of hd(tl(nil)), hd(tl(0 | nil)) and hd(tl(1 | 0 | nil))?

What are the results of reducing hd(tl(nil)), hd(tl(0 | nil)) and hd(tl(1 | 0 | nil))?

Quicksort
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Invented by C. A. R. Hoare: 

C. A. R. Hoare: Algorithm 64: Quicksort. Commun. ACM 4(7): 
321 (1961)

Given a list l of natural numbers, l is partitioned into two lists 
ll and rl such that n is called a pivot that is a number in l, l' is l 
from which n is deleted, ll consists of the numbers in l' that 
are less than n and rl consists of the other numbers in l', this 
partition is repeated to ll and rl until each list obtained by the 
partition is empty or a singleton, and then all those empty or 
singleton lists and pivots are combined. 
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4 | 7 | 5 | 1 | 0 | 3 | 6 | 2 | nil

Based on 4, the list is partitioned.

2 | 3 | 0 | 1 | nil 6 | 5 | 7 | nil4@ ( | )

1 | 0 | nil 3 | nil2@ ( | ) 5 | nil 7 | nil6@ ( | )

0 | nil nil1@ ( | )

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | nil

Quicksort
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mod! QSORT {
-- imports
pr(NATLIST)
-- signature
op qsort : NatList -> NatList .
op partition : Nat NatList NatList NatList -> NatList .
-- CafeOBJ vars
vars X Y : Nat .
vars L LL RL : NatList .
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-- equations
-- sort
eq qsort(nil) = nil .
eq qsort(X | nil) = X | nil .
eq qsort(X | Y | L) = partition(X,Y | L,nil,nil) .
-- partition
eq partition(X,nil,LL,RL) = qsort(LL) @ (X | qsort(RL)) .
eq partition(X,Y | L,LL,RL)

= if Y < X then {partition(X,L,Y | LL,RL)}
else {partition(X,L,LL,Y | RL)} .

}

Quicksort
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open QSORT .
red qsort(4 | 7 | 5 | 1 | 0 | 3 | 6 | 2 | nil) .

close
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An algorithm computing all prime numbers up to a given 
number.

Given a number n, let l be the list [2 .. n]. If l is nil, then nil is 
the result. Otherwise, let m & l' be hd(l) & tl(l), let l'' be l'
from which all multiples of m are deleted, l''' be l'' to which 
the process is recursively applied, and then m | l''' is the 
result. 

Sieve of Eratosthenes
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2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | nil

3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | nil2 |

3 | 5 | 6 | 7 | 8 | 9 | 10 | nil

3 | 5 | 7 | 8 | 9 | 10 | nil

3 | 5 | 7 | 9 | 10 | nil

3 | 5 | 7 | 9 | nil

3 5 | 7 | 9 | nil

5 | 7 | nil

7 | nil5

nil7

|

|

|

2 | 3 | 5 | 7 | nil



Sieve of Eratosthenes

i217 Functional Programming - 2. Modules, Order Sorts & Lists of Natural 
Numbers

27

mod! ERATOSTHENES-SIEVE {
-- imports
pr(NATLIST)
-- signature
op primesUpto : Nat -> NatList .
op sieve : NatList -> NatList .
op check : Nat NatList -> NatList .
-- CafeOBJ vars
vars X Y : Nat .
var NzX : NzNat .
var L : NatList .

Sieve of Eratosthenes
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-- equations
-- primesUpto
eq primesUpto(X) = sieve([2 .. X]) .
-- sieve
eq sieve(nil) = nil .
eq sieve(X | L) = X | sieve(check(X,L)) .
-- check
eq check(0,L) = L .
eq check(NzX,nil) = nil .
eq check(NzX,Y | L)

= if NzX divides Y then {check(NzX,L)}
else {Y | check(NzX,L)} .

}
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open ERATOSTHENES-SIEVE .
red primesUpto(10) .
red primesUpto(20) .
red primesUpto(50) .
red primesUpto(100) .

close

Exercises
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1. Type each module used in the slides and some test code 
(enclosed with open and close) in one file and feed it into the 
CafeOBJ system.
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3. Write a module in which a function that performs the 
merge sort is defined and some test code in one file and feed 
it into the CafeOBJ system.

2. Write a module for each piece of programs used in lecture 
note 1 and some test code in one file and feed it into the 
CafeOBJ system. Among those modules are FACT & OEDC-
FACT.
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4. Write a module in which a function that performs the 
bubble sort is defined and some test code in one file and feed 
it into the CafeOBJ system.

5. Write a module in which a function that performs the 
insertion sort is defined and some test code in one file and 
feed it into the CafeOBJ system.

6. Write a module in which a function that performs the 
selection sort is defined and some test code in one file and 
feed it into the CafeOBJ system.

Exercises
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7. Write a module in which a function that solves the 
Hamming’s problem is defined and some test code in one file 
and feed it into the CafeOBJ system. The Hamming’s problem 
is as follows. Given a number n, make the following list of 
natural numbers.
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(1) Each element of the list is less than or equal to n. 

(2) If n 0, the list is nil; if n 1, the first element of the 
list is 1.
(3) If the list contains x, it also contains 2*x, 3*x and 5*x, 
provided that they are less than or equal to n.

(4) Each number occurs in the list at most once.

(5) The list is in increasing order.
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8. Arrays available in many existing programming languages, 
such as C, are similar to lists but not exactly the same as lists. 
Investigate the essence of arrays and the essential difference 
between arrays and lists.
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9. Investigate how to deal with arrays in Math (including how 
to define arrays in Math).


