
I217: Functional Programming

3. Term Rewriting

Kazuhiro Ogata, Canh Minh Do

Roadmap

• Pattern Match

– Substitution

• Sub-terms

– Positions in terms

• Rewrite rules

– Redexes & Contracts

• Rewriting

– One step rewrite, Reduction & Trace

2i217 Functional Programming - 3. Term Rewriting



Pattern Match

i217 Functional Programming - 3. Term Rewriting 3

Let us consider the module LISTNAT:

mod! NATLIST {
-- imports
pr(NAT-ERR)
-- signature
[Nil NnNatList < NatList]
op nil : -> Nil {constr} .
op _|_ : Nat NatList -> NnNatList {constr} .
op hd : Nil -> ErrNat .
op hd : NnNatList -> Nat .
op hd : NatList -> Nat&Err .
op tl : NatList -> NatList .
op _@_ : NatList NatList -> NatList .
...

-- CafeOBJ vars
vars X Y : Nat .
vars L L2 : NatList .
-- equations
-- hd
eq hd(nil) = errNat .
eq hd(X | L) = X .
-- tl
eq tl(nil) = nil .
eq tl(X | L) = L .
-- _@_
eq nil @ L2 = L2 .
eq (X | L) @ L2 = X | (L @ L2) .
... }

Pattern Match

i217 Functional Programming - 3. Term Rewriting 4

hd(X | L) is a term whose least sort is Nat.

hd(2 | 1 | 0 | nil) is a term whose least sort is Nat.

Seemingly, the two terms are different.

By replacing X that is a term of Nat and L that is a term of 
NatList with 2 that is a term of Nat as well as NzNat and 1 | 0 | 
nil that is a term of NatList as well as NnNatList, however, 
hd(X | L) becomes hd(2 | 1 | 0 | nil).

hd(2 | 1 | 0 | nil) is called an instance of hd(X | L) or can match 
hd(X | L) with the replacement of the variables with the 
terms.



Pattern Match

i217 Functional Programming - 3. Term Rewriting 5

Such a replacement is called a substitution. 

A substitution is a function from variables to terms that 
preserves sorts. 

The substitution σex used as the example is the function from 
{X, Y, L, L2} to the disjoint union of the sets of terms of Nat
and terms of NatList such that it maps X, Y, L and L2 to 2, 
Y, 1 | 0 | nil and L2. 

σex(X) = 2 σex(Y) = Y σex(L) = 1 | 0 | nil σex(L2) = L2

σex may be expressed as follows:

{X←2, L←1 | 0 | nil}

Pattern Match

i217 Functional Programming - 3. Term Rewriting 6

A substitution σ can be naturally extended as a function from 
terms to terms as follows:

for a non-variable term f(t1, …, tn),

σ(f(t1, …, tn)) = f(σ(t1), …, σ(tn))

σex(hd(X | L)) = hd(σex(X | L))
= hd(σex(X) | σex(L))
= hd(2 | 1 | 0 | nil)



Pattern Match

i217 Functional Programming - 3. Term Rewriting 7

Given a term t and a ground term s, the pattern match 
between t and s is the problem to decide whether there exists 
a substitution σ such that σ(t) = s.

t may be called a pattern.

If that is the case, s is called an instance of the pattern t and 
can match the pattern t with the substitution σ.

Pattern Match

i217 Functional Programming - 3. Term Rewriting 8

Can the ground term match the pattern? If yes, what is the 
substitution?

1. tl(1 | 0 | nil) & tl(X | L)

2. tl(tl(1 | 0 | nil)) & tl(X | L)

3. (4 | 3 | nil) @ (2 | 1 | 0 | nil) & (X | L) @ L2

4. nil @ (2 | 1 | 0 | nil) & nil @ L2

5. 4 | ((3 | nil) @ (2 | 1 | 0 | nil)) & (X | L) @ L2

6. 4 | 3 | (nil @ (2 | 1 | 0 | nil)) & nil @ L2



Sub-terms

i217 Functional Programming - 3. Term Rewriting 9

A term can be expressed as a tree structure.

4 | ((3 | nil) @ (2 | 1 | 0 | nil)) is expressed as follows:

_|_

4 _@_

_|_

3 nil

_|_

2 _|_

1 _|_

0 nil

What correspond to sub-trees 
are called sub-terms of the term.

Sub-terms

i217 Functional Programming - 3. Term Rewriting 10

Sub-terms of a term can be identified by positions.

_|_

4 _@_

_|_

3 nil

_|_

2 _|_

1 _|_

0 nil

ε

1 2

2.1

2.1.1

2.1.2

2.2

2.2.1 2.2.2

2.2.2.1
2.2.2.2

2.2.2.2.1 2.2.2.2.2

Let t be a term and p be a 
position. Then, tp is the sub-term 
of t at the position p.



Sub-terms

i217 Functional Programming - 3. Term Rewriting 11

Let t be 4 | ((3 | nil) @ (2 | 1 | 0 | nil)).

tε is 4 | ((3 | nil) @ (2 | 1 | 0 | nil)).

t1 is 4. t2 is (3 | nil) @ (2 | 1 | 0 | nil).

t2.1 is 3 | nil. t2.2 is 2 | 1 | 0 | nil.

t2.1.1 is 3. t2.1.2 is nil. t2.2.1 is 2. t2.2.2 is 1 | 0 | nil.

t2.2.2.1 is 1. t2.2.2.2 is 0 | nil.

t2.2.2.2.1 is 0. t2.2.2.2.2 is nil.

Sub-terms

i217 Functional Programming - 3. Term Rewriting 12

For a term t, a position p and a term s such that the least sort 
of tp is a sort of s, tp[s] is t in which tp is replaced with s.

Let t be 4 | ((3 | nil) @ (2 | 1 | 0 | nil)).

t2[3 | (nil @ (2 | 1 | 0 | nil))] is 4 | 3 | (nil @ (2 | 1 | 0 | nil)).

Let t be 4 | 3 | (nil @ (2 | 1 | 0 | nil)).

t2.2[2 | 1 | 0 | nil] is 4 | 3 | 2 | 1 | 0 | nil.

Let t be (4 | 3 | nil) @ (2 | 1 | 0 | nil).

tε[4 | ((3 | nil) @ (2 | 1 | 0 | nil))] is 4 | ((3 | nil) @ (2 | 1 | 0 | nil)).



Rewrite Rules

i217 Functional Programming - 3. Term Rewriting 13

A rewrite rule is a pair (l,r) of terms l and r such that the least 
sort of l is a sort of r, l is not a single variable, each variable 
occurring in r occurs in l.

A rewrite rule (l,r) may be expressed as l → r.

nil @ L2 → L2 (@1)
(X | L) @ L2 → X | (L @ L2)                 (@2)

A term rewriting system (TRS) is a set of rewrite rules.

Rewrite Rules

i217 Functional Programming - 3. Term Rewriting 14

an instance σ(l) of the left-hand side of a rewrite rule l → r ∈
R for some substitution σ is a redex (reducible expression) 
with respect to R;

an instance σ(r) of the right-hand side of a rewrite rule l → r
∈ R for some substitution σ is a contract with respect to R.

For a TRS R,



Rewrite Rules

i217 Functional Programming - 3. Term Rewriting 15

nil @ L2 → L2 (@1)
(X | L) @ L2 → X | (L @ L2)                 (@2)

nil @ (2 | 1 | 0 | nil) is a redex with respect to R@.

Let R@ be {(@1), (@2)} such that

2 | 1 | 0 | nil is a contract with respect to R@.

(3 | nil) @ (2 | 1 | 0 | nil) is a redex with respect to R@.

3 | (nil @ (2 | 1 | 0 | nil)) is a contract with respect to R@.

Rewriting

i217 Functional Programming - 3. Term Rewriting 16

One step rewrite with respect to a TRS R is a pair (t, t') of 
ground terms t and t' such that there exist a rewrite rule l → r
∈ R, a substitution σ and a position p such that tp is σ(l) and t'
is tp[σ(r)].

(t, t') may be written as t →R t'.

R may be omitted if it is clear from context.

p p

σ(l) σ(r)

t t'

→R



Rewriting

i217 Functional Programming - 3. Term Rewriting 17

nil @ L2 → L2 (@1)
(X | L) @ L2 → X | (L @ L2)                 (@2)

Let R@ be {(@1), (@2)} 
such that

(4 | 3 | nil) @ (2 | 1 | 0 | nil)

4 | ((3 | nil) @ (2 | 1 | 0 | nil))→R@

by (@2)

_@_

_|_

4 _|_

3 nil

_|_

2 _|_

1 _|_

0 nil

4

_|_

_@_

_|_

3 nil

_|_

2 _|_

1 _|_

0 nil

→R@

Rewriting

i217 Functional Programming - 3. Term Rewriting 18

4 | ((3 | nil) @ (2 | 1 | 0 | nil))

→R@

by (@2)

4

_|_

_@_

_|_

3 nil

_|_

2 _|_

1 _|_

0 nil

→R@

4 | 3 | (nil @ (2 | 1 | 0 | nil))

4

_|_

_@_

nil _|_

2 _|_

1 _|_

0 nil

_|_

3

nil @ L2 → L2 (@1)
(X | L) @ L2 → X | (L @ L2)                 (@2)

R@ is {(@1), (@2)}.



Rewriting

i217 Functional Programming - 3. Term Rewriting 19

→R@
by (@1)

→R@

4 | 3 | (nil @ (2 | 1 | 0 | nil))

4

_|_

_|_

2 _|_

1 _|_

0 nil

_|_

3

4 | 3 |  2 | 1 | 0 | nil

4

_|_

_@_

nil _|_

2 _|_

1 _|_

0 nil

_|_

3

nil @ L2 → L2 (@1)
(X | L) @ L2 → X | (L @ L2)                 (@2)

R@ is {(@1), (@2)}.

Rewriting

i217 Functional Programming - 3. Term Rewriting 20

Rewriting →*
R with respect to a TRS R is a reflexive and 

transitive closure of →R.

(4 | 3 | nil) @ (2 | 1 | 0 | nil)

4 | ((3 | nil) @ (2 | 1 | 0 | nil))

→*
R@

(4 | 3 | nil) @ (2 | 1 | 0 | nil)

(4 | 3 | nil) @ (2 | 1 | 0 | nil)

→*
R@

(4 | 3 | nil) @ (2 | 1 | 0 | nil) 4 | 3 | (nil@ (2 | 1 | 0 | nil))→*
R@

(4 | 3 | nil) @ (2 | 1 | 0 | nil) 4 | 3 | 2 | 1 | 0 | nil→*
R@



Rewriting

i217 Functional Programming - 3. Term Rewriting 21

Reduction of a ground term t with respect to R is rewriting t
→*

R t' such that t' does not have any redexes with respect to 
R.

(4 | 3 | nil) @ (2 | 1 | 0 | nil) 4 | 3 | 2 | 1 | 0 | nil→*
R@

Reduction of a ground term (4 | 3 | nil) @ (2 | 1 | 0 | nil) with 
respect to R@ is

This is what is done by the command red of CafeOBJ, 
although the result of red has the least sort, where equations 
are used as rewrite rules.

Note that equations should satisfy the conditions for rewrite 
rules to use the equations as rewrite rules.

Rewriting

i217 Functional Programming - 3. Term Rewriting 22

The trace of reduction of a ground term t0 with respect to R is 
a series of one step rewrites.

such that t0 →*
R tn is reduction with respect to R and for each 

one step rewrite ti →R ti+1 the redex concerned in ti is 
underlined and the rewrite rule (rli) used is clearly identified.

(rli)(rli–1) (rli+1) (rln–1)
t0 →R … →R ti →R ti+1 →R … →R tn

(rl0)



Rewriting

i217 Functional Programming - 3. Term Rewriting 23

The trace of reduction of (4 | 3 | nil) @ (2 | 1 | 0 | nil) with 
respect to R@ is

nil @ L2 → L2 (@1)
(X | L) @ L2 → X | (L @ L2)                 (@2)

Let R@ be {(@1), (@2)} 
such that

(4 | 3 | nil) @ (2 | 1 | 0 | nil)

4 | 3 | 2 | 1 | 0 | nil

→R@
4 | ((3 | nil) @ (2 | 1 | 0 | nil)) by (@2)

→R@
4 | 3 | (nil @ (2 | 1 | 0 | nil)) by (@2)

→R@
by (@1)

Rewriting

i217 Functional Programming - 3. Term Rewriting 24

set trace on
open NATLIST .

red (4 | 3 | nil) @ (2 | 1 | 0 | nil) .
close
set trace off

We can ask CafeOBJ to display the trace of reduction of a 
ground term with respect to a TRS as follows:



Rewriting

i217 Functional Programming - 3. Term Rewriting 25

-- reduce in %NATLIST : ((4 | (3 | nil)) @ (2 | (1 | (0 | nil)))):NatList
1>[1] rule: eq ((X:Nat | L:NatList) @ L2:NatList) = (X | (L @ L2))

{ X:Nat |-> 4, L2:NatList |-> (2 | (1 | (0 | nil))), L:NatList |-> (3 | nil) }
1<[1] ((4 | (3 | nil)) @ (2 | (1 | (0 | nil)))):NatList --> (4 | ((3 | nil) @ (2 | (1 | (0 | nil))))):NnNatList

1>[2] rule: eq ((X:Nat | L:NatList) @ L2:NatList) = (X | (L @ L2))
{ X:Nat |-> 3, L2:NatList |-> (2 | (1 | (0 | nil))), L:NatList |-> nil }

1<[2] ((3 | nil) @ (2 | (1 | (0 | nil)))):NatList --> (3 | (nil @ (2 | (1 | (0 | nil))))):NnNatList

1>[3] rule: eq (nil @ L2:NatList) = L2
{ L2:NatList |-> (2 | (1 | (0 | nil))) }

1<[3] (nil @ (2 | (1 | (0 | nil)))):NatList --> (2 | (1 | (0 | nil))):NnNatList

(4 | (3 | (2 | (1 | (0 | nil))))):NnNatList

The rewrite rule used

The substitution

The redex The contract

Appearances are different, but this contains all information 
about the trace. Moreover, the substitution used fro each one 
step rewrite and the least sort of each term are shown.

Rewriting

i217 Functional Programming - 3. Term Rewriting 26

set trace whole on
open NATLIST .

red (4 | 3 | nil) @ (2 | 1 | 0 | nil) .
close
set trace whole off

We can ask CafeOBJ to partially display the trace of reduction 
of a ground term with respect to a TRS as follows:



Rewriting

i217 Functional Programming - 3. Term Rewriting 27

-- reduce in %NATLIST : ((4 | (3 | nil)) @ (2 | (1 | (0 | nil)))):NatList
[1]: ((4 | (3 | nil)) @ (2 | (1 | (0 | nil)))):NatList
---> (4 | ((3 | nil) @ (2 | (1 | (0 | nil))))):NnNatList
[2]: (4 | ((3 | nil) @ (2 | (1 | (0 | nil))))):NnNatList
---> (4 | (3 | (nil @ (2 | (1 | (0 | nil)))))):NnNatList
[3]: (4 | (3 | (nil @ (2 | (1 | (0 | nil)))))):NnNatList
---> (4 | (3 | (2 | (1 | (0 | nil))))):NnNatList
(4 | (3 | (2 | (1 | (0 | nil))))):NnNatList

In which for each one step rewrite the redex is not underlined 
and the rewrite rule used is not shown.

Exercises

28

1. Let us consider the module NATLIST. Write the traces of 
reductions of the following terms:
1) hd(0 | 1 | nil)
2) tl(0 | 1 | nil)
3) [2 .. 5]

2. Let us consider the module GCD. Write the trace of 
reduction of gcd(24,36).

3. Let us consider the module FACT. Write the trace of 
reduction of fact(5).

4. Let us consider the module OEDC-FACT. Write the trace 
of reduction of oedc-fact(5).

i217 Functional Programming - 3. Term Rewriting



Exercises

29

5. Let us consider the module QSORT. Write the trace of 
reduction of qsort(2 | 1 | 0 | 3 | 4 | nil).

6. Let us consider the module ERATOSTHENES-SIEVE. Write 
the trace of reduction of primesUpto(6).

i217 Functional Programming - 3. Term Rewriting

Note that each equation used should be given a unique name and you can use 
the following pseudo-equations as rewrite rules.

eq X rem NzX = remainder of dividing X by NzX .

eq X < Y = true if so & false otherwise .
eq X > Y = true if so & false otherwise .

eq NzX divides X = true if X is a multiple of NzX & false otherwise .

(rem)

(<)

(>)
(divides)

eq X * Y = multiplication of X and Y . (*)

eq sd(X,Y) = symmetric difference (| X – Y |) between X and Y . (sd)

eq p NzX = the previous number of NzX . (p)

eq X + Y = addition of X and Y . (+)

Exercises

30

7. Investigate lambda calculus, which is often used as the 
basis of many functional programming languages and 
make a comparison of it with term rewriting.

8. Investigate higher-order functions and how to implement 
them.

9. Investigate how to implement term rewriting and CafeOBJ.
10. Investigate how to implement lambda calculus and some 

other functional programming languages based on the 
calculus, for example, by reading the book “Daniel P. 
Friedman, Mitchell Wand: Essentials of programming 
languages (3. ed.). MIT Press 2008.”

i217 Functional Programming - 3. Term Rewriting



Exercises

31

11. Investigate term rewriting furthermore, for example, by 
reading the book “Terese: Term Rewriting Systems. 
Cambridge University Press 2003.”

i217 Functional Programming - 3. Term Rewriting


