1217: Functional Programming

3. Term Rewriting

Kazuhiro Ogata, Canh Minh Do

i217 Functional Programming - 3. Term Rewriting

Roadmap

Pattern Match
— Substitution

Sub-terms
— Positions in terms

Rewrite rules
— Redexes & Contracts

Rewriting
— One step rewrite, Reduction & Trace

i217 Functional Programming - 3. Term Rewriting

Pattern Match

Let us consider the module LISTNAT:

mod! NATLIST { -- CafeOBJ vars
-- imports vars XY : Nat.
pr(NAT-ERR) vars L L2 : NatList .
-- signature -- equations
[Nil NnNatList < NatList] —~hd
op nil : > Nil {constr} . eq hd(nil) = errNat .
op | :NatNatList -> NnNatList {constr} . ©d hd(X|L)=X.
op hd : Nil -> ErrNat . -l _ .
op hd : NnNatList -> Nat . eq tl(nil) = nil .
op hd : NatList -> Nat&Err . eq t(X|L)=L.
op tl : NatList -> NatList . - _@_
op _@_:NatList NatList -> NatList . eqnil @L2=L1L2.
eqqX|Ly@L2=X|(L@L2).

o}

i217 Functional Programming - 3. Term Rewriting 4

Pattern Match

hd(X | L) is a term whose least sort is Nat.
hd(2 | 110 | nil)is aterm whose least sort is Nat.
Seemingly, the two terms are different.

By replacing X that is a term of Nat and L that is a term of
NatList with 2 that is a term of Nat as well as NzNatand 1 | 0 |
nil that is a term of NatList as well as NnNatList, however,
hd(X | L) becomes hd(2 | 1 | O | nil).

hd(2| 1|0 |nil)is called an instance of hd(X | L) or can match
hd(X | L) with the replacement of the variables with the
terms.

i217 Functiona | Programmin; g - 3. Term Rewriting

Pattern Match

Such a replacement is called a substitution.

A substitution is a function from variables to terms that
preserves sorts.

The substitution o, used as the example is the function from
{X, Y, L, L2} to the disjoint union of the sets of terms of Nat
and terms of NatList such that it maps X, Y, L and L2 to 2,
Y, 1|0|niland L2.

66(X) =2 0 (Y) =Y Go(L)=1]0]nil 0,(L2)=12
G., may be expressed as follows:
{X—2,L—1|0|nil}

i217 Functional Programming - 3. Term Rewriting

Pattern Match

A substitution ¢ can be naturally extended as a function from
terms to terms as follows:

for a non-variable term f(t,, ..., t,),

o(f(t,, ..., t)) =f(o(t)), ..., o(t,)

6(Nd(X | L)) = hd(o,(X | L))
= hd(6,4(X) | 0.,(L))
=hd(2 |10 nil)

i217 Functiona | Programmin; g - 3. Term Rewriting 7

Pattern Match

Given a term t and a ground term s, the pattern match
between t and s is the problem to decide whether there exists
a substitution o such that o(t) = s.

t may be called a pattern.

If that is the case, S is called an instance of the pattern t and
can match the pattern t with the substitution o.

i217 Functional Programming - 3. Term Rewriting 8

Pattern Match

Can the ground term match the pattern? If yes, what is the
substitution?

1.tI(1 | 0| nil) & tI(X | L)

2. t1(tl(1 | 0 | nil)) & t(X | L)
3.(43|ni)@ 2| 1|0]|nil)&(X|L)@ L2
4.nil @ (2|10 |nil) &nil @ L2

5.4 (3 |nil)@ (2] 10 |nil)) & (X|L) @ L2
6.4|3|(mil@ (2| 1]0]nil) &nil @ L2

i217 Functiona | Programmin; g - 3. Term Rewriting

Sub-terms

A term can be expressed as a tree structure.
41((3|nil) @ (2] 10 |nil))is expressed as follows:

i What correspond to sub-trees

4 @ are called sub-terms of the term.
/__\
i i
3 il 2 i
/\
1 i
T~
0 nil
Sub-terms

Sub-terms of a term can be identified by positions.

Lett be atermand D be a
—|,— position. Then, {. is the sub-term

-
4 @ of t at the position
/\
i i
N T
3 nil 2 i
T
1 -

T~
0 nil

i217 Functional Programming - 3. Term Rewriting 11

Sub-terms
Lettbe 4 | ((3|nil) @ (2|10 |nil)).
tis4|((3|nil)@ (2]1|0]nil)).
t is 4. tis (3 |nil) @ (2] 10 |nil).
t,is 3 | nil. t,,is2|1|0]nil

t . is3. t, .isnil. t,,is2. t,,is1]0|nil
t is1. ¢ is 0 | nil.

t isO. is nil.

i217 Functional Programming - 3. Term Rewriting 12

Sub-terms

For a term t, a position) and a term s such that the least sort
of t isasortofs, { [s]istinwhicht isreplaced with s.

Lettbe (4|3 |nil) @ (2] 10 |nil).

L[4 (G [nl) @ 2[1]0[ni)]is4[(3 |nil) @ 2]1]0]nil)).
Lettbe 4| ((3 | nil) @ (2] 10 |nil)).

L[3 | (il @ (2] 10 |nil)]is4 |3 | @il @ (2]1]0 | nil)).
Lettbe 4|3 | (nil @ (2|10 nil)).

t,,[2]1]0nillis4]3|2]1]0]nil

i217 Functional Programming - 3. Term Rewriting 13

Rewrite Rules

A rewrite rule is a pair (I.r) of terms | and r such that the least
sort of | is a sort of 1, | is not a single variable, each variable
occurring in r occurs in |.

A rewrite rule (I,r) may be expressed as | — .

nil @ L2 — L2 (@!1)
X|L)@L2 —X|(L @L2) (@2)

A term rewriting system (TRS) is a set of rewrite rules.

i217 Functional Programming - 3. Term Rewriting 14

Rewrite Rules

ForaTRS R,

an instance o(l) of the left-hand side of a rewrite rule | — r €
R for some substitution ¢ is a redex (reducible expression)
with respect to R;

an instance o(r) of the right-hand side of a rewrite rule | — r
€ R for some substitution ¢ is a contract with respect to R.

i217 Functional Programming - 3. Term Rewriting 15

Rewrite Rules

nil @ (2|10 |nil) is a redex with respect to R ;.

2|10 |nilisa contract with respect to R

@*
(3| nil) @ (2] 11]0 |nil) is a redex with respect to R

@

3[(mil @ (2]1]0]|nil))is a contract with respect to R ;.

Let R, be {(@]1), (@2)} such that

nil@ L2 — L2 (@1)
X|L) @L2 - X | (L @L2) (@2)
Rewriting

One step rewrite with respect to a TRS R is a pair (L, t') of
ground terms t and t' such that there exist a rewrite rule | — r
€ R, a substitution ¢ and a position p such that t is o(I) and t'
is t[o(r)].
(t, t') may be writtenast —4 t'.
R may be omitted if it is clear from context.

t

o(l)

i217 Functional Programming - 3. Term Rewriting 17

Rewriting

(43 [ni) @ (2]1]0]nil)

. . by (@2)
—re 41(@[nil) @ (2]1]0]nil))
L
4 @
“Ra .
3 il 2|
r
0 nil
LetR_ be {(@]), (@2) NMl@L2—12 (@1)
et Ra be {@D (@) xIhen-x|Lew) (@2)
Rewriting
41 ((3]ni) @ (2|10 |nil))
. . by (@2)
—p, 413 il @ (2]1]0]nil)
ol S
! 4 /\
. 3 @
Re
nil e
2L
Ra is {(@1), (@2)}. e
nil @ L2 — L2 (@1) o ol
X|L)@L2—X|(L@L2) (@2)

i217 Functional Programming - 3. Term Rewriting 19

Rewriting
413 |(nil@(2]1]0|nil)) R 4131 2|1|0|nil by(@1

Ra is {(@1), (@2);.

nil @ L2 — L2 (@1)
X|L) @L2 > X|(L@L2) (@2)
Rewriting

Rewriting —" with respect to a TRS R is a reflexive and
transitive closure of —.

4|3 |nl)@(2]|1]0]|nil) —>*R@ 43 |nl)@(2|1]0]|nil)

(413 |ni) @ (2|10 |nil)
—'Re 41(G[ni) @ 2[1]0]nil))

(413 ni) @2 |1]0][nil) - 4|3 |@mil@ 2]1]0]nil)

(413 ni) @2 |1]0[nil) - 4[3|2]1]0]nil

i217 Functional Programming - 3. Term Rewriting 21
R -t-

Reduction of a ground term t with respect to R is rewriting t

—" 1" such that t' does not have any redexes with respect to
R.

Reduction of a ground term (4 | 3 | nil) @ (2| 1 | 0 | nil) with
respect to R, is

4|3 |nil)@(2]1]|0]|nil) —>*R@4|3|2| 1|0|nil

This is what is done by the command red of CafeOBJ,
although the result of red has the least sort, where equations
are used as rewrite rules.

Note that equations should satisfy the conditions for rewrite
rules to use the equations as rewrite rules.

i217 Functional Programming - 3. Term Rewriting 22
R -t-

The trace of reduction of a ground term t, with respect to R is
a series of one step rewrites.

(rlp) WE U] (rli.p) ()

0 R - RUTRY+1 TR+ 7R W

such that t, —7; t, is reduction with respect to R and for each
one step rewrite t; — 1, , the redex concerned in t; is
underlined and the rewrite rule (rl;) used is clearly identified.

i217 Functional Programming - 3. Term Rewriting

Rewriting

23

The trace of reduction of (4 | 3 | nil) @ (2] 1| 0 | nil) with

respect to R, is

4|3 |nil) @ (2|1]0|nil)

—g, 41 (3 |ni) @ (2]1]0]nil)
—g, 413 |(nl@ (2]1]0]nil)
—p, 413[2]1]0]nil

nil @ L2 — L2

Let Rg be {(@1). (@2); (X|L)@L2 — X | (L @L2)

such that

by (@2)
by (@2)
by (@1)

(@1)
(@2)

i217 Functional Programming - 3. Term Rewriting

Rewriting

24

We can ask CafeOBlJ to display the trace of reduction of a

ground term with respect to a TRS as follows:

set trace on

open NATLIST .
red(4|3|nil)@@2|1]0|nil).

close

set trace off

i217 Functional Programming - 3. Term Rewriting 25

Rewriting

-- reduce in %NATLIST : ((4 | 3 | nil)) @ (2 | (1| (0 | nil)))):NatList
1>[1] rule: eq ((X:Nat | L:NatList) @ L2:NatList) = (X | (L @ L2))
{ X:Nat |-> 4, L2:NatList |-> (2 | (1 | (0 | nil))), L:NatList |-> (3 | nil) }
I<[11((4 | 3 | nil)) @ (2 | (1] (0 | nil)))):NatList --> (4 | (3 | nil) @ (2 | (1 | (0 | nil))))):NnNatList
1>[2] rule: eq ((X:Nat | L:NatList) @ L2:NatList) = (X | (L @ L2))
{ X:Nat |-> 3, L2:NatList |-> (2 | (1 | (0 | nil))), L:NatList |-> nil }
1<[2]1 (3 | nil) @ (2 | (1] (0 | nil)))):NatList --> (3 | (nil @ (2 | (1 | (0 | nil))))):NnNatList
1>[3] rule: eq (nil @ L2:NatList) = L2
{ L2:NatList |-> (2 | (1 | (0| nil))) }
1<[3] (nil @ (2 | (1 | (O | nil)))):NatList --> (2 | (1 | (0 | nil))):NnNatList

(41(3] (2] (1] (0] nily)))):NnNatList
Appearances are different, but this contains all information

about the trace. Moreover, the substitution used fro each one
step rewrite and the least sort of each term are shown.

i217 Functional Programming - 3. Term Rewriting 26

Rewriting

We can ask CafeOBlJ to partially display the trace of reduction
of a ground term with respect to a TRS as follows:

set trace whole on

open NATLIST .
red(4|3|nil)@@2|1]0|nil).

close

set trace whole off

i217 Functional Programming - 3. Term Rewriting 27

Rewriting

-- reduce in %NATLIST : ((4 | 3 | nil)) @ (2 | (1 | (0 | nil)))):NatList
[1]: (4] (3 | nil)) @ (2] (1 | (0] nil)))):NatList

=>4 (3 |nil) @ (2] (1](0|nil))))):NnNatList

[2]: (4| (3 | nil) @ (2| (1 | (0| nil))))):NnNatList

>4 | 3| (mil @ (2| (1](0]nil)))))):NnNatList

[31: (4| 3| (mil @ (2| (1](0]nil)))))):NnNatList

=>4 13| (1](0]nil))))):NnNatList

(413](2](1](0]|nil))))):NnNatList

In which for each one step rewrite the redex is not underlined
and the rewrite rule used is not shown.

28

Exercises

1. Let us consider the module NATLIST. Write the traces of
reductions of the following terms:
1) hd(O| 1| nil)
2) tl(0| 1] mnil)
3) [2..5]

2. Let us consider the module GCD. Write the trace of
reduction of gcd(24,36).

3. Let us consider the module FACT. Write the trace of
reduction of fact(5).

4. Let us consider the module OEDC-FACT. Write the trace
of reduction of oedc-fact(5).

i217 Functional Programming - 3. Term Rewriting 29

Exercises

5. Let us consider the module QSORT. Write the trace of
reduction of gsort(2 | 1|03 |4 | nil).
6. Let us consider the module ERATOSTHENES-SIEVE. Write

the trace of reduction of primesUpto(6).

Note that each equation used should be given a unique name and you can use
the following pseudo-equations as rewrite rules.

eq X rem NzX = remainder of dividing X by NzX . (rem)
eq X <Y =true if so & false otherwise . <)
eq X >Y = true if so & false otherwise . >)
eq NzX divides X = true if X is a multiple of NzX & false otherwise . (divides)
eq X * Y = multiplication of X and Y . (*)
eq sd(X,Y) = symmetric difference (| X —Y |) between X and Y . (sd)
eq p NzX = the previous number of NzX . (p)
eq X +Y =additionof Xand Y . +)
i217 Functional Programming - 3. Term Rewriting 30
Exercises

7. Investigate lambda calculus, which is often used as the
basis of many functional programming languages and
make a comparison of it with term rewriting.

8. Investigate higher-order functions and how to implement
them.

9. Investigate how to implement term rewriting and CafeOBJ.
10. Investigate how to implement lambda calculus and some
other functional programming languages based on the
calculus, for example, by reading the book “Daniel P.
Friedman, Mitchell Wand: Essentials of programming

languages (3. ed.). MIT Press 2008.”

i217 Functional Programming - 3. Term Rewriting

Exercises

11. Investigate term rewriting furthermore, for example, by
reading the book “Terese: Term Rewriting Systems.
Cambridge University Press 2003.”

