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Let us consider triples of natural numbers and how to reduce 
1st((1 + 1,2 + 2,3 + 3)) that has more than one redex. 

1st((1 + 1, 2 + 2, 3 + 3))

What selects one among multiple redexes is called a 
reduction strategy.

1st((1 + 1,2 + 2,3 + 3)) → 1st((2,2 + 2,3 + 3))
→ 1st((2,4,3 + 3))
→ 1st((2,4,6))
→ 2

by (+)
by (+)
by (+)
by (1st)

1st((1 + 1,2 + 2,3 + 3)) → 1 + 1
→ 2

by (1st)
by (+)

Left-most inner-most strategy

(Left-most) outer-most strategy

E-strategy
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mod! NAT-TRIPLE-IMLM {  pr(NAT)  [NatTriple]
op (_,_,_) : Nat Nat Nat -> NatTriple {constr} .
op 1st : NatTriple -> Nat {strat: (1 0)} .
vars FE SE TE : Nat .
eq 1st((FE,SE,TE)) = FE .  }

set trace whole on
open NAT-TRIPLE-IMLM .
red 1st((1 + 1,2 + 2,3 + 3)) .

close
set trace whole off

-- reduce in %NAT-TRIPLE-IMLM : (1st(((1 + 1) , (2 + 2) , (3 + 3)))):Nat
[1]: (1st(((1 + 1) , (2 + 2) , (3 + 3)))):Nat
---> (1st((2 , (2 + 2) , (3 + 3)))):Nat
[2]: (1st((2 , (2 + 2) , (3 + 3)))):Nat
---> (1st((2 , 4 , (3 + 3)))):Nat
[3]: (1st((2 , 4 , (3 + 3)))):Nat
---> (1st((2 , 4 , 6))):Nat
[4]: (1st((2 , 4 , 6))):Nat
---> (2):NzNat
(2):NzNat

the local strategy

[1] 1 + 1 is rewritten to 2.

[2] 2 + 2 is rewritten to 4.

[3] 3 + 3 is rewritten to 6.

[4] Since 1st(2,4,6) is a redex, one-
step rewrite is performed.
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mod! NAT-TRIPLE-OMLM {  pr(NAT)  [NatTriple]
op (_,_,_) : Nat Nat Nat -> NatTriple {constr} .
op 1st : NatTriple -> Nat {strat: (0 1 0)} .
vars FE SE TE : Nat .
eq 1st((FE,SE,TE)) = FE .  }

set trace whole on
open NAT-TRIPLE-OMLM .
red 1st((1 + 1,2 + 2,3 + 3)) .

close
set trace whole off

-- reduce in %NAT-TRIPLE-OMLM : (1st(((1 + 1) , (2 + 2) , (3 + 3)))):Nat
[1]: (1st(((1 + 1) , (2 + 2) , (3 + 3)))):Nat
---> (1 + 1):NzNat
[2]: (1 + 1):NzNat
---> (2):NzNat
(2):NzNat

the local strategy

[1] Since the given term is a redex, 
one-step rewrite is performed.

[2] 1 + 1 is rewritten to 2.

E-strategy
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op 1st : NatTriple -> Nat {strat: (0 1 0)} .

op 1st : NatTriple -> Nat {strat: (1 0)} .

The local strategy (1 0) given to the operator 1st says that when 
reducing a ground term 1st(arg),  CafeOBJ first reduces the 1st argument 
arg to arg' and performs one-step rewite to 1st(arg') if 1st(arg') is a 
redex; otherwise CafeOBJ returns 1st(arg') as the result; after the one-
step rewrite CafeOBJ reduces the contract based on the local strategy 
given to the top operator of the contract.

(0 1 0) says that when reducing a ground term 1st(arg),  CafeOBJ first 
performs one-step rewite to 1st(arg) if 1st(arg) is a redex; otherwise 
CafeOBJ does the same as it does for the local strategy (1 0); after the 
one-step rewrite CafeOBJ reduces the contract based on the local 
strategy given to the top operator of the contract.
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The reduction strategy adopted by CafeOBJ is E-strategy that selects 
a redex based on local strategies given to operators as follows. 

op f : S1 … Sn -> S {strat: (x1 … xm)} .
the local strategy

where 0 ≦ xi ≦ n for each i = 1, …, m.

When reducing f(a1,…,an) referred to as t,
for j = x1, …, xm, 

(1) if j = 0, CafeOBJ performs one-step rewrite if t is a redex, 
reduces the contract and returns the result of reducing the 
contract as the result;
(2) otherwise, CafeOBJ reduces tj;

CafeOBJ returns t as the result.
(Note that the result may contain redexes.)

Note that t may be modified 
in the following.

Note that t may not be the 
same as f(a1,…,an) in a 
middle of the procedure.

E-strategy
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Operators can be given local strategies by human users.

If human users do not so, the CafeOBJ system give some adequate 
local strategies to operators.

mod! NAT-IF {  pr(NAT)
op if_then{_}else{_} : Bool Nat Nat -> Nat .
vars N1 N2 : Nat .
eq if true then {N1} else {N2} = N1 .
eq if false then {N1} else {N2} = N2 .  }

The CafeOBJ system gives (1 0 2 3) to if_then{_}else{_} as the local 
strategy.

show NAT-IF .
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Lists that consist of an infinite number of elements

Based on the following

op nil : -> Nil {constr} .
op _|_ : Elt.E List -> NnList {constr} .

any lists that consist of an arbitrary finite number of elements 
can be constructed but any infinite lists cannot.

Infinite Lists
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One way to describe infinite lists in CafeOBJ is as follows:

mod! INF-LIST(E :: TRIV) {
[InfList]
op _|_ : Elt.E InfList -> InfList {strat: (1 0)} .

}
e1 | e2 | … | en | il is a term of InfList if e1, e2, …, en are terms 
of Elt.E and il is a term of InfList.

mod! GLIST(E :: TRIV) {
[Nil NnList < List]
op nil : -> Nil {constr} .
op _|_ : Elt.E List -> List {constr} .

}

Note that this local strategy 
is given to _|_

The module INF-LIST imports 
the modules GLIST and NAT:

pr(NAT)
pr(GLIST(E))
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Some functions for infinite lists:
op take : InfList Nat -> List .
eq take(IL,0) = nil .
eq take(X | IL, NzN) = X | take(IL,p NzN) .

op drop : InfList Nat -> InfList .
eq drop(IL,0) = IL .
eq drop(X | IL, NzN) = drop(IL,p NzN) .

Note that the following variables are declared in INF-LIST:
vars X Y : Elt.E .
vars IL IL2 : InfList .
var NzN : NzNat .    
var N : Nat .    
var L : List .

Infinite Lists
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op _@_ : List InfList -> InfList .
eq nil @ IL = IL .
eq (X | L) @ IL = X | (L @ IL) .

op zip : InfList InfList -> InfList .
eq zip(X | IL,Y | IL2) = X | Y | zip(IL,IL2) .
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mod! NAT-INF-LIST {  pr(INF-LIST(NAT)) .
op mkNILFrom : Nat -> InfList .
op if_then{_}else{_} : Bool InfList InfList -> InfList .
var N : Nat . vars IL1 IL2 : InfList .
eq mkNILFrom(N) = N | mkNILFrom(N + 1) .
eq if true then {IL1} else {IL2} = IL1 .
eq if false then {IL1} else {IL2} = IL2 .  }

open NAT-INF-LIST .
red mkNILFrom(0) .
red take(mkNILFrom(0),10) .
red drop(mkNILFrom(0),10) .
red take(drop(mkNILFrom(0),997),10) .
red take(take(mkNILFrom(0),10) @ drop(mkNILFrom(0),10),20) .
red take(mkNILFrom(0),20) .
red zip(mkNILFrom(0),mkNILFrom(0)) .
red take(drop(zip(mkNILFrom(0),mkNILFrom(0)),997),10) .

close

Sieve of Eratosthenes
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mod! ERATOSTHENES-SIEVE {
pr(NAT-INF-LIST)
op primes : -> InfList .
op sieve : InfList -> InfList .
op check : Nat InfList -> InfList .
--
vars X Y : Nat .
var NzX : NzNat .
var IL : InfList .

-- primes
eq primes = sieve(mkNILFrom(2)) .
-- sieve
eq sieve(X | IL) = X | sieve(check(X,IL)) .
-- check
eq check(0,IL) = IL .
eq check(NzX,Y | IL)

= if NzX divides Y then {check(NzX,IL)}
else {Y | check(NzX,IL)} .

}
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open ERATOSTHENES-SIEVE .
red primes .
red take(primes,10) .
red take(primes,20) .
red take(primes,50) .
red take(primes,100) .

close

Hamming’s Problem
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mod! HAMMING {
pr(NAT-INF-LIST)
op ham : -> InfList .
op 2* : InfList -> InfList .
op 3* : InfList -> InfList .
op 5* : InfList -> InfList .
op merge : InfList InfList -> InfList .
vars X Y : Nat .
vars IL IL2 : InfList .
-- ham
eq ham = 1 | merge(merge(2*(ham),3*(ham)),5*(ham)) .
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-- 2*
eq 2*(X | IL) = 2 * X | 2*(IL) .
-- 3*
eq 3*(X | IL) = 3 * X | 3*(IL) .
-- 5*
eq 5*(X | IL) = 5 * X | 5*(IL) .
-- merge
eq merge(X | IL,Y | IL2)

= if X < Y
then {X | merge(IL,Y | IL2)}
else {if Y < X

then {Y | merge(X | IL,IL2)}
else {X | merge(IL,IL2)} } .

}

Hamming’s Problem
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open HAMMING .
red ham .
red take(ham,10) .
red take(ham,20) .
red take(ham,50) .
red take(ham,100) .

close
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Let us consider a multi-threaded program in which multi-
threads are running simultaneously and sharing some 
resources, such as objects.

Some shared resources must be used mutually exclusively by 
at most one thread at any given moment.

A mechanism to achieve this is called a mutual exclusion 
(Mutex) protocol.

Simulator of a Mutex Protocol
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Loop: “Remainder Section”
rs: while locked = true {}
ms: locked := true;

“Critical Section”
cs: locked := false;

Suppose that there are two threads t1 & t2 that share a Boolean variable 
locked whose initial value is false and execute the following pseudo-
code: Each thread does 

something that does not 
require any shared 
resources in “Remainder 
Section”.

Each thread does 
something that 
requires some shared 
resources in “Critical 
Section”.

Each thread t is at rs, ms or cs. When t is at rs, it can check if locked is 
false. If so, it moves to ms and sets locked true, entering “Critical 
Section” and doing something that requires some shared resources. 
Otherwise, it stays at rs. When t is at cs, it sets locked false, going back 
to “Remainder Section”.
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Each state of the protocol is characterized by three values: locked, the 
location of t1 and the location of t2. Therefore, a state of the protocol is 
expressed as the following record:

(locked: b, pc1: l1, pc2: l2)

where b is a Boolean value and l1 and l2 are rs, ms or cs.

mod! STATE principal-sort State {
pr(LOC)
[State]
op (locked:_,pc1:_,pc2:_) : Bool Loc Loc -> State {constr} .

}

Simulator of a Mutex Protocol
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mod! TID {
[Tid]
ops t1 t2 : -> Tid {constr} .
op if_then{_}else{_} : Bool Tid Tid -> Tid .
vars T1 T2 : Tid .
eq if true then {T1} else {T2} = T1 .
eq if false then {T1} else {T2} = T2 .

}

mod! LOC {
[Loc]
ops rs ms cs : -> Loc {constr} .

}
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Given a state and a thread, the next state can be determined.

(locked: false, pc1: rs, pc2:  rs)

t1
(locked: false, pc1: ms, pc2:  rs)

(locked: false, pc1: ms, pc2:  rs)

t2
(locked: false, pc1: ms, pc2:  ms)

(locked: false, pc1: ms, pc2:  ms)

t2
(locked: true, pc1: ms, pc2:  cs)

Simulator of a Mutex Protocol
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mod! FMUTEX {  pr(STATE)  pr(TID)
op trans : State Tid -> State .
vars L1 L2 : Loc .  var B : Bool .
-- t1
eq trans((locked: true,pc1: rs,pc2: L2),t1)

=  (locked: true,pc1: rs,pc2: L2) .
eq trans((locked: false,pc1: rs,pc2: L2),t1)

=  (locked: false,pc1: ms,pc2: L2) .
eq trans((locked: B,pc1: ms,pc2: L2),t1)

=  (locked: true,pc1: cs,pc2: L2) .
eq trans((locked: B,pc1: cs,pc2: L2),t1)

=  (locked: false,pc1: rs,pc2: L2) .
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-- t2
eq trans((locked: true,pc1: L1,pc2: rs),t2)

=  (locked: true,pc1: L1,pc2: rs) .
eq trans((locked: false,pc1: L1,pc2: rs),t2)

=  (locked: false,pc1: L1,pc2: ms) .
eq trans((locked: B,pc1: L1,pc2: ms),t2)

=  (locked: true,pc1: L1,pc2: cs) .
eq trans((locked: B,pc1: L1,pc2: cs),t2)

=  (locked: false,pc1: L1,pc2: rs) .
}

Simulator of a Mutex Protocol
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The simulator takes a state and an infinite list of thread IDs (called a 
scheduling), and generates an infinite list of states (called a 
computation).

mod! COMP {
pr(INF-LIST(STATE) 

* {sort InfList -> Comp, sort List -> FComp} )
}

mod! SCHED { pr(NAT)
pr(INF-LIST(TID) * {sort InfList -> Sched} )
op sched : Nat -> Sched .
var N : Nat .
eq sched(N) = if 2 divides N

then {t1 | sched(N quo 2)} else {t2 | sched(N quo 2)} .
}

n of sched(n) determines when to choose 
which threads, namely the scheduling.
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open SCHED .
red take(sched(123),10) .
red take(sched(1234),10) .
red take(sched(12345),10) .

close

Simulator of a Mutex Protocol
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mod! SIM {  pr(FMUTEX)  pr(COMP)  pr(SCHED)
op sim : State Nat -> Comp .
op sub-sim : State Sched -> Comp .
var S : State .  var N : Nat .  var NzD : NzNat .
var T : Tid .  var TIL : Sched .
eq sim(S,N) = sub-sim(S,sched(N)) .
eq sub-sim(S,T | TIL) = S | sub-sim(trans(S,T),TIL) .

}

open SIM .
red take(sim((locked: false,pc1: rs,pc2: rs),123),10) .
red take(sim((locked: false,pc1: rs,pc2: rs),1234),10) .
red take(sim((locked: false,pc1: rs,pc2: rs),12345),10) .

close
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op mutex : State -> Bool .
vars L1 L2 : Loc .
var B : Bool .
eq mutex((locked: B,pc1: L1,pc2: L2)) = not (L1 == cs and L2 == cs) .

One desired property mutex protocols should satisfy is called the mutex
property that there is at most one thread in “Critical Section” at any 
given moment. The simulator is revised so that it can check in a 
specified depth if each state generated satisfies the property. If the 
simulator finds a state in which the property is broken, it returns the 
computation fragment leading to the state.

The property is defined as follows:

Simulator of a Mutex Protocol
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op sim-check : State Nat Nat -> FComp .
op sub-sim-check : State Sched Nat -> FComp .
var D : Nat .  var NzD : NzNat .
eq sim-check(S,N,D) = sub-sim-check(S,sched(N),D) .
eq sub-sim-check(S,T | TIL,0) = S | nil .
eq sub-sim-check(S,T | TIL,NzD)

= if mutex(S) then {S | sub-sim-check(trans(S,T),TIL,p NzD)}
else {S | nil} .

The revised simulator is as follows:

open SIM .
red sim-check((locked: false,pc1: rs,pc2: rs),123,10) .
red sim-check((locked: false,pc1: rs,pc2: rs),1234,10) .
red sim-check((locked: false,pc1: rs,pc2: rs),12345,10) .

close
As you can see, the protocol does not satisfy the property. Please see Appendix for a 
correct version of the protocol.
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1. Write all programs in the slides and feed them into the 
CafeOBJ system. Moreover, write some more test code and do
some more testing for the programs.

2. Revise the simulator (including the revised one) so that it 
can deal with the case in which there are four threads.

3. CafeOBJ automatically gives a local strategy to an operator 
when a programmer does not explicitly give any local 
strategies to the operator. Investigate how CafeOBJ does so.

Exercises
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4. Lazy evaluation corresponds to outermost strategies and is 
adopted by some functional programming languages, such as 
Haskell. Lazy evaluation is convenient because it makes it 
possible to deal with infinite lists as you have learned in this 
lecture note, but is not good from a running performance 
point of view. Thus, strictness analysis is often used. 
Investigate strictness analysis.

5. Investigate why eager evaluation (or call-by-value) can be 
more efficiently implemented than lazy evaluation from a 
running performance point of view. Come up with an efficient 
way to implement lazy evaluation. 



Exercises

33i217 Functional Programming - 6. Infinite Lists

6. How to deal with infinite lists in this lecture note is rather 
casual. One possible way to precisely deal with infinite data 
structures, such as infinite lists, is co-induction. Investigate co-
induction and how to deal with infinite lists with co-induction. 
Note that all data structures that are inductively defined are 
finite, such as terms and ordinary lists.

7. Investigate hidden algebra (or behavioral specifications) 
that has something to do with co-induction. Note that hidden 
algebra is one theoretical basis of CafeOBJ.

Appendix
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Loop: “Remainder Section”
rs: while test&set(locked) = true {}

“Critical Section”
cs: locked := false;

A correct version of the protocol:

test&set(x) does the following atomically:

tmp := x;
x := true;
return tmp;


