
I217: Functional Programming

6. Infinite Lists

Kazuhiro Ogata, Canh Minh Do

Roadmap

• E-strategy

• Infinite Lists

• Sieve of Eratosthenes

• Hamming’s Problem

• Simulator of a Mutex Protocol

2i217 Functional Programming - 6. Infinite Lists

E-strategy

i217 Functional Programming - 6. Infinite Lists 3

Let us consider triples of natural numbers and how to reduce
1st((1 + 1,2 + 2,3 + 3)) that has more than one redex.

1st((1 + 1, 2 + 2, 3 + 3))

What selects one among multiple redexes is called a
reduction strategy.

1st((1 + 1,2 + 2,3 + 3)) → 1st((2,2 + 2,3 + 3))
→ 1st((2,4,3 + 3))
→ 1st((2,4,6))
→ 2

by (+)
by (+)
by (+)
by (1st)

1st((1 + 1,2 + 2,3 + 3)) → 1 + 1
→ 2

by (1st)
by (+)

Left-most inner-most strategy

(Left-most) outer-most strategy

E-strategy

i217 Functional Programming - 6. Infinite Lists 4

mod! NAT-TRIPLE-IMLM { pr(NAT) [NatTriple]
op (_,_,_) : Nat Nat Nat -> NatTriple {constr} .
op 1st : NatTriple -> Nat {strat: (1 0)} .
vars FE SE TE : Nat .
eq 1st((FE,SE,TE)) = FE . }

set trace whole on
open NAT-TRIPLE-IMLM .
red 1st((1 + 1,2 + 2,3 + 3)) .

close
set trace whole off

-- reduce in %NAT-TRIPLE-IMLM : (1st(((1 + 1) , (2 + 2) , (3 + 3)))):Nat
[1]: (1st(((1 + 1) , (2 + 2) , (3 + 3)))):Nat
---> (1st((2 , (2 + 2) , (3 + 3)))):Nat
[2]: (1st((2 , (2 + 2) , (3 + 3)))):Nat
---> (1st((2 , 4 , (3 + 3)))):Nat
[3]: (1st((2 , 4 , (3 + 3)))):Nat
---> (1st((2 , 4 , 6))):Nat
[4]: (1st((2 , 4 , 6))):Nat
---> (2):NzNat
(2):NzNat

the local strategy

[1] 1 + 1 is rewritten to 2.

[2] 2 + 2 is rewritten to 4.

[3] 3 + 3 is rewritten to 6.

[4] Since 1st(2,4,6) is a redex, one-
step rewrite is performed.

E-strategy

i217 Functional Programming - 6. Infinite Lists 5

mod! NAT-TRIPLE-OMLM { pr(NAT) [NatTriple]
op (_,_,_) : Nat Nat Nat -> NatTriple {constr} .
op 1st : NatTriple -> Nat {strat: (0 1 0)} .
vars FE SE TE : Nat .
eq 1st((FE,SE,TE)) = FE . }

set trace whole on
open NAT-TRIPLE-OMLM .
red 1st((1 + 1,2 + 2,3 + 3)) .

close
set trace whole off

-- reduce in %NAT-TRIPLE-OMLM : (1st(((1 + 1) , (2 + 2) , (3 + 3)))):Nat
[1]: (1st(((1 + 1) , (2 + 2) , (3 + 3)))):Nat
---> (1 + 1):NzNat
[2]: (1 + 1):NzNat
---> (2):NzNat
(2):NzNat

the local strategy

[1] Since the given term is a redex,
one-step rewrite is performed.

[2] 1 + 1 is rewritten to 2.

E-strategy

i217 Functional Programming - 6. Infinite Lists 6

op 1st : NatTriple -> Nat {strat: (0 1 0)} .

op 1st : NatTriple -> Nat {strat: (1 0)} .

The local strategy (1 0) given to the operator 1st says that when
reducing a ground term 1st(arg), CafeOBJ first reduces the 1st argument
arg to arg' and performs one-step rewite to 1st(arg') if 1st(arg') is a
redex; otherwise CafeOBJ returns 1st(arg') as the result; after the one-
step rewrite CafeOBJ reduces the contract based on the local strategy
given to the top operator of the contract.

(0 1 0) says that when reducing a ground term 1st(arg), CafeOBJ first
performs one-step rewite to 1st(arg) if 1st(arg) is a redex; otherwise
CafeOBJ does the same as it does for the local strategy (1 0); after the
one-step rewrite CafeOBJ reduces the contract based on the local
strategy given to the top operator of the contract.

E-strategy

i217 Functional Programming - 6. Infinite Lists 7

The reduction strategy adopted by CafeOBJ is E-strategy that selects
a redex based on local strategies given to operators as follows.

op f : S1 … Sn -> S {strat: (x1 … xm)} .
the local strategy

where 0 ≦ xi ≦ n for each i = 1, …, m.

When reducing f(a1,…,an) referred to as t,
for j = x1, …, xm,

(1) if j = 0, CafeOBJ performs one-step rewrite if t is a redex,
reduces the contract and returns the result of reducing the
contract as the result;
(2) otherwise, CafeOBJ reduces tj;

CafeOBJ returns t as the result.
(Note that the result may contain redexes.)

Note that t may be modified
in the following.

Note that t may not be the
same as f(a1,…,an) in a
middle of the procedure.

E-strategy

i217 Functional Programming - 6. Infinite Lists 8

Operators can be given local strategies by human users.

If human users do not so, the CafeOBJ system give some adequate
local strategies to operators.

mod! NAT-IF { pr(NAT)
op if_then{_}else{_} : Bool Nat Nat -> Nat .
vars N1 N2 : Nat .
eq if true then {N1} else {N2} = N1 .
eq if false then {N1} else {N2} = N2 . }

The CafeOBJ system gives (1 0 2 3) to if_then{_}else{_} as the local
strategy.

show NAT-IF .

Infinite Lists

i217 Functional Programming - 6. Infinite Lists 9

Lists that consist of an infinite number of elements

Based on the following

op nil : -> Nil {constr} .
op _|_ : Elt.E List -> NnList {constr} .

any lists that consist of an arbitrary finite number of elements
can be constructed but any infinite lists cannot.

Infinite Lists

i217 Functional Programming - 6. Infinite Lists 10

One way to describe infinite lists in CafeOBJ is as follows:

mod! INF-LIST(E :: TRIV) {
[InfList]
op _|_ : Elt.E InfList -> InfList {strat: (1 0)} .

}
e1 | e2 | … | en | il is a term of InfList if e1, e2, …, en are terms
of Elt.E and il is a term of InfList.

mod! GLIST(E :: TRIV) {
[Nil NnList < List]
op nil : -> Nil {constr} .
op _|_ : Elt.E List -> List {constr} .

}

Note that this local strategy
is given to _|_

The module INF-LIST imports
the modules GLIST and NAT:

pr(NAT)
pr(GLIST(E))

Infinite Lists

i217 Functional Programming - 6. Infinite Lists 11

Some functions for infinite lists:
op take : InfList Nat -> List .
eq take(IL,0) = nil .
eq take(X | IL, NzN) = X | take(IL,p NzN) .

op drop : InfList Nat -> InfList .
eq drop(IL,0) = IL .
eq drop(X | IL, NzN) = drop(IL,p NzN) .

Note that the following variables are declared in INF-LIST:
vars X Y : Elt.E .
vars IL IL2 : InfList .
var NzN : NzNat .
var N : Nat .
var L : List .

Infinite Lists

i217 Functional Programming - 6. Infinite Lists 12

op _@_ : List InfList -> InfList .
eq nil @ IL = IL .
eq (X | L) @ IL = X | (L @ IL) .

op zip : InfList InfList -> InfList .
eq zip(X | IL,Y | IL2) = X | Y | zip(IL,IL2) .

Infinite Lists

i217 Functional Programming - 6. Infinite Lists 13

mod! NAT-INF-LIST { pr(INF-LIST(NAT)) .
op mkNILFrom : Nat -> InfList .
op if_then{_}else{_} : Bool InfList InfList -> InfList .
var N : Nat . vars IL1 IL2 : InfList .
eq mkNILFrom(N) = N | mkNILFrom(N + 1) .
eq if true then {IL1} else {IL2} = IL1 .
eq if false then {IL1} else {IL2} = IL2 . }

open NAT-INF-LIST .
red mkNILFrom(0) .
red take(mkNILFrom(0),10) .
red drop(mkNILFrom(0),10) .
red take(drop(mkNILFrom(0),997),10) .
red take(take(mkNILFrom(0),10) @ drop(mkNILFrom(0),10),20) .
red take(mkNILFrom(0),20) .
red zip(mkNILFrom(0),mkNILFrom(0)) .
red take(drop(zip(mkNILFrom(0),mkNILFrom(0)),997),10) .

close

Sieve of Eratosthenes

i217 Functional Programming - 6. Infinite Lists 14

mod! ERATOSTHENES-SIEVE {
pr(NAT-INF-LIST)
op primes : -> InfList .
op sieve : InfList -> InfList .
op check : Nat InfList -> InfList .
--
vars X Y : Nat .
var NzX : NzNat .
var IL : InfList .

-- primes
eq primes = sieve(mkNILFrom(2)) .
-- sieve
eq sieve(X | IL) = X | sieve(check(X,IL)) .
-- check
eq check(0,IL) = IL .
eq check(NzX,Y | IL)

= if NzX divides Y then {check(NzX,IL)}
else {Y | check(NzX,IL)} .

}

Sieve of Eratosthenes

i217 Functional Programming - 6. Infinite Lists 15

open ERATOSTHENES-SIEVE .
red primes .
red take(primes,10) .
red take(primes,20) .
red take(primes,50) .
red take(primes,100) .

close

Hamming’s Problem

i217 Functional Programming - 6. Infinite Lists 16

mod! HAMMING {
pr(NAT-INF-LIST)
op ham : -> InfList .
op 2* : InfList -> InfList .
op 3* : InfList -> InfList .
op 5* : InfList -> InfList .
op merge : InfList InfList -> InfList .
vars X Y : Nat .
vars IL IL2 : InfList .
-- ham
eq ham = 1 | merge(merge(2*(ham),3*(ham)),5*(ham)) .

Hamming’s Problem

i217 Functional Programming - 6. Infinite Lists 17

-- 2*
eq 2*(X | IL) = 2 * X | 2*(IL) .
-- 3*
eq 3*(X | IL) = 3 * X | 3*(IL) .
-- 5*
eq 5*(X | IL) = 5 * X | 5*(IL) .
-- merge
eq merge(X | IL,Y | IL2)

= if X < Y
then {X | merge(IL,Y | IL2)}
else {if Y < X

then {Y | merge(X | IL,IL2)}
else {X | merge(IL,IL2)} } .

}

Hamming’s Problem

i217 Functional Programming - 6. Infinite Lists 18

open HAMMING .
red ham .
red take(ham,10) .
red take(ham,20) .
red take(ham,50) .
red take(ham,100) .

close

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 19

Let us consider a multi-threaded program in which multi-
threads are running simultaneously and sharing some
resources, such as objects.

Some shared resources must be used mutually exclusively by
at most one thread at any given moment.

A mechanism to achieve this is called a mutual exclusion
(Mutex) protocol.

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 20

Loop: “Remainder Section”
rs: while locked = true {}
ms: locked := true;

“Critical Section”
cs: locked := false;

Suppose that there are two threads t1 & t2 that share a Boolean variable
locked whose initial value is false and execute the following pseudo-
code: Each thread does

something that does not
require any shared
resources in “Remainder
Section”.

Each thread does
something that
requires some shared
resources in “Critical
Section”.

Each thread t is at rs, ms or cs. When t is at rs, it can check if locked is
false. If so, it moves to ms and sets locked true, entering “Critical
Section” and doing something that requires some shared resources.
Otherwise, it stays at rs. When t is at cs, it sets locked false, going back
to “Remainder Section”.

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 21

Each state of the protocol is characterized by three values: locked, the
location of t1 and the location of t2. Therefore, a state of the protocol is
expressed as the following record:

(locked: b, pc1: l1, pc2: l2)

where b is a Boolean value and l1 and l2 are rs, ms or cs.

mod! STATE principal-sort State {
pr(LOC)
[State]
op (locked:_,pc1:_,pc2:_) : Bool Loc Loc -> State {constr} .

}

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 22

mod! TID {
[Tid]
ops t1 t2 : -> Tid {constr} .
op if_then{_}else{_} : Bool Tid Tid -> Tid .
vars T1 T2 : Tid .
eq if true then {T1} else {T2} = T1 .
eq if false then {T1} else {T2} = T2 .

}

mod! LOC {
[Loc]
ops rs ms cs : -> Loc {constr} .

}

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 23

Given a state and a thread, the next state can be determined.

(locked: false, pc1: rs, pc2: rs)

t1
(locked: false, pc1: ms, pc2: rs)

(locked: false, pc1: ms, pc2: rs)

t2
(locked: false, pc1: ms, pc2: ms)

(locked: false, pc1: ms, pc2: ms)

t2
(locked: true, pc1: ms, pc2: cs)

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 24

mod! FMUTEX { pr(STATE) pr(TID)
op trans : State Tid -> State .
vars L1 L2 : Loc . var B : Bool .
-- t1
eq trans((locked: true,pc1: rs,pc2: L2),t1)

= (locked: true,pc1: rs,pc2: L2) .
eq trans((locked: false,pc1: rs,pc2: L2),t1)

= (locked: false,pc1: ms,pc2: L2) .
eq trans((locked: B,pc1: ms,pc2: L2),t1)

= (locked: true,pc1: cs,pc2: L2) .
eq trans((locked: B,pc1: cs,pc2: L2),t1)

= (locked: false,pc1: rs,pc2: L2) .

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 25

-- t2
eq trans((locked: true,pc1: L1,pc2: rs),t2)

= (locked: true,pc1: L1,pc2: rs) .
eq trans((locked: false,pc1: L1,pc2: rs),t2)

= (locked: false,pc1: L1,pc2: ms) .
eq trans((locked: B,pc1: L1,pc2: ms),t2)

= (locked: true,pc1: L1,pc2: cs) .
eq trans((locked: B,pc1: L1,pc2: cs),t2)

= (locked: false,pc1: L1,pc2: rs) .
}

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 26

The simulator takes a state and an infinite list of thread IDs (called a
scheduling), and generates an infinite list of states (called a
computation).

mod! COMP {
pr(INF-LIST(STATE)

* {sort InfList -> Comp, sort List -> FComp})
}

mod! SCHED { pr(NAT)
pr(INF-LIST(TID) * {sort InfList -> Sched})
op sched : Nat -> Sched .
var N : Nat .
eq sched(N) = if 2 divides N

then {t1 | sched(N quo 2)} else {t2 | sched(N quo 2)} .
}

n of sched(n) determines when to choose
which threads, namely the scheduling.

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 27

open SCHED .
red take(sched(123),10) .
red take(sched(1234),10) .
red take(sched(12345),10) .

close

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 28

mod! SIM { pr(FMUTEX) pr(COMP) pr(SCHED)
op sim : State Nat -> Comp .
op sub-sim : State Sched -> Comp .
var S : State . var N : Nat . var NzD : NzNat .
var T : Tid . var TIL : Sched .
eq sim(S,N) = sub-sim(S,sched(N)) .
eq sub-sim(S,T | TIL) = S | sub-sim(trans(S,T),TIL) .

}

open SIM .
red take(sim((locked: false,pc1: rs,pc2: rs),123),10) .
red take(sim((locked: false,pc1: rs,pc2: rs),1234),10) .
red take(sim((locked: false,pc1: rs,pc2: rs),12345),10) .

close

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 29

op mutex : State -> Bool .
vars L1 L2 : Loc .
var B : Bool .
eq mutex((locked: B,pc1: L1,pc2: L2)) = not (L1 == cs and L2 == cs) .

One desired property mutex protocols should satisfy is called the mutex
property that there is at most one thread in “Critical Section” at any
given moment. The simulator is revised so that it can check in a
specified depth if each state generated satisfies the property. If the
simulator finds a state in which the property is broken, it returns the
computation fragment leading to the state.

The property is defined as follows:

Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists 30

op sim-check : State Nat Nat -> FComp .
op sub-sim-check : State Sched Nat -> FComp .
var D : Nat . var NzD : NzNat .
eq sim-check(S,N,D) = sub-sim-check(S,sched(N),D) .
eq sub-sim-check(S,T | TIL,0) = S | nil .
eq sub-sim-check(S,T | TIL,NzD)

= if mutex(S) then {S | sub-sim-check(trans(S,T),TIL,p NzD)}
else {S | nil} .

The revised simulator is as follows:

open SIM .
red sim-check((locked: false,pc1: rs,pc2: rs),123,10) .
red sim-check((locked: false,pc1: rs,pc2: rs),1234,10) .
red sim-check((locked: false,pc1: rs,pc2: rs),12345,10) .

close
As you can see, the protocol does not satisfy the property. Please see Appendix for a
correct version of the protocol.

Exercises

31i217 Functional Programming - 6. Infinite Lists

1. Write all programs in the slides and feed them into the
CafeOBJ system. Moreover, write some more test code and do
some more testing for the programs.

2. Revise the simulator (including the revised one) so that it
can deal with the case in which there are four threads.

3. CafeOBJ automatically gives a local strategy to an operator
when a programmer does not explicitly give any local
strategies to the operator. Investigate how CafeOBJ does so.

Exercises

32i217 Functional Programming - 6. Infinite Lists

4. Lazy evaluation corresponds to outermost strategies and is
adopted by some functional programming languages, such as
Haskell. Lazy evaluation is convenient because it makes it
possible to deal with infinite lists as you have learned in this
lecture note, but is not good from a running performance
point of view. Thus, strictness analysis is often used.
Investigate strictness analysis.

5. Investigate why eager evaluation (or call-by-value) can be
more efficiently implemented than lazy evaluation from a
running performance point of view. Come up with an efficient
way to implement lazy evaluation.

Exercises

33i217 Functional Programming - 6. Infinite Lists

6. How to deal with infinite lists in this lecture note is rather
casual. One possible way to precisely deal with infinite data
structures, such as infinite lists, is co-induction. Investigate co-
induction and how to deal with infinite lists with co-induction.
Note that all data structures that are inductively defined are
finite, such as terms and ordinary lists.

7. Investigate hidden algebra (or behavioral specifications)
that has something to do with co-induction. Note that hidden
algebra is one theoretical basis of CafeOBJ.

Appendix

i217 Functional Programming - 6. Infinite Lists 34

Loop: “Remainder Section”
rs: while test&set(locked) = true {}

“Critical Section”
cs: locked := false;

A correct version of the protocol:

test&set(x) does the following atomically:

tmp := x;
x := true;
return tmp;

