1217: Functional Programming

6. Infinite Lists

Kazuhiro Ogata, Canh Minh Do

i217 Functional Programming - 6. Infinite Lists

Roadmap

E-strategy

Infinite Lists

Sieve of Eratosthenes

Hamming’s Problem
Simulator of a Mutex Protocol

i217 Functional Programming - 6. Infinite Lists

E-strategy

Let us consider triples of natural numbers and how to reduce
Ist((1 + 1,2+ 2,3 + 3)) that has more than one redex.

1st((1+ 12 + 2,[3 + 3))

What selects one among multiple redexes is called a

reduction strategy.
Left-most inner-most strategy

Ist(1L+1,2+2,3 +3)) — 1st((2,2+ 2,3 + 3)) by (+)
— Ist((2,4,3 +3)) by (+)
— 1st((2,4,6)) by (+)
—2 by (1st)
(Left-most) outer-most strategy
Ist(1+12+23+3)—1+1 by (1st)
— 2 by (+)
i217 Functional Programming - 6. Infinite Lists
E-strategy
mod! NAT-TRIPLE-IMLM { pr(NAT) [NatTriple] set trace whole on
op (_,_,):NatNat Nat -> NatTriple {constr} . open NAT-TRIPLE-IMLM .
op Ist: NatTriple -> Nat {strat: (1 0)} . red Ist((1+1,2+2,3+3)).
vars FE SE TE : Nat . close
eq 1st((FE,SE,TE))=FE . } set trace whole off

-- reduce in %NAT-TRIPLE-IMLM : (Ist(((1 + 1), (2+2), (3 + 3)))):Nat
[1]: (Ast(((1 +1),(2+2),(3+3)))):Nat

> (1st((2, (2 +2),(3+3)))):Nat

[2]: (Ist((2,(2+2), (3 +3)))):Nat

--->(1st((2,4, (3+3)))):Nat

[3]: (Ist((2,4, (3 +3)))):Nat

--->(1st((2, 4, 6))):Nat

[4]: (Ist((2, 4, 6))):Nat

--->(2):NzNat

(2):NzNat

i217 Functional Programming - 6. Infinite Lists

E-strategy

mod! NAT-TRIPLE-OMLM { pr(NAT) [NatTriple] set trace whole on

op (_, ,):NatNat Nat -> NatTriple {constr} . open NAT-TRIPLE-OMLM .
op Ist: NatTriple -> Nat {strat: (0 1 0)} . red 1st((1 +1,2+2,3+3)).
vars FE SE TE : Nat . close

eq 1st((FE,SE,TE))=FE . } set trace whole off

-- reduce in %NAT-TRIPLE-OMLM : (Ist(((1 + 1), (2 +2), (3 + 3)))):Nat
[1]: Ast(((1 +1),(2+2), (3 +3)))):Nat

---> (1 + 1):NzNat

[2]: (1 + 1):NzNat

--->(2):NzNat

(2):NzNat

i217 Functional Programming - 6. Infinite Lists

E-strategy
op 1st: NatTriple -> Nat {strat: (1 0)} .

The local strategy (1 0) given to the operator 1st says that when
reducing a ground term 1Ist(arg), CafeOBI first reduces the 15t argument
arg to arg' and performs one-step rewite to Ist(arg’) if Ist(arg’)is a
redex; otherwise CafeOBJ returns 1st(arg’) as the result; after the one-
step rewrite CafeOBJ reduces the contract based on the local strategy
given to the top operator of the contract.

op 1st: NatTriple -> Nat {strat: (0 1 0)} .

(0 1 0) says that when reducing a ground term Ist(arg), CafeOB) first
performs one-step rewite to Ist(arg) if Ist(arg) is a redex; otherwise
CafeOBJ does the same as it does for the local strategy (1 0); after the
one-step rewrite CafeOBJ reduces the contract based on the local
strategy given to the top operator of the contract.

i217 Functional Programming - 6. Infinite Lists

E-strategy

The reduction strategy adopted by CafeOBl is E-strategy that selects
a redex based on local strategies given to operators as follows.

opf:S,...S,->S {strat: (X, ... X))} .
where 0 = x; = nforeachi=1,...,m.

When reducing f(a,,...,a,) referred to as t,
for] =X, ..., X
(1) if] = 0, CafeOBJ performs one-step rewrite if t is a redex,
reduces the contract and returns the result of reducing the
contract as the result;

(2) otherwise, CafeOBJ reduces t;

CafeOBlJ returns t as the result.
(Note that the result may contain redexes.)

i217 Functional Programming - 6. Infinite Lists

E-strategy

Operators can be given local strategies by human users.

If human users do not so, the CafeOBJ system give some adequate
local strategies to operators.

mod! NAT-IF { pr(NAT)
op if then{ }else{ } : Bool Nat Nat -> Nat .
vars N1 N2 : Nat .
eq if true then {N1} else {N2} =N1.
eq if false then {N1} else {N2} =N2. }

The CafeOBJ system gives (1 0 2 3) to if then{ }else{ |} asthe local
strategy.

show NAT-IF .

i217 Functional Programming - 6. Infinite Lists 9

Infinite Lists

Lists that consist of an infinite number of elements

Based on the following
op nil : -> Nil {constr} .
op | :EIt.E List -> NnList {constr} .

any lists that consist of an arbitrary finite number of elements
can be constructed but any infinite lists cannot.

i217 Functional Programming - 6. Infinite Lists 10

Infinite Lists
One way to describe infinite lists in CafeOBJ is as follows:

mod! INF-LIST(E :: TRIV) {

[InfList]

op | :EItE InfList -> InfList {strat: (1 0)} .
y

e le,|...|e,|ilisatermof InfListife , e,, ..., e, are terms
of Elt.E and il is a term of InfList.

mod! GLIST(E :: TRIV) {
[Nil NnList < List]
op nil : -=> Nil {constr} .
op | :EIt.E List -> List {constr} .

}

i217 Functional Programming - 6. Infinite Lists 11

Infinite Lists

Some functions for infinite lists:
op take : InfList Nat -> List .
eq take(IL,0) = nil .
eq take(X | IL, NzN) = X | take(IL,p NzN) .

op drop : InfList Nat -> InfList .
eq drop(IL,0) =1L .
eq drop(X | IL, NzN) = drop(IL,p NzN) .

Note that the following variables are declared in INF-LIST:
vars XY : EIt.E.
vars IL IL2 : InfList .
var NzN : NzNat .
var N : Nat .
var L : List .

i217 Functional Programming - 6. Infinite Lists 12

Infinite Lists

op @_: List InfList -> InfList .
eqnil @ IL=1L.
eq X|L)@IL=X|(L@IL).

op zip : InfList InfList -> InfList .
eq zip(X | IL,Y | [IL2) = X | Y | zip(IL,IL2) .

i217 Functional Programming - 6. Infinite Lists

Infinite Lists

mod! NAT-INF-LIST { pr(INF-LIST(NAT)) .
op mkNILFrom : Nat -> InfList .
op if then{ }else{ } : Bool InfList InfList -> InfList .
var N : Nat . vars IL1 IL2 : InfList .
eq mkNILFrom(N) = N | mkNILFrom(N + 1) .
eq if true then {IL1} else {IL2} =1IL1 .
eq if false then {IL1} else {IL2} =1L2. }

open NAT-INF-LIST .
red mkNILFrom(0) .
red take(mkNILFrom(0),10) .
red drop(mkNILFrom(0),10) .
red take(drop(mkNILFrom(0),997),10) .
red take(take(mkNILFrom(0),10) @ drop(mkNILFrom(0),10),20) .
red take(mkNILFrom(0),20) .
red zip(mkNILFrom(0),mkNILFrom(0)) .
red take(drop(zip(mkNILFrom(0),mkNILFrom(0)),997),10) .
close

i217 Functional Programming - 6. Infinite Lists

Sieve of Eratosthenes
mod! ERATOSTHENES-SIEVE {
pr(NAT-INF-LIST)
op primes : -> InfList .
op sieve : InfList -> InfList .
op check : Nat InfList -> InfList .

vars X Y : Nat . —-primes
var NzX : NzNat | eq primes = sieve(mkNILFrom(2)) .
-- sieve

var IL : InfList .

eq sieve(X | IL) = X | sieve(check(X,IL)) .

-- check
eq check(0,IL)=1IL.
eq check(NzX,Y | IL)

=1f NzX divides Y then {check(NzX,IL)}

else {Y | check(NzX,IL)} .

i217 Functional Programming - 6. Infinite Lists

Sieve of Eratosthenes

open ERATOSTHENES-SIEVE .
red primes .
red take(primes,10) .
red take(primes,20) .
red take(primes,50) .
red take(primes,100) .
close

15

i217 Functional Programming - 6. Infinite Lists

Hamming’s Problem

mod! HAMMING {
pr(NAT-INF-LIST)
op ham : > InfList .
op 2* : InfList -> InfList .
op 3* : InfList -> InfList .
op 5* : InfList -> InfList .
op merge : InfList InfList -> InfList .
vars X Y : Nat.
vars IL IL2 : InfList .
-- ham
eq ham = 1 | merge(merge(2*(ham),3*(ham)),5*(ham)) .

i217 Functional Programming - 6. Infinite Lists

Hamming’s Problem

D%

eq 2*(X|IL)=2* X | 2*(IL) .

-- 3%

eq 3*(X|IL)=3* X |3*(L) .

-- 5%

eq S*(X|IL)=5*X|5*(L) .

-- merge

eq merge(X | IL,Y | IL2)
=ifX<Y

then {X | merge(IL,Y | IL2)}
else {if Y <X
then {Y | merge(X | IL,IL2)}
else {X | merge(IL,IL2)} } .

17

i217 Functional Programming - 6. Infinite Lists

Hamming’s Problem

open HAMMING .
red ham .
red take(ham,10) .
red take(ham,20) .
red take(ham,50) .
red take(ham,100) .
close

i217 Functional Programming - 6. Infinite Lists 19

Simulator of a Mutex Protocol

Let us consider a multi-threaded program in which multi-
threads are running simultaneously and sharing some
resources, such as objects.

Some shared resources must be used mutually exclusively by
at most one thread at any given moment.

A mechanism to achieve this is called a mutual exclusion
(Mutex) protocol.

i217 Functional Programming - 6. Infinite Lists 20

Simulator of a Mutex Protocol

Suppose that there are two threads t1 & t2 that share a Boolean variable
locked whose initial value is false and execute the following pseudo-
code:

Loop: “Remainder Section”
rs: while locked = true {}
ms: locked := true;

“Critical Section”
cs: locked := false;

Each thread tis at rs, ms or cs. When tis at rs, it can check if locked is
false. If so, it moves to ms and sets locked true, entering “Critical
Section” and doing something that requires some shared resources.
Otherwise, it stays at rs. When t is at cs, it sets locked false, going back
to “Remainder Section”.

i217 Functional Programming - 6. Infinite Lists

Simulator of a Mutex Protocol

Each state of the protocol is characterized by three values: locked, the
location of t1 and the location of t2. Therefore, a state of the protocol is
expressed as the following record:

(locked: b, pcl: 1, pc2: 1,)

where b is a Boolean value and |, and |, are rs, ms or cs.

mod! STATE principal-sort State {
pr(LOC)
[State]
op (locked: ,pcl: ,pc2:): Bool Loc Loc -> State {constr} .

}

21

i217 Functional Programming - 6. Infinite Lists

Simulator of a Mutex Protocol

mod! TID {
[Tid]
ops tl t2 : -> Tid {constr} .
op if then{ }else{ } : Bool Tid Tid -> Tid .
vars T1 T2 : Tid .
eq if true then {T1} else {T2} =T1 .
eq if false then {T1} else {T2} =T2.

mod! LOC {
[Loc]
ops rs ms cs : -> Loc {constr} .

}

22

i217 Functional Programming - 6. Infinite Lists 23

Simulator of a Mutex Protocol

Given a state and a thread, the next state can be determined.

(locked: false, pcl: s, pc2: rs)
i m (locked: false, pcl: ms, pc2: rs)

(locked: false, pcl: ms, pc2: rs)
t2

(locked: false, pcl: ms, pc2: ms)

(locked: false, pcl: ms, pc2: ms)

(locked: true, pcl: ms, pc2: cs
%) =

i217 Functional Programming - 6. Infinite Lists 24

Simulator of a Mutex Protocol

mod! FMUTEX { pr(STATE) pr(TID)

op trans : State Tid -> State .

vars L1 L2 : Loc. var B : Bool .

- tl

eq trans((locked: true,pcl: rs,pc2: L.2),t1)
= (locked: true,pcl: rs,pc2: L2) .

eq trans((locked: false,pcl: rs,pc2: L2),t1)
= (locked: false,pcl: ms,pc2: L2) .

eq trans((locked: B,pcl: ms,pc2: L2),t1)
= (locked: true,pcl: cs,pc2: L.2) .

eq trans((locked: B,pcl: cs,pc2: L2),tl)
= (locked: false,pcl: rs,pc2: L2) .

i217 Functional Programming - 6. Infinite Lists 25

Simulator of a Mutex Protocol

- 12

eq trans((locked: true,pcl: L1,pc2: rs),t2)
= (locked: true,pcl: L1,pc2: rs) .

eq trans((locked: false,pcl: L1,pc2: rs),t2)
= (locked: false,pcl: L1,pc2: ms) .

eq trans((locked: B,pcl: L1,pc2: ms),t2)
= (locked: true,pcl: L1,pc2: cs) .

eq trans((locked: B,pcl: L1,pc2: cs),t2)
= (locked: false,pcl: L1,pc2: rs) .

}

i217 Functional Programming - 6. Infinite Lists 26

Simulator of a Mutex Protocol

The simulator takes a state and an infinite list of thread IDs (called a
scheduling), and generates an infinite list of states (called a
computation).

mod! COMP {
pr(INF-LIST(STATE)
* {sort InfList -> Comp, sort List -> FComp})

}

mod! SCHED { pr(NAT)
pr(INF-LIST(TID) * {sort InfList -> Sched})
op sched : Nat -> Sched .
var N : Nat .
eq sched(N) = if 2 divides N
then {t1 | sched(N quo 2)} else {t2 | sched(N quo 2)} .

i217 Functional Programming - 6. Infinite Lists 27

Simulator of a Mutex Protocol

open SCHED .
red take(sched(123),10) .
red take(sched(1234),10) .
red take(sched(12345),10) .
close

i217 Functional Programming - 6. Infinite Lists 28

Simulator of a Mutex Protocol

mod! SIM { pr(FMUTEX) pr(COMP) pr(SCHED)

op sim : State Nat -> Comp .

op sub-sim : State Sched -> Comp .

var S : State . var N : Nat. var NzD : NzNat .

var T : Tid . var TIL : Sched .

eq sim(S,N) = sub-sim(S,sched(N)) .

eq sub-sim(S,T | TIL) = S | sub-sim(trans(S,T),TIL) .
}

open SIM .
red take(sim((locked: false,pcl: rs,pc2: rs),123),10) .
red take(sim((locked: false,pcl: rs,pc2: rs),1234),10) .
red take(sim((locked: false,pcl: rs,pc2: rs),12345),10) .
close

i217 Functional Programming - 6. Infinite Lists 29

Simulator of a Mutex Protocol

One desired property mutex protocols should satisfy is called the mutex
property that there is at most one thread in “Critical Section” at any
given moment. The simulator is revised so that it can check in a
specified depth if each state generated satisfies the property. If the
simulator finds a state in which the property is broken, it returns the
computation fragment leading to the state.

The property is defined as follows:

op mutex : State -> Bool .

vars L1 L2 : Loc.

var B : Bool .

eq mutex((locked: B,pcl: L1,pc2: L2)) =not (L1 ==cs and L2 ==c¢s) .

i217 Functional Programming - 6. Infinite Lists

Simulator of a Mutex Protocol

The revised simulator is as follows:
op sim-check : State Nat Nat -> FComp .
op sub-sim-check : State Sched Nat -> FComp .
var D : Nat. var NzD : NzNat .
eq sim-check(S,N,D) = sub-sim-check(S,sched(N),D) .
eq sub-sim-check(S,T | TIL,0) = S | nil .
eq sub-sim-check(S,T | TIL,NzD)
= if mutex(S) then {S | sub-sim-check(trans(S,T),TIL,p NzD)}
else {S | nil} .
open SIM .
red sim-check((locked: false,pcl: rs,pc2: rs),123,10) .
red sim-check((locked: false,pcl: rs,pc2: rs),1234,10) .
red sim-check((locked: false,pcl: rs,pc2: rs),12345,10) .
close

30

i217 Functional Programming - 6. Infinite Lists 31

Exercises

1. Write all programs in the slides and feed them into the
CafeOBJ system. Moreover, write some more test code and do
some more testing for the programs.

2. Revise the simulator (including the revised one) so that it
can deal with the case in which there are four threads.

3. CafeOBJ automatically gives a local strategy to an operator
when a programmer does not explicitly give any local
strategies to the operator. Investigate how CafeOBJ does so.

i217 Functional Programming - 6. Infinite Lists 32

Exercises

4. Lazy evaluation corresponds to outermost strategies and is
adopted by some functional programming languages, such as
Haskell. Lazy evaluation is convenient because it makes it
possible to deal with infinite lists as you have learned in this
lecture note, but is not good from a running performance
point of view. Thus, strictness analysis is often used.
Investigate strictness analysis.

5. Investigate why eager evaluation (or call-by-value) can be
more efficiently implemented than lazy evaluation from a
running performance point of view. Come up with an efficient
way to implement lazy evaluation.

i217 Functional Programming - 6. Infinite Lists

Exercises

6. How to deal with infinite lists in this lecture note is rather
casual. One possible way to precisely deal with infinite data
structures, such as infinite lists, is co-induction. Investigate co-
induction and how to deal with infinite lists with co-induction.
Note that all data structures that are inductively defined are
finite, such as terms and ordinary lists.

7. Investigate hidden algebra (or behavioral specifications)
that has something to do with co-induction. Note that hidden
algebra is one theoretical basis of CafeOB).

i217 Functional Programming - 6. Infinite Lists 34

Appendix

A correct version of the protocol:

Loop: “Remainder Section”
rs: while test&set(locked) = true {}
“Critical Section”
cs: locked := false;

test&set(X) does the following atomically:

tmp :=X;
X = true;
return tmp;

