
I217: Functional Programming

7. Multisets

(Model Checking for Invariant Properties)

Kazuhiro Ogata, Canh Minh Do

Roadmap

• Transition rules
• Formal specification of a flawed version of TAS in

which a record is used to express states and
invariant model checking with the search
predicate

• Multisets
• Use of multisets to express states
• State machines and invariant properties
• A flawed version of Qlokc and a corrected version

of Qlock

2i217 Functional Programming - 7. Multisets

Transition Rules

i217 Functional Programming - 7. Multisets 3

Declared as follows:

trans LeftTerm => RightTerm .

where LeftTerm and RightTerm are terms of a same sort.

If variables X1, X2, … of sorts S1, S2, … occur in the rule, then
the equation says that for all X1 of S1, all X2 of S2, … LeftTerm
changes to RightTerm.

(Precisely, the least sort of RightTerm is the same as or a sub-sort of the
lest sort of LeftTerm, or equivalently the least sort of LeftTerm is a sort
of RightTerm.)

Spec. of a Mutex Protocol with trans

i217 Functional Programming - 7. Multisets 4

Loop: “Remainder Section”
rs: while locked = true {}
ms: locked := true;

“Critical Section”
cs: locked := false;

Let us use the same mutex protocol as the one used in lecture note 6.

Spec. of a Mutex Protocol with trans

i217 Functional Programming - 7. Multisets 5

mod! TID {
[Tid]
ops t1 t2 t3 t4 : -> Tid {constr} .

}

mod! LOC {
[Loc]
ops rs ms cs ws es ds : -> Loc {constr} .

}

mod! STATE2 {
pr(LOC)
[State2]
op (locked:_,pc1:_,pc2:_) : Bool Loc Loc -> State2 {constr} .

}

Spec. of a Mutex Protocol with trans

i217 Functional Programming - 7. Multisets 6

mod! FMUTEX2 {
pr(STATE2)
pr(TID)
vars L1 L2 : Loc .
var B : Bool .
-- t1
trans [want1] : (locked: false,pc1: rs,pc2: L2)

=> (locked: false,pc1: ms,pc2: L2) .
trans [try1] : (locked: B,pc1: ms,pc2: L2)

=> (locked: true,pc1: cs,pc2: L2) .
trans [exit1] : (locked: B,pc1: cs,pc2: L2)

=> (locked: false,pc1: rs,pc2: L2) .

Spec. of a Mutex Protocol with trans

i217 Functional Programming - 7. Multisets 7

-- t2
trans [want2] : (locked: false,pc1: L1,pc2: rs)

=> (locked: false,pc1: L1,pc2: ms) .
trans [try2] : (locked: B,pc1: L1,pc2: ms)

=> (locked: true,pc1: L1,pc2: cs) .
trans [exit2] : (locked: B,pc1: L1,pc2: cs)

=> (locked: false,pc1: L1,pc2: rs) .
}

Invariant Model Checking with Search

i217 Functional Programming - 7. Multisets 8

red initialState =(1,*)=>* statePattern .

This searches the state space reachable from initialState for a state that
matches statePattern by breadth-first search.

red initialState =(1,*)=>* statePattern
suchThat condition .

This searches the state space reachable from initialState for a state that
matches statePattern and for which condition holds by breadth-first
search.

Invariant Model Checking with Search

i217 Functional Programming - 7. Multisets 9

open FMUTEX2 .
red (locked: false, pc1: rs, pc2: rs)
=(1,*)=>* (locked: B, pc1: cs, pc2: cs) .

close

A state is found:

** Found [state 0-8] (locked: true , pc1: cs , pc2: cs):State2
-- target: (locked: B , pc1: cs , pc2: cs)

{ B |-> true, B |-> true, L1 |-> cs }

should be { B |-> true, L1 |-> cs }

Invariant Model Checking with Search

i217 Functional Programming - 7. Multisets 10

open FMUTEX2 .
red (locked: false, pc1: rs, pc2: rs)
=(1,*)=>* (locked: B, pc1: cs, pc2: cs) .

show path 0-8 .
close

[state 0-0] (locked: false , pc1: rs , pc2: rs):State2
trans [want1]: (locked: false , pc1: rs , pc2: L2) => (locked: false , pc1: ms , pc2: L2)

[state 0-1] (locked: false , pc1: ms , pc2: rs):State2
trans [want2]: (locked: false , pc1: L1 , pc2: rs) => (locked: false , pc1: L1 , pc2: ms)

[state 0-4] (locked: false , pc1: ms , pc2: ms):State2
trans [try1]: (locked: B , pc1: ms , pc2: L2) => (locked: true , pc1: cs , pc2: L2)

[state 0-6] (locked: true , pc1: cs , pc2: ms):State2
trans [try2]: (locked: B , pc1: L1 , pc2: ms) => (locked: true , pc1: L1 , pc2: cs)

[state 0-8] (locked: true , pc1: cs , pc2: cs):State2

A counterexample is displayed.

Multisets

i217 Functional Programming - 7. Multisets 11

Collections such that multiple occurrences of elements are
permitted and the order in which elements are enumerated is
irrelevant

{0,1,2,3} {0,1,0,2,1,3} {0,0,1,1,2,3} {3,2,1,0}

{0,1,2,3} is the same as {3,2,1,0}
but different from {0,1,0,2,1,3}

{0,1,0,2,1,3} is the same as {0,0,1,1,2,3}

The operator attributes assoc, comm, and id: make it possible
to expresses multisets in CafeOBJ.

Multisets

i217 Functional Programming - 7. Multisets 12

mod! MULTISET(E :: TRIV) {
[Elt.E < MSet]
op emp : -> MSet {constr} .
op _ _ : MSet MSet -> MSet {constr assoc comm id: emp} .

}

An element is also a singleton multiset.

The empty multiset

(e1 e2) e3 is the same as e1 (e2 e3) because of assoc(iativity).

e1 e2 is the same as e2 e1 because of comm(utativity).

ms emp is the same as ms and so is emp ms because of id: emp.

Multisets

i217 Functional Programming - 7. Multisets 13

open MULTISET(NAT) .
red (1 2) 3 == 1 (2 3) .
red 1 2 == 2 1 .
red 1 1 1 2 2 == 1 2 1 1 2 .
red emp 1 emp 2 emp 1 emp 1 emp 2 emp .
red emp .
red emp emp .

close

State Representation Using Multisets

i217 Functional Programming - 7. Multisets 14

mod! OCOMP principal-sort OComp {
pr(TID)
pr(LOC)
[OComp]
op (pc[_]:_) : Tid Loc -> OComp {constr} .
op (locked:_) : Bool -> OComp {constr} .

}

An observable component is a name-value pair (name: val).

(pc[t]: l) thread t is located at location l.

(locked: b) the value stored in variable locked is b.

State Representation Using Multisets

i217 Functional Programming - 7. Multisets 15

mod! STATE {
pr(MULTISET(OCOMP) * {sort MSet -> OComps})
[State]
op {_} : OComps -> State {constr} .

}

A state is expressed as a braced multiset of observable
components, such as {(locked: false) (pc[t1]: rs) (pc[t2]: rs)}.

State Representation Using Multisets

i217 Functional Programming - 7. Multisets 16

mod! FMUTEX {
pr(STATE)
vars T T1 T2 : Tid .
var B : Bool .
var OCs : OComps .
trans [want] : {(locked: false) (pc[T]: rs) OCs}
=> {(locked: false) (pc[T]: ms) OCs} .

trans [try] : {(locked: B) (pc[T]: ms) OCs}
=> {(locked: true) (pc[T]: cs) OCs} .

trans [exit] : {(locked: B) (pc[T]: cs) OCs}
=> {(locked: false) (pc[T]: rs) OCs} .

}

State Representation Using Multisets

i217 Functional Programming - 7. Multisets 17

open FMUTEX .
red {(locked: false) (pc[t1]: rs) (pc[t2]: rs)}
=(1,*)=>* {(pc[T1]: cs) (pc[T2]: cs) OCs} .

show path 0-8 .
close

A Corrected Version of the Protocol

i217 Functional Programming - 7. Multisets 18

Loop: “Remainder Section”
rs: while test&set(locked) = true {}

“Critical Section”
cs: locked := false;

test&set(x) does the following atomically:

tmp := x;
x := true;
return tmp;

The corrected version of the protocol is called TAS, while the
flawed version is called FTAS.

A Corrected Version of the Protocol

i217 Functional Programming - 7. Multisets 19

mod! STATE3 {
pr(LOC)
[State3]
op (locked:_,pc1:_,pc2:_,pc3:_) : Bool Loc Loc Loc -> State3 {constr} .

}

mod! MUTEX3 {
pr(STATE3)
pr(TID)
vars L1 L2 L3 : Loc .
var B : Bool .
-- t1
trans [try1] : (locked: false,pc1: rs,pc2: L2,pc3: L3)

=> (locked: true,pc1: cs,pc2: L2,pc3: L3) .
trans [exit1] : (locked: B,pc1: cs,pc2: L2,pc3: L3)

=> (locked: false,pc1: rs,pc2: L2,pc3: L3) .

A Corrected Version of the Protocol

i217 Functional Programming - 7. Multisets 20

-- t2
trans [try2] : (locked: false,pc1: L1,pc2: rs,pc3: L3)

=> (locked: true,pc1: L1,pc2: cs,pc3: L3) .
trans [exit2] : (locked: B,pc1: L1,pc2: cs,pc3: L3)

=> (locked: false,pc1: L1,pc2: rs,pc3: L3) .
-- t3
trans [try2] : (locked: false,pc1: L1,pc2: L2,pc3: rs)

=> (locked: true,pc1: L1,pc2: L2,pc3: cs) .
trans [exit2] : (locked: B,pc1: L1,pc2: L2,pc3: cs)

=> (locked: false,pc1: L1,pc2: L2,pc3: rs) .
}

A Corrected Version of the Protocol

i217 Functional Programming - 7. Multisets 21

open MUTEX3 .
red (locked: false, pc1: rs, pc2: rs, pc3: rs)

=(1,*)=>* (locked: B, pc1: L1, pc2: L2, pc3: L3)
suchThat (L1 == cs and L2 == cs) or

(L1 == cs and L3 == cs) or (L2 == cs and L3 == cs) .
close

A Corrected Version of the Protocol

i217 Functional Programming - 7. Multisets 22

mod! MUTEX {
pr(STATE)
vars T T1 T2 : Tid .
var B : Bool .
var OCs : OComps .
trans [try] : {(locked: false) (pc[T]: rs) OCs}

=> {(locked: true) (pc[T]: cs) OCs} .
trans [exit] : {(locked: B) (pc[T]: cs) OCs}

=> {(locked: false) (pc[T]: rs) OCs} .
}

open MUTEX .
red {(locked: false) (pc[t1]: rs) (pc[t2]: rs) (pc[t3]: rs)}

=(1,*)=>* {(pc[T1]: cs) (pc[T2]: cs) OCs} .
close

State Machines & Invariants

i217 Functional Programming - 7. Multisets 23

A state machine 𝑀 is defined as 𝑆, 𝐼, 𝑇 .

The set 𝑅 of reachable states w.r.t. 𝑀 is defined as follows:
1. 𝐼 ⊆ 𝑅
2. if 𝑠 ∈ 𝑅 and ሺ𝑠, 𝑠ᇱሻ ∈ 𝑇, then 𝑠′ ∈ 𝑅

A state predicate 𝑝 of 𝑀 is an invariant (or an invariant
property) of 𝑀 if and only if ∀𝑠 ∈ 𝑅 𝑝ሺ𝑠ሻ holds.

A set of states

The set of initial states

A set of state-state pairs
(s, s') (which may be
denoted s → 𝑠′)

State Machines & Invariants

i217 Functional Programming - 7. Multisets 24

locked: false
pc[t1]: rs
pc[t2]: rs

locked: true
pc[t1]: cs
pc[t2]: rs

locked: true
pc[t1]: rs
pc[t2]: cs

locked: true
pc[t1]: cs
pc[t2]: cs

locked: false
pc[t1]: cs
pc[t2]: cs

locked: true
pc[t1]: rs
pc[t2]: rs

locked: false
pc[t1]: cs
pc[t2]: rs

locked: false
pc[t1]: rs
pc[t2]: cs

𝑅

𝐼

𝑆

∈ 𝑇
∈ 𝑇
∈ 𝑇

∈ 𝑇∈ 𝑇
∈ 𝑇∈ 𝑇

∈ 𝑇∈ 𝑇

∈ 𝑇

∈ 𝑇

∈ 𝑇

State Machines & Invariants

i217 Functional Programming - 7. Multisets 25

locked: false pc[t1]: rs tmp[t1]: false
pc[t2]: rs tmp[t2]: false

locked: false pc[t1]: ms tmp[t1]: true
pc[t2]: rs tmp[t2]: false

locked: false pc[t1]: ms tmp[t1]: true
pc[t2]: ms tmp[t2]: true

locked: true pc[t1]: cs tmp[t1]: true
pc[t2]: ms tmp[t2]: true

locked: true pc[t1]: cs tmp[t1]: true
pc[t2]: cs tmp[t2]: true

locked: false pc[t1]: rs tmp[t1]: false
pc[t2]: ms tmp[t2]: true

locked: true pc[t1]: rs tmp[t1]: false
pc[t2]: cs tmp[t2]: true

FQlock: A Flawed Version of Qlock

i217 Functional Programming - 7. Multisets 26

How to make sure at most one person is given
the permission to use the shared bike?

Alice Bob Cathy David Emma

FQlock: A Flawed Version of Qlock

i217 Functional Programming - 7. Multisets 27

A queue may be used to do so.

A D E

Suppose Emma, David & Alice enqueues their initials into
the queue in this order.

Emma is the 1st person who is given the permission.
When her use is done, the queue is dequeued.

A D

David is the 1st person who is given the permission.

FQlock: A Flawed Version of Qlock

i217 Functional Programming - 7. Multisets 28

Based on the idea mentioned so far, they could come up
with a mutual exclusion protocol. The pseudo-code
processed by each person (or process) i:

Each i is always located at one
of rs, es, ws, cs and ds. Initially,
each i is located at rs and queue
is empty.

When i is located at cs, i has the permission to use the bike.

Let us call the protocol FQlock.

FQlock: A Flawed Version of Qlock

i217 Functional Programming - 7. Multisets 29

mod! QUEUE(E :: TRIV) {
[Elt.E < Queue]
op emq : -> Queue {constr} .
op _;_ : Queue Queue -> Queue {constr assoc id: emq} .

}

mod! OCOMP principal-sort OComp {
pr(QUEUE(TID))
pr(LOC)
[OComp]
op (pc[_]:_) : Tid Loc -> OComp {constr} .
op (tmp[_]:_) : Tid Queue -> OComp {constr} .
op (queue:_) : Queue -> OComp {constr} .

}

FQlock: A Flawed Version of Qlock

i217 Functional Programming - 7. Multisets 30

mod! STATE {
pr(MULTISET(OCOMP) * {sort MSet -> OComps})
[State]
op {_} : OComps -> State {constr} .

}

FQlock: A Flawed Version of Qlock

i217 Functional Programming - 7. Multisets 31

mod! FQLOCK {
pr(STATE)
vars T T1 T2 : Tid . vars Q1 Q2 : Queue . var OCs : OComps .
trans [want] : {(queue: Q1) (pc[T]: rs) (tmp[T]: Q2) OCs}

=> {(queue: Q1) (pc[T]: es) (tmp[T]: (Q1 ; T)) OCs} .
trans [enq] : {(queue: Q1) (pc[T]: es) (tmp[T]: Q2) OCs}

=> {(queue: Q2) (pc[T]: ws) (tmp[T]: Q2) OCs} .
trans [try] : {(queue: (T ; Q1)) (pc[T]: ws) (tmp[T]: Q2) OCs}

=> {(queue: (T ; Q1)) (pc[T]: cs) (tmp[T]: Q2) OCs} .
trans [deq1] : {(queue: (T1 ; Q1)) (pc[T]: cs) (tmp[T]: Q2) OCs}

=> {(queue: (T1 ; Q1)) (pc[T]: ds) (tmp[T]: Q1) OCs} .
trans [deq2] : {(queue: emq) (pc[T]: cs) (tmp[T]: Q2) OCs}

=> {(queue: emq) (pc[T]: ds) (tmp[T]: emq) OCs} .
trans [exit] : {(queue: Q1) (pc[T]: ds) (tmp[T]: Q2) OCs}

=> {(queue: Q2) (pc[T]: rs) (tmp[T]: Q2) OCs} .
}

FQlock: A Flawed Version of Qlock

i217 Functional Programming - 7. Multisets 32

open FQLOCK .
red {(queue: emq) (pc[t1]: rs) (pc[t2]: rs) (tmp[t1]: emq) (tmp[t2]: emq)}

=(1,*)=>* {(pc[T1]: cs) (pc[T2]: cs) OCs} .
show path 0-33 .

close

Qlock

i217 Functional Programming - 7. Multisets 33

Note that both enq & deq used in Qlock update 𝑞𝑢𝑒𝑢𝑒.

Qlock

i217 Functional Programming - 7. Multisets 34

mod! QLOCK {
pr(STATE)
vars T T1 T2 : Tid .
vars Q1 Q2 : Queue .
var OCs : OComps .
trans [want] : {(queue: Q1) (pc[T]: rs) OCs}

=> {(queue: (Q1 ; T)) (pc[T]: ws) OCs} .
trans [try] : {(queue: (T ; Q1)) (pc[T]: ws) OCs}

=> {(queue: (T ; Q1)) (pc[T]: cs) OCs} .
trans [exit1] : {(queue: (T1 ; Q1)) (pc[T]: cs) OCs}

=> {(queue: Q1) (pc[T]: rs) OCs} .
trans [exit2] : {(queue: emq) (pc[T]: cs) OCs}

=> {(queue: emq) (pc[T]: rs) OCs} .
}

Qlock

i217 Functional Programming - 7. Multisets 35

open QLOCK .
red {(queue: emq) (pc[t1]: rs) (pc[t2]: rs)}

=(1,*)=>* {(pc[T1]: cs) (pc[T2]: cs) OCs} .
close

open QLOCK .
red {(queue: emq) (pc[t1]: rs) (pc[t2]: rs) (pc[t3]: rs)}

=(1,*)=>* {(pc[T1]: cs) (pc[T2]: cs) OCs} .
close

open QLOCK .
red {(queue: emq) (pc[t1]: rs) (pc[t2]: rs) (pc[t3]: rs) (pc[t4]: rs)}

=(1,*)=>* {(pc[T1]: cs) (pc[T2]: cs) OCs} .
close

Exercises

36i217 Functional Programming - 7. Multisets

1. Write all programs (or formal specifications) in the
slides, feed them into the CafeOBJ system, and observe the
results returned by the CafeOBJ system.

2. Revise the two kinds of the programs (or formal
specifications) of TAS such that there are four threads
participating in the protocol, where one uses records to
represent states and the other uses multisets to represent
states, feed the revised versions into the CafeOBJ system,
and observe the results returned by the CafeOBJ system.

Exercises

37i217 Functional Programming - 7. Multisets

3. Make comparison of the two ways to represent states,
where one uses records and the other uses multisets.

4. Draw a diagram for Qlock when there are two threads
participating in Qlock like the one shown on p.23 for TAS.

Exercises

38i217 Functional Programming - 7. Multisets

5. How many reachable states does FQlock have? Describe
what can support your answer?
Hint – see the following Project Report:
http://hdl.handle.net/10119/18917

6. Experiment how much time it will take to complete the
model checking that TAS and Qlock satisfy the mutex
property as the number of threads increases.

Exercises

39i217 Functional Programming - 7. Multisets

7. Investigate the state explosion problem in model
checking.

8. Investigate some techniques that can mitigate the state
explosion in model checking.

9. Investigate narrowing in which unification is used
instead of pattern matching.

Exercises

40i217 Functional Programming - 7. Multisets

10. The search predicate can be used to model check that
mutex protocols, such as TAS, satisfy the mutex property
when a small fixed number of threads participate in the
protocols, but cannot be used to do so when an arbitrary
number of threads do so. Narrowing can solve the
problem. Investigate some techniques based on narrowing
that can be used to model check that mutex protocols
satisfy the mutex property when an arbitrary number of
threads participate in the protocols. Note that Maude, a
sibling language of CafeOBJ, supports narrowing and gives
some commends based on narrowing.

Exercises

41i217 Functional Programming - 7. Multisets

11. Investigate linear temporal logic (LTL), Kripke structures
(an extension of state machines), the semantics of LTL
based on Kripke structures, the Maude LTL model checker,
and conduct case studies in which TAS and Qlock enjoy
some liveness properties, say, the lockout freedom
property that whenever a process wants to enter the
critical section, it will eventually be in the critical section.

12. Investigate MCS mutex protocol and Suzuki-Kasami
distributed mutex protocol, and conduct case studies that
the protocols enjoy both the mutex property and the
lockout freedom property.

