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Abstract 
The coimagination method (Otake, 2009) is designed to prevent 
dementia in individuals with mild cognitive impairment (MCI) by 
utilizing the brain’s natural processes. This method involves partic-
ipants sharing their thoughts and feelings through group conversa-
tions centered around shared photos. The coimagination method 
contains two phases: (1) each participant talk about their memories 
and experiences related to the photos they bring, and (2) other 
participants ask questions about the photos. Automating the MCI 
estimation could be helpful for assisting individuals with MCI dur-
ing coimagination. However, previous MCI estimation methods 
rarely focused on group conversation scenarios, despite the poten-
tial of multimodal features observed in these scenarios in revealing 
cognitive states. This study focuses MCI individuals defned by cog-
nitive test scores (e.g., Mini-Mental State Examination (MMSE)). We 
explore MCI estimation from three aspects. First, we clarify whether 
MCI can be efectively estimated by constructing estimation models 
using linguistic and acoustic features from coimagination sessions. 
Second, we evaluate the impact of using data from the two distinct 
phases, as they may activate participants’ cognitive functions dif-
ferently. Finally, we analyze the efects of incorporating subtasks 
including participants’ conversational customary and engagement 
level during coimagination via multitask learning. The experimen-
tal results demonstrated that individuals with MCI can be efectively 
estimated from group conversations from coimagination, with the 
highest macro F1 score of 0.693. The results also demonstrated 
that the performance improved when using data from the phase 
that highly activates cognitive functions and when considering 
conversation customary as a subtask. 
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1 Introduction 
Dementia is a crucial and increasing global problem [12], but early 
intervention holds potential for prevention [19]. Coimagination is 
an efective method to prevent dementia [21] based on the hypoth-
esis that activating cognitive functions, which begin to decline at 
the mild cognitive impairment (MCI) stage, is efective [3, 26]. 

Coimagination is a conversation-based method that involves hav-
ing participants share their thoughts and feelings for a set amount 
of time through the use of pictures and related topics. One coimag-
ination session consists of two phases with four participants and 
one host [24]. The left part of Figure 1 shows an image of the two 
phases. Each participant prepares a fxed number of photos (two in 
this study) in advance. In the frst phase for introduction, every par-
ticipant introduces their photos in order, speaking for one minute 
per photo. In the second phase for question-answering, each partici-
pant is questioned by the other participants. Each other participant 
must ask at least one question to the participant currently being 
questioned. The host observes participants’ actions; if one partici-
pant does not ask any questions, the host will ask the participant to 
ask question. Question-answering process for each photo is limited 
to two minutes. Coimagination has been shown to be efective at 
activating MCI individuals’ cognitive functions [21, 24] and is thus 
implemented in many places [22, 23]. 

With the popularization of coimagination, automatically estimat-
ing MCI individuals could be helpful in assisting these individuals 
during coimagination. However, MCI estimation is a challenging 
task. Most previous studies focused on distinguishing MCI individ-
uals from others [25] and mainly focused on the scenario of partici-
pant speaking alone [5] or during general daily activities [18, 20, 28]. 
Few studies focused on estimating MCI from multimodal behaviors 
in group conversations, such as those in coimagination. In addition 
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Table 1: Statistics of MCI categories and conversation-related 
characteristic categories in each MCI category after data 
cleaning 

Conversation Engagement level 
Category Participants customary in coimagination 

(low/high) (low/high) 
Healthy 221 121/100 131/90 
MCI 97 64/33 31/66 

Figure 1: MCI estimation from group conversation of coimag-
ination. The left part shows the two phases of coimagination, 
and the right part shows the MCI estimation process. 

to participants’ multimodal features, interactions among partic-
ipants are important cues in capturing cognitive states in group 
conversations, further increasing the complexity of MCI estimation. 

For this challenging task, we explore three aspects of MCI esti-
mation from group conversations during coimagination sessions: 

1. We construct MCI estimation models using linguistic and 
acoustic features from coimagination group conversations. The 
experimental results demonstrated that interaction ability-related 
and cognitive-related features are efective for MCI estimation. 

2. Since participants’ cognitive functions may difer in the two 
phases of coimagination and are thus refected by diferent multi-
modal signals, we examine the efect of using data from each phase. 
We found that using data from the question-answering phase, where 
participants need to activate cognitive functions more, led to higher 
macro F1 score than using the introduction phase data. 

3. We investigate the efect of considering subtasks for MCI esti-
mation, as these subtasks can infuence behaviors in conversations, 
and consequently, the relationship between multimodal behaviors 
and MCI. The results showed that considering conversation cus-
tomary as a subtask improved the MCI estimation performance. 

2 Dataset 
In this study, we use a Japanese coimagination dataset collected 
by RIKEN in 2018 [24]. The dataset excluded participants with a 
Mini-Mental State Examination (MMSE) score ≤ 23 that are clearly 
dementia. The dataset comprises nine groups, with four partici-
pants in each group. Among these participants, 3-4 were permanent 
participants who regularly participated, and 0-1 were temporary 
participants that are typically flled by healthy staf members. Each 
group conducted 12 sessions. Permanent participants underwent 
the MMSE and Montreal Cognitive Assessment (MoCA) tests twice: 
before the frst session and after the last session. Permanent partici-
pants also annotated their conversation customary and engagement 
levels in coimagination. We treat participants in each session as 
independent participants to increase data samples. 

MCI labels are annotated based on the MMSE and MoCA thresh-
olds. The MoCA threshold is generally defned as 25 [8]. A MoCA 

score of ≤ 25 is considered MCI, and a score of 26-30 is considered 
healthy. Various MMSE thresholds exist. We use a threshold of 26, as 
it is commonly used to defne the clinical spectrum of Alzheimer’s 
disease [1, 6]. Accordingly, an MMSE score of ≤ 26 is considered 
MCI, and a score of 27-30 is considered healthy. In annotating, if a 
participant’s score is under either the MMSE or MoCA threshold at 
least once, we label the participant as MCI; otherwise, healthy. 

Conversation customary describes conversation customary 
in daily life, which is related to cognitive situation. We use a 4-
point Likert scale to measure 12 items for each participant, such 
as "When communicating with people, do you understand them 
well and actively ask questions to them?" The lower a item score is, 
the more the participant tends to have that customary in daily life. 
We sum the scores of all the items of each participant and fnd the 
median value. If a participant’s score is equal to or lower than the 
median, we label the participant as category low; otherwise, high. 

Engagement level in coimagination measures overall how 
participants felt engaged in coimagination, which is an afective 
aspect that could be related to social behaviors and cognitive states 
[16]. We use a 3-point Likert scale to measure fve engagement 
items, such as "Did you enjoy the coimagination?" The higher the 
score is, the more likely the participant engaged in coimagination. 
We sum the scores of all the items of each participant and fnd the 
median value. If a participant’s score is equal to or lower than the 
median, we label the participant as category low; otherwise, high. 

Table 1 lists the data statistics after data cleaning. 

3   MCI estimation
This study aims to construct models to estimate MCI participants 
from their multimodal behaviors in group conversations of coimag-
ination. Accordingly, this tasks is a binary classifcation task. 

3.1 Multimodal features and DNN model 
For multimodal features, we consider that participants’ cognitive 
state may not be refected in short conversations. Therefore, we 
use the mean feature among the whole conversation for each par-
ticipant. We do not use time sequences of utterances because the 
data samples are relatively small, and modeling time sequences that 
usually use models with more parameters leads to overftting. 

Linguistic features Linguistic features can refect participants’ 
ability to think and organize language. We use fve linguistic fea-
tures that could be related to cognitive situations in this study. 

Bidirectional encoder representations from transformers 
(BERT) BERT is efective for semantic representation [13, 15]. We 
use the cl-tohoku/bert-base-japanese model to obtain representa-
tions for each utterance. 
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BERT-Dif Cognitive states can infuence linguistic behavior 
in adjacent utterances. To represent the linguistic behavior of the 
participant who took the turn, we compute the diference in BERT 
embedding between two participants’ adjacent utterances. 

Number of spoken utterances (N-utt) N-utt refects how ac-
tive a participant was. We count each complete sentences as an 
utterance. If a participant continuously spoke multiple complete 
sentences, each was counted as a separate utterance. 

Part-Of-Speech (POS) The POS is shown to be related to one’s 
internal state [30]. We use the Fugashi [17] toolkit to segment each 
utterance into words with POS parsing. Then we count POS to 
create bag-of-words vectors as the feature. 

Linguistic inquiry and word count (LIWC) LIWC [29] de-
scribes word functions (e.g., frstly: function, conjunction). We apply 
the Japanese LIWC dictionary [11] to obtain word functions for 
each word in each utterance. We use the ’others’ function for words 
that are not included in the LIWC dictionary. For each utterance, 
we create a bag-of-words vector by counting functions of all words. 

Acoustic features Acoustic features are related to cognitive 
situations [4]. We use three acoustic features in this study. 

InterSpeech2009 (IS09) IS09 is a feature set that was originally 
proposed for emotion recognition [27]. It describes high-level func-
tionals of low-level descriptors (LLDs) including f0 and MFCC. We 
use OpenSmile [10] to extract IS09 for each utterance. 

Extended Geneva Minimalistic Acoustic Parameter Set 
(eGeMAPS) eGeMAPS is a feature set that aims to provide a basic 
standard acoustic parameter set for automatic voice analysis [9]. 
Notably, eGeMAPS contains formants features that are sensitive to 
mental states and are efective in cognitive load classifcation tasks 
[9, 31]. We use OpenSmile to extract eGeMAPS for each utterance. 

Wav2Vec2.0 (W2V) Wav2Vec2.0 [2] is a large-scale pretrained 
model that is efective for audio representation [7, 14]. We use the 
jonatasgrosman/wav2vec2-large-xlsr-53-japanese model to extract 
embeddings for each utterance and use the average pooling of the 
last layer [7] to obtain the features. 

DNN model In this study, we use feedforward deep neural net-
work (DNN) model that is widely used in various tasks, including 
MCI-related tasks [25]. We use a DNN model with three layers, each 
with 256 units. We use early fusion to concatenate the multimodal 
features into one vector as the input. After the three layers, a pro-
jection layer is used to obtain classifcation results. In the multitask 
learning, two projection layers are used for each task. 

3.2 Phase separation 
The activating of cognitive functions probably difers in the two 
phases of the coimagination method. In the introduction phase, 
participants generally only need to talk or listen. Whereas in the 
question-answering phase, participants need to think frequently 
to ask and answer questions. Cognitive states can be refected dif-
ferently via multimodal behaviors in the two phases. We use data 
from each phase to train models and then investigate the efect of 
using data from diferent types of cognitive function activation. 

3.3 Multitask learning 
Conversation-related characteristics can infuence behavior in con-
versations, thus they may infuence how multimodal behaviors 

refect MCI. Table 1 shows that the distributions of these charac-
teristics difer between individuals with MCI and healthy controls. 
Accordingly, these characteristics could be helpful for estimating 
MCI from multimodal features. To evaluate the impact of consid-
ering these characteristics for MCI estimation, we use multitask 
learning to simultaneously learn shared information between the 
MCI estimation and two specifc characteristics as subtasks. 

4 Experimental settings 
We train the models via 5-fold cross validation and speaker inde-
pendent settings. In particular, we split participant data into fve 
folds and train fve models separately, setting each fold for testing 
and the remaining folds for training. We use 90% of the data for 
training and 10% for validation. The participants in the training set 
and test set were guaranteed to be diferent to avoid information 
leakage. The average performance among the fve models is used 
for evaluation. We use the macro F1 score as an evaluation metric. 

In the experiment, we use all combinations (239) of modalities. 
For features other than BERT, BERT-Dif, and W2V, we use the z 
score to normalize the training and test sets separately. We set the 
maximum training epoch to 200 and do not stop training in the 
frst 50 epochs to warm up. We use early stopping if the validation 
performance does not improve within fve epochs after the 50th 
epoch. We use cross-entropy loss functions and the Adam optimizer 
with a learning rate of 0.0005. For multitask learning, we use a 
weighted sum with a weight of 0.8 for the main task and a weight of 
0.2 for the subtask to compute the loss. We run all the experiments 
three times and use the average performance for evaluation to 
reduce the infuence of random initialization. 

5 Results and discussion 
Tables 2 and 3 show the results of diferent tasks and phase separa-
tions. We only show the modality combinations that yield the best 
performance in each task setting. The unimodal performance are 
provided in Appendix A. The use of multimodal features improved 
the accuracy compared to that using unimodal features alone. 

In Tables 2 and 3, the modality function and modality columns 
list the modality combinations with each modality contributing 
specifc information. For example, the third row of Table 2 shows 
the results of the BERT-Dif + eGeMAPS combination. BERT-Dif 
refects the characteristics of turn-taking, and eGeMAPS contains 
cognitive-related acoustic features. Therefore, these modalities are 
listed under turn-taking and cognitive-related acoustics, respec-
tively. The bold and underlined numbers indicate the best perfor-
mance of the corresponding task. w/customary and w/engagement 
indicate multitask learning via conversation customary and engage-
ment in coimagination as subtasks, respectively. 

MCI estimation results As shown in Table 2, the best model 
for all phases achieved a macro F1 score of 0.693. This result is 
far better than the random classifcation performance, which is 0.5. 
Moreover, a recent relevant work that also used linguistic and acous-
tic features to distinguish MCI and dementia individuals achieved 
macro F1 scores of 0.745 [5], although their dataset difers from 
ours. Accordingly, our results can be considered good. Therefore, 
the results demonstrated that MCI can be efectively estimated from 
multimodal behaviors in group conversations of coimagination. 
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Table 2: Macro F1 scores achieved using the best modality combinations for diferent tasks with data from all phases 

Modality Functions and Modality Single task Multitask 
Semantic Turn-taking General acoustic Cognitive-related acoustic MCI w/ customary w/ engagement 
BERT BERT-Dif 

BERT-Dif 
W2V eGeMAPS 

eGeMAPS 
0.677 (±0.018) 
0.693 (±0.013) 

0.707 (±0.018) 0.699 (±0.006) 
0.681 (±0.006) 0.690 (±0.017) 

Table 3: Macro F1 scores achieved using the best modality combinations for diferent tasks and phase separation. (a) Results of 
using data from the introduction phase only; (b) results of using data from the question-answering phase only 

(a) Best macro F1 scores using data averaged from the introduction phase 
Modality Functions and Modality Single task Multitask 
Semantic Active Turn-taking Word function Cognitive-related acoustic MCI w/ customary w/ engagement 
BERT 
BERT 

N-utt 

N-utt 

BERT-Dif 
BERT-Dif 
BERT-Dif 

LIWC 
LIWC 
LIWC 

eGeMAPS 
eGeMAPS 
eGeMAPS 

0.655 (±0.011) 
0.650 (±0.030) 
0.646 (±0.004) 

0.618 (±0.025) 0.640 (±0.018) 
0.649 (±0.040) 0.645 (±0.032) 
0.657 (±0.017) 0.630 (±0.025) 

(b) Best macro F1 scores using data averaged from the question-answering phase 
Modality Functions and Modality Single task Multitask 

Semantic Active Turn-taking Cognitive-related acoustic MCI w/ customary w/ engagement 
BERT N-utt BERT-Dif 

BERT-Dif 
eGeMAPS 
eGeMAPS 

0.693 (±0.008) 
0.645 (±0.051) 

0.689 (±0.003) 0.686 (±0.024) 
0.696 (±0.016) 0.651 (±0.010) 

Efect of using diferent phases By comparing the best per-
formance for a single task in Table 3 (a) and (b), it is observed that 
the use of data from the question-answering phase outperformed 
that using data from the introduction phase by 0.038 in terms of the 
F1 score. Since the question-answering phase activates cognitive 
functions more in terms of thinking and responding, the results 
demonstrated that multimodal behaviors in the high cognitive func-
tion activation phase could better refect cognitive states. 

Efect of using conversation-related characteristics By com-
paring the single task and multitask results in Tables 2 and 3, the 
best performance was achieved when using conversation custom-
ary as the subtask, with improvements in the best performance 
over that of single tasks in all phase settings. On the other hand, the 
best performance achieved when using engagement only improved 
the best performance of single task when data from all phases was 
used. We speculate that the reason is that conversation custom-
ary refects language organization abilities in daily life, which are 
highly related to cognitive functions. However, engagement is more 
related to feelings, not to cognition. Therefore, considering conver-
sation customary as a subtask could assist in estimating MCI, while 
considering engagement rarely learn cognitive-related shared in-
formation. These results suggest that considering cognitive-related 
tasks as subtasks is efective for MCI estimation. 

Efective modalities As shown in Tables 2 and Table 3 (b), 
the best modality combination when using data from all phases 
and from the question-answering phase is BERT-Dif + eGeMAPS. 
BERT-Dif refects the characteristic of how a participant organizes 
language in adjacency utterances to respond to the previous turn 
in an interaction. eGeMAPS contains formant features that are 
efective in cognitive-related tasks [9, 31]. Therefore, the results 
demonstrated that considering features that describe characteristics 
in turn-taking and cognitive state-related features is efective in 
estimating MCI from group conversations. 

As shown in Table 3 (a), in addition to BERT-Dif and eGeMAPS, 
LIWC is included in all the combinations with the best performance 
when the introduction phase data are used. In the introduction 
phase, participants are required to organize their language to tell a 
story related to a photo; thus, arranging words that serve suitable 
functions is necessary. Such arrangements could be infuenced by 
one’s cognitive state. Therefore, these results demonstrated that 
using features that describe word functions is efective in estimating 
MCI using data from the introduction phase in group conversation. 

6 Conclusion 
In this study, for the automatic estimation of MCI individuals 
and assisting these individuals during coimagination, we explored 
whether MCI can be efectively estimated from multimodal behav-
iors in group conversations of coimagination from three aspects. 
The experimental results demonstrated that MCI can be efectively 
estimated from multimodal behaviors. Furthermore, using data 
from the phase that acitivates cognitive function more is efective. 
In addition, using multitask learning with cognitive-related sub-
tasks improves the MCI estimation performance. The results also 
suggested that features related to communication ability and the 
cognitive state are generally efective for MCI estimation and that 
features that describe word functions are efective for estimating 
MCI from the introduction phase of group conversations. In future 
works, designing specifc model structures and features could be 
helpful for improving MCI estimation from group conversations. 
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A Appendix 

A.1 Results of unimodality 
Table A1 lists the performance of each unimodality in single -task 
and multitask settings. As shown in this table, the best result for 
single tasks is achieved using IS09. For multitask learning, W2V and 
eGeMAPS achieved the best performance when using conservation 
customary and engagement in coimagination subtasks, respectively. 

Table A1: Unimodality results for each task using data from 
all phases 

Single Multitask 
Modality MCI w/ customary w/ engagement 
BERT 
BERT-Dif 
N-utt 
POS 
LIWC 
IS09 
eGeMAPS 
W2V 

0.549 
0.558 
0.415 
0.486 
0.523 
0.628 
0.600 
0.624 

0.532 0.538 
0.574 0.567 
0.415 0.415 
0.459 0.477 
0.502 0.533 
0.562 0.622 
0.614 0.637 
0.629 0.635 
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Table A2: Unimodality results for diferent tasks and phase 
separation. (a) Results of using data from the introduction 
phase only; (b) results of using data from the question-
answering phase only 

(a) Results using data from the introduction phase 
Single Multitask 

Modality MCI w/customary w/engagement 
BERT 
BERT-Dif 
N-utt 
POS 
LIWC 
IS09 
eGeMAPS 
W2V 

0.433 
0.515 
0.434 
0.428 
0.488 
0.604 
0.590 
0.553 

0.431 
0.474 
0.442 
0.459 
0.462 
0.547 
0.569 
0.553 

0.444 
0.521 
0.458 
0.427 
0.511 
0.568 
0.587 
0.581 

(b) Results using data from the question-answering phase 
Single Multitask 

Modality MCI w/customary w/engagement 
BERT 
BERT-Dif 
N-utt 
POS 
LIWC 
IS09 
eGeMAPS 
W2V 

0.593 
0.552 
0.415 
0.455 
0.537 
0.603 
0.606 
0.599 

0.576 
0.576 
0.415 
0.459 
0.521 
0.597 
0.626 
0.627 

0.597 
0.549 
0.415 
0.452 
0.537 
0.589 
0.585 
0.603 

Table A2 lists the performance of each unimodality in each task 
setting and phase separation. As shown in the table, the best per-
formance is achieved by using acoustic features. These results are 
consistent with those in Table A1, suggesting that when focusing 
on a single modality, acoustic features are more efective for MCI 
estimation from group conversation. 

On the other hand, compared with the results in Table 2 and Table 
3 in the results and discussion section, the best performance us-
ing multimodal features outperformed the best performance using 
unimodality by an average of 0.07. The comparison results suggest 
that multimodal behaviors are more efective than unimodality 
behaviors for MCI estimation from group conversations. 

A.2 Visualization of representations before the 
projection layer 

We show what diferent models learned by using single task and 
multitask via t-distributed stochastic neighbor embedding (t-SNE) 
visualizations. Figure A1 shows 2-dimensional t-SNE visualizations 
of the middle representations before the projection layer of the 
DNN model when using best modality combination BERT+BERT-
Dif+W2V+eGeMAPS. In Figure A1, the blue, green, and red symbols 
indicate representations using single task, multitask with conversa-
tions customary, and multitask with engagement in coimagination, 
respectively. The "x" marker indicates the representations of the 
healthy category, and the "▲" marker indicates the representations 
of the MCI category. 

Sixia Li et al. 

As shown in Figure A1, representations of using single task 
and multitask are distributed in diferent spaces; this visualization 
demonstrates that considering multitasks in estimating MCI infu-
ences the learning results. On the other hand, the healthy and MCI 
categories did not signifcantly difer across all three task settings. 
These results are consistent with the results in Table 2 that the use 
of multitask learning did not signifcantly improve the performance 
of using single task. 

Figure A1: t-SNE visualization of middle representations us-
ing single task and multitask learning 
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