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Abstract—Handling multiple languages under noisy reverber-
ant conditions has become increasingly important for speech
emotion recognition (SER). Previous studies found that modu-
lation spectral features (MSFs) are robust to noisy reverberant
conditions for SER. However, they mainly focused on specific
languages; the universality of MSFs among languages is still
unclear. To address this issue, we compared MSFs, hand-crafted
features, Wav2Vec2.0-based features, MSFs+hand-crafted fea-
tures for SER on four languages under 12 noisy reverberant
conditions. Intra-lingual results showed that MSFs+hand-crafted
features performed best on most conditions of all languages.
Inter-lingual results showed that MSFs performed best on most
conditions of test languages except training on a tonal language
and testing on others. The results demonstrate that MSFs are
robust to multilingual SER under noisy reverberant conditions
and suggest that MSFs are potentially language-independent
features for nontonal languages.

I. INTRODUCTION

Speech-emotion recognition (SER) has become an increas-
ingly important technique in a wide range of fields, including
psychology for detecting emotional disorders. In real-world
applications, noise and reverberation can have a significant
impact on the quality and clarity of speech signals [1]–[5].

To address the challenge of the lack of robustness against
noise and reverberation in SER, researchers have proposed
methods based on speech signal processing to improve SER.
Modern physiological [6] and psychological [7] models sug-
gest that the human auditory system contains an auditory
filterbank that decomposes speech signals into channel signals,
such as the temporal amplitude envelope (TAE) and temporal
fine structure. Several studies have proved that the TAE and its
modulation cues play an important role in speech recognition
[8]–[10]. Based on these findings, a previous study proposed
modulation spectral features (MSFs) that were extracted based
on the modulation analysis processing of the TAE and showed
that MSFs are important cues for human emotion recognition
[11]. Furthermore, MSFs were shown to be more robust on
SER under noisy and reverberant conditions compared to
widely used feature sets IS09 and eGeMAPS [12], [13].

So far, studies on MSFs were mainly focused on specific
languages, such as Japanese [12], [13] and German [14].
However, handling multiple languages is also important for
SER [15], [16]. Whether or not MSFs retain their robustness

in multilingual SER and remain unaffected by noise and
reverberation is still unclear. On the other hand, inspired by
human perception, researchers have recently proposed to use
spectral features with the three-layer model for multilingual
emotion recognition tasks [17]–[19]. This suggests that spectral
features inspired by human perception, such as MSFs, may
reflect the essential characteristic of emotions under noisy
reverberant conditions among languages.

Accordingly, this study investigated the potential universal-
ity of MSFs in intra-lingual and inter-lingual SER under noisy
and reverberant conditions. To do so, we used support vector
machine (SVM) to compare the SER performance of MSFs,
hand-crafted feature sets, MSFs + hand-crafted feature sets,
and Wav2Vec2.0-based features on different languages under
noisy reverberant conditions. Specially, we investigated intra-
lingual and inter-lingual SER performances on recognizing
four common emotions (happy, neutral, sad, and angry) in four
languages (Japanese, German, English and Chinese) under 12
noisy reverberant conditions. To the best of our knowledge,
we are the first to investigate the robustness of MSFs in
multilingual and cross-lingual SER under noisy reverberant
conditions. The findings of this study will not only advance
the understanding of the importance of MSFs in the speech
perception mechanism, but also contribute to the development
of robust SER systems, such as speech-based human-machine
interaction under noisy reverberant conditions.

II. MODULATION SPECTRAL FEATURES

We utilized the same MSFs that were shown to be robust
to noise and reverberation in previous studies [11]–[13]. To
extract modulation spectral cues such as MSFs of modulation
spectrogram, it is necessary to calculate the modulation spec-
trogram using the modulation filterbank first. Figure 1 shows
the auditory-based process used in this study to calculate the
MSFs of modulation spectrograms.

Emotional speech signals s were divided into several fre-
quency bands by using an auditory-based band-pass filterbank,

sk(n) = s(n) ∗ hk(n), (1)

where * denotes the convolution operator, hk(n) is the impulse
response of the kth channel, and n is the sample number in
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Fig. 1. Process of extracting MSFs [13].
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Fig. 2. Calculation example of MSCRm and MSCRk [11].

the time domain. The 6th-order Butterworth infinite impulse
response (IIR) band-pass filterbank was used as the auditory
filterbank. The bandwidth of each filter was the bandwidth
of the human auditory filter, and the order of the filters
was determined in accordance with the equivalent rectangular
bandwidth (ERBN) and ERBN-number scale, where the unit
of ERBN-number is Cam. The boundary frequencies of the
band-pass filters (BPFs) were defined as ERBN-number from
3 to 35 Cam with an 8 ERBN bandwidth, and the number of
channels was 4.

The temporal envelope of the output signal from each BPF
sk(n) was extracted using the Hilbert transformation, and
a 2nd-order Butterworth IIR low-pass filter (LPF) (cut-off
frequency is 64 Hz) as follows,

ek(n) = LPF [|sk(n) + jH[sk(n)]|] , (2)

where H denotes the Hilbert transform.
The next step involved decomposing the temporal envelope

into several modulation-frequency bands by using a modula-
tion filterbank,

Ek,m(n) = gm(n) ∗ (ek(n)− ek(n)), (3)

where m is the channel number of the modulation filter, gm(n)
is the impulse response of the modulation filterbank, and
ek(n) is the time-averaged amplitude of ek(n). The modulation
filterbank consisted of six filters (one LPF and five BPFs). The
boundary frequencies of the filters were spaced on an octave
frequency band from 2 to 64 Hz.

The root-mean-square of Ek,m(n) is calculated as the mod-
ulation spectrogram,

Ēk,m(n) =

√√√√ 1

N

N∑
n=1

E2
k,m(n), (4)

where the N is the length of the speech signal s(n).
Then, we calculated the high-order statistics of the three-

dimensional modulation spectrograms (time, acoustic fre-
quency, modulation frequency) in the acoustic frequency di-
rection and modulation frequency direction as MSFs. The ten
types of MSFs are the modulation spectral features in the
acoustic frequency domain (the subscript is m) and in the
modulation frequency domain(the subscript is k): the modula-
tion spectral centroid (MSCRm/k), modulation spectral spread
(MSSPm/k), modulation spectral skewness (MSSKm/k) and
modulation spectral kurtosis (MSKTm/k), which are defined
as follows.

MSCRm =

∑K
k=1 kĒk,m∑K
k=1 Ēk,m

(5)

MSSPm =

∑K
k=1[k −MSCRm]2Ēk,m∑K

k=1 Ēk,m

(6)

MSSKm =

∑K
k=1[k −MSCRm]3Ēk,m∑K

k=1 Ēk,m

(7)

MSKTm =

∑K
k=1[k −MSCRm]4Ēk,m∑K

k=1 Ēk,m

(8)

MSCRk =

∑M
m=1 mĒk,m∑M
m=1 Ēk,m

(9)

MSSPk =

∑M
m=1[m−MSCRk]

2Ēk,m∑M
m=1 Ēk,m

(10)
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MSSKk =

∑M
m=1[m−MSCRk]

3Ēk,m∑M
m=1 Ēk,m

(11)

MSKTk =

∑M
m=1[m−MSCRk]

4Ēk,m∑M
m=1 Ēk,m

(12)

The final two MSFs, the modulation spectral tilts
(MSTLm/k) are the linear regression coefficients obtained by
fitting the first-degree polynomial to the modulation spectro-
grams. Figure 2 shows an example of calculating MSCRm and
MSCRk.

III. NOISY REVERBERANT CONDITIONS

In this study, we used the same method as in previous studies
[11]–[13] to add noise and reverberation to speech to simulate
noisy, reverberant, and noisy reverberant conditions.

For noisy conditions, we added white Gaussian noise and the
adjusted noise to the speech at SNR levels of 20, 10, and −5
dB. The noise conditions were three in total. For reverberant
conditions, we used the convolution method and a statistical
room impulse response (Schroeder model). We convoluted the
original speech with two types of room-impulse responses,
with reverberation times (TR) of 1.0 and 2.0 s, respectively.
The reverberation conditions were two in total. For noisy
reverberant conditions, we used the combination of the above
three noise conditions and two reverberation conditions. The
noisy reverberant conditions were six in total. With the clean
condition (original speech), we conducted experiments under
12 conditions in total.

IV. EXPERIMENTS

A. Datasets

We used datasets of Japanese, German, Chinese, and English
in this study. We chose happy, neutral, sad, and angry emotions
in these datasets, because these emotions are common emotion
categories that guarantee the emotion categories in each dataset
are the same for experiments. Table 1 shows the statistics of
utterances of emotions in each dataset.

Fujitsu dataset: The Fujitsu Japanese Emotional Speech
Database is a Japanese dataset that was used for emotion
recognition [11]–[13]. Berlin EmoDB dataset: This is a
German dataset, which has also been widely used in previous
research [18]–[20]. For convenience, we will refer to Berlin
EmoDB as Berlin for short. IEMOCAP dataset: IEMOCAP
is an interactive emotional dyadic motion capture database in
English [21], [22]. For emotion categories, we combine the
emotions excited and happy together as the emotion happy, as
was done in previous studies [23], [24]. CASIA dataset: The

TABLE I
STATISTICS OF UTTERANCES OF EMOTIONS IN EACH DATASET

Dataset Happy Neutral Sad Angry Total
Fujitsu 20 20 20 20 80
Berlin 71 79 62 127 339
IEMOCAP 1636 1708 1084 1130 5531
CASIA 1600 400 1599 1597 5196

CASIA emotional speech dataset [18], [19], [22] is a Mandarin
emotional speech dataset. This dataset does not contain the
emotion of happy, but it has joy, a closely related emotion.
Accordingly, we use joy as the emotion happy for this dataset.

B. Baseline feature sets

Hand-crafted feature sets: InterSpeech2009 (IS09) [25] and
eGeMAPS [26] are two widely used hand-crafted feature sets
in the emotion recognition area. We used two feature sets
separately in our experiments.

Wav2Vec2.0-based feature: Wav2Vec2.0 [27] is a self-
supervised learning pre-trained model for representing speech.
We used Wav2Vec2.0-large-xlsr models that were fine-tuned
on each language to make fair comparisons. These models
were obtained from jonatasgrosman/Wav2Vec2.0-large-xlsr-
53-[Japanese, German, English, Chinese] from HuggingFace.
To make a fair comparison with MSFs, we did not fine-tune
Wav2Vec2.0 models on SER tasks but froze those models to
use them as feature extractors only. For feature extractions, as
Wav2Vec2.0’s output is a sequence of vectors corresponding
to frames sequence, we refered to previous studies [28], [29]
to obtain fixed-length features for each speech. Specifically,
we computed the mean of the last layer, the sum of the last
layer, the mean of all layers, and the sum of all layers as four
different features. Each feature is a 1024-dimension vector.

C. MSFs

In this study, we investigated the performance of each of
the ten types of MSFs and the four combinations of MSFs.
Combination features include the combination of all types of
MSFs, the combination of acoustic-frequency domain MSFs,
the combination of modulation-frequency domain MSFs, and
the modulation spectral tilts (MSKTk and MSTLk). The last
two features have been demonstrated to be robust to all daily
noise and reverberation conditions in a previous study [13].
We concatenated corresponding MSFs together to obtain the
combination of features.

Moreover, since MSFs are hand-crafted features, we also
used MSFs + hand-crafted feature sets to investigate whether
or not MSFs are complementary to conventional feature sets.
Specifically, we concatenated all types of MSFs with IS09 and
all types of MSFs with eGeMAPS as two kinds of MSFs +
hand-crafted features.

D. Intra-lingual and inter-lingual experiment setting

We used SVM as a classifier to conduct experiment recog-
nition experiments, which has also been widely used in many
studies related to SER (as examples, see [30] and [31] ). The
input was the feature vector of MSFs, MSFs + hand crafted,
hand crafted, and Wav2Vec2.0-based features. The output was
the emotion from the four emotion classes.

For the intra-lingual experiment, we performed five-fold
experiments to comprehensively evaluate the performance.
Specifically, we split the data of each emotion into a five-fold
average for each dataset. Then, we performed five experiments
by using four of the folds as the training set and the remaining
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Fig. 3. Result of intra-lingual SER on four datasets: (a) result of train on Fujitsu and test on Fujitsu, (b) result of train on Berlin and test on Berlin, (c) result
of train on IEMOCAP and test on IEMOCAP, and (d) result of train on CASIA and test on CASIA.

one as the test set. Moreover, we splited 80% of the training set
for training and the remaining 20% for validation. After using
each fold as the test set, we used the average performance of
the five experiments for evaluation.

For the inter-lingual experiment, we trained the model on
one dataset and tested it on the other three datasets separately.
Specifically, we used 80% of each emotion’s data from the
training dataset as the training set and the remaining 20% of
each emotion’s data for validation. All data from test datasets
were used for the test. We conducted experiments by training
the model on each dataset and testing it on other datasets to
evaluate the performance.

We used weighted accuracy that considers the imbalance of
each emotion as the evaluation metric.

V. RESULTS AND DISCUSSION

Figure 3 and 4 show radar charts of intra-lingual and inter-
lingual results. Different axes represent the original speech and
12 noise reverberant conditions; values on axes represent the
weighted accuracy. To show comparisons between four feature
sets clearly, and due to space limitations, we only show the best
result in categories of hand-crafted feature sets, Wav2Vec2.0-
based features, MSFs, and MSFs + hand-crafted feature sets.

For convenience, we hereafter refer to these categories as hand-
crafted, Wav2Vec2.0-based, MSFs, and MSFs + hand-crafted.
In Figure 3 and 4, different colored lines represent different
feature categories: the green dashed line, blue dashed line, red
line, and orange line indicate the highest weighted accuracy
from hand-crafted, Wav2ec2-based, MSFs, and MSFs + hand-
crafted, respectively. Conditions with △ indicate conditions
where MSFs performed the best. Conditions with ⃝ indicate
conditions where MSFs + hand-crafted performed the best.

As seen in Fig. 3, MSFs + hand-crafted performed best
on 9 of 12 conditions on Fujitsu, 10 of 12 conditions on
Berlin, and 8 of 12 conditions on CASIA, with average
improvements from the best baseline of 0.69%, 2.03%, and
1.85% on Fujitsu, Berlin, and CASIA, respectively. The reason
MSFs + hand-crafted improved relatively less is because the
best baselines and MSFs + hand-crafted have 100% weighted
accuracy on many conditions in the Fujitsu dataset. On the
other hand, MSFs + hand-crafted performed best on 3 of 12
conditions on IEMOCAP, while Wav2Vec2.0-based performed
best on more conditions in IEMOCAP. The reason could be
that Wav2Vec2.0 was originally pre-trained in English, and it
captures characteristics of emotions in English well. However,
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Fig. 4. Result of inter-lingual SER that train the model on a single language and test on other languages: (a) result of train on Fujitsu and test on other datasets,
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on other datasets.

although Wav2Vec2.0 models were fine-tuned on languages
other than English, MSFs + hand-crafted performed better
than Wav2Vec2.0-based on most conditions of other languages.
Meanwhile, Wav2Vec2.0 is a large model that needs more
computational resources, while MSFs + hand-crafted can be
effectively obtained. These results demonstrated that MSFs
are complementary with conventional hand-crafted features
and are effective features that are robust in noisy reverberant
conditions in different languages.

As seen in Fig. 4, MSFs performed best on most of the
conditions when training on Fujitsu and testing on other
datasets, training on Berlin and testing on Fujitsu and CASIA,
and training on IEMOCAP and testing on other datasets, train-
ing on CASIA and testing on Fujitsu. MSFs + hand-crafted
performed best on most conditions when training on Berlin
and testing on IEMOCAP. These results demonstrated that
MSFs are robust in emotion recognition in noisy reverberant
conditions across languages. On the other hand, MSFs or MSFs
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+ hand-crafted performed best on relatively fewer conditions
when training on CASIA and testing on Berlin and IEMOCAP.
Since Chinese was the only tonal language in our experiments,
the emotion perception in Chinese may be influenced by
tone and other reasons. These results suggested that MSFs
potentially describe common characteristics of emotions under
noisy reverberant conditions among non-tonal languages.

For the MSFs combination that performed best in the results,
among all 48 conditions (12 conditions × 4 datasets) in
multilingual SER, features containing MSFs performed best
on 33 conditions, and among them, 30 combinations are MSFs
+ hand-crafted features. On the other hand, among all 144
conditions (12 conditions × 4 datasets × 3 cross-lingual) in
cross-lingual SER, features containing MSFs performed best
on 120 conditions, and among them, 29 of the best performing
features are MSSKm. Therefore, MSSKm is considered the
universal feature in cross-lingual SER.

VI. CONCLUSION

This study investigated the robustness of MSFs in multi-
lingual and cross-lingual SER under noisy reverberant con-
ditions. We utilized SVM to compare the SER performance
for recognizing four common emotions. These comparisons
were conducted on intra-lingual and inter-lingual SER in four
languages under 12 noisy reverberant conditions. The results
demonstrate that MSFs are complementary with conventional
hand-crafted features and they are robust under noisy rever-
berant conditions in different languages. The results also
suggest that MSFs potentially describe common characteristics
of emotions in noisy reverberant conditions among non-tonal
languages.

For future work, it would be interesting to investigate the
applicability of MSFs in recognizing emotions in other tonal
languages to further examine the language-dependency of
these features. Additionally, it would be worthwhile to explore
the use of deep learning techniques to further enhance the
performance of SER systems utilizing MSFs.
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