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ABSTRACT

To deal with speech emotion recognition (SER) in real-life
applications, researchers have to focus on cross corpus SER,
where the feature distribution of source and target datasets
are different. In this paper, we propose an efficient domain
adversarial training method to cope with the non-affective in-
formation during feature extraction. Through the proposed
domain-adversarial learning, we can reduce the domain diver-
gence between train and test data. Furthermore, we incorpo-
rate center loss with the emotion classifier to reduce the intra-
class variation of features learned from the same emotion. We
conduct experiments on four emotional benchmark datasets
to verify the performance of the proposed method. The ex-
perimental results demonstrate that our proposed model out-
perform the baseline system in both cross-corpus and multi-
corpus evaluation.

Index Terms— Speech emotion recognition, domain
adaptation, center loss

1. INTRODUCTION

Emotion recognition from speech signals is crucial for the de-
velopment of artificial intelligence, and advanced SER sys-
tems can be applied in a wide range of applications, such
as building empathetic chatbots which enable natural human-
computer interaction and helping the manual service of call
centers [1]. Therefore, this research topic has drawn grow-
ing attention in both industrial and academic communities.
Previous studies empirically designed low-level descriptors
(LLDs) for emotion classification. In recent years, some re-
searchers presented that deep learning based models such as
convolutional neural network (CNN) and recurrent neural net-
work (RNN) show promising results on emotion recognition
tasks [2, 3]. Compared with traditional hand crafted features,
deep representation features can improve the performance of
SER systems without expert knowledge.

* Corresponding Authors

Despite the recent developments in this field, most pre-
vious approaches are trained and tested on the same dataset
[4, 5]. Since collecting large-scale annotated emotional utter-
ances in a natural environment is time-consuming, the exist-
ing datasets contain a small number of speech samples, which
is not enough to train robust deep learning models. Moreover,
in real-world scenarios, the emotional information in speech
is difficult to learn due to the variations in the domain in-
formation. Therefore, recognition performance usually de-
creases significantly when the system is applied to unseen
datasets [6]. To deal with real-life applications, researchers
have to evaluate the model using different datasets to validate
the robustness of the emotion recognition systems [7]. In the
initial work of cross corpus SER task, Schuller et al. [8] ex-
plored the feature selection strategy and defined the emotion
annotations using six existing datasets. They also investigated
several normalization methods to improve recognition perfor-
mance. In [9], Hassan et al. try to solve the feature distri-
bution mismatch between train and test data by importance-
weighted support vector machine (IW-SVM). To generalize
the model to unseen languages, Albornoz et al. [10] focus on
decision level fusion to achieve better recognition accuracy of
the SVM classifier. Their system can improve performance in
real-life applications, with no available data from the target
language to train the model. More recently, some researchers
have also evaluated the performance of CNN, RNN, and at-
tention in cross corpus SER [11, 12].

To further improve the generalization ability of emotion
recognition system, we use the adversarial domain adaptation
method to reduce the domain divergence between the training
and test data. To be more specific, we incorporate adversarial
training to eliminate the speaker, corpus, and other domain
information of the latent representation. The domain adapta-
tion is achieved by reversing the gradient between the feature
extractor and the domain classifier; by doing this, our model
can maximize the training loss of non-affective information.
Moreover, in previous works, commonly used emotion clas-
sifiers use the softmax loss function to find a decision bound-
ary and separate different emotions. To improve the discrim-
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inability of feature representation, in this work, we incorpo-
rate center loss, which is trained to minimize the distances
between the feature representations and their corresponding
class centers, as joint supervision for the feature extractor.

The rest of this paper is organized as follows. We intro-
duce the proposed approach in Section 2. In Section 3, we
present the emotional datasets used in this study and describe
the experimental setup. Section 4 analyses the results of com-
parative experiments. This paper is concluded in Section 5.

2. ADVERSARIAL DOMAIN ADAPTATION FOR
FEATURE EXTRACTION

Fig. 1. Overview of the proposed method.

As shown in Figure 1, we use deep CNN and a BLSTM
layer for feature extraction, whose parameters are similar to
that used by Satt et al. [13]. We modified the feature ex-
tractor with a domain adversarial neural network (DANN).
Furthermore, we use the center loss to reduce the intra-class
variation of feature representation. Both DANN and center
loss can address the domain divergence, and we describe the
model details below.

2.1. Domain Adversarial Training

As the features extracted from different datasets contain
speaker, recording condition, and other domain information,
common deep learning based models show poor performance
in cross-corpus tasks. In this study, we incorporate DANN
with a feature extractor to eliminate the non-affective infor-
mation. DANN is defined as a multi-task learning model, and

the recognition targets of DANN are emotion classifier LE
and domain classifier LD. In this work, the domain recog-
nition targets of LD are corpus, language, and gender. In
order to achieve domain adaptation and feature representation
learning within one training process, Ganin et al. [14] intro-
duced a gradient reversal layer (GRL) between the domain
classifier and the feature extractor. During backpropagation,
the GRL can multiply a certain negative constant γ to the
gradient of the domain classification task, and the DANN was
trained to make the feature distribution learned from source
and target domain indistinguishable to our model. Through
the GRL, we can extract domain invariant representation
and thus improve the generalization ability for cross-corpus
emotion recognition. The objective function of our proposed
feature extraction model is defined as:

L = LE(G(x, θ), y) + γLD (1)

Where LE is the loss function of the emotion classifier, which
combines center loss and softmax loss, more detail of LE can
be found in section 2.2. In this specific task, we set γ as −0.3
to avoid our feature extractorG(x, θ) from learning the afore-
mentioned non-affective information. Through this DANN,
our model can eliminate the domain shift of feature distri-
bution learned from the source and target datasets. The loss
function of the domain classifier is defined as:

LD = Lg(G(x, θ), g)+Ll(G(x, θ), l)+Lc(G(x, θ), c) (2)

Where Lg , Ll, and Lc are the loss functions of the gender,
language, and corpus classification tasks in DANN. By find-
ing a saddle point that minimizes the LE and maximizes the
LD, our proposed feature extractor can significantly reduce
the domain divergence in the input of the emotion classifier.

2.2. Center Loss

In addition to the proposed feature extractor, we further incor-
porate the softmax loss and center loss [15] as joint supervi-
sion to the emotion classifier LE . The softmax loss function
is commonly used in the emotion recognition system for find-
ing a decision boundary in different emotions.

Softmax(G(x, θ), y) = −
M∑
i=1

e(x,θ)
T
i∑N

j=1 e
(x,θ)Tj

(3)

Where M is the size of mini-batch and N is the number
of emotion classes. In this study, although we defined the
same emotion annotations for train and test samples, the fea-
ture distribution of different datasets shows no separable clus-
ters, which makes cross corpus SER more difficult than com-
mon close-set identification tasks. To deal with this problem,
we introduce center loss to learn a class center c for each
emotion category and thus reduces the intra-class distance of
feature distribution. This loss function is calculated as the
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Table 1. Overview of the four emotion corpora. The emotion labels are: angry (A), boredom (B), disgust (D), fear (F), happy
(H), joy (J), neutral (N), sad (SA), surprise (SU).

Corpus Language #m #f Type Utterances
Valence Arousal

negative positive low high

IEMOCAP English 5 5 Hybrid 5531 A,SA:3344 H,N:2187 N,SA:2792 A,H:2739

MSP-Improv English 6 6 Acted 8438 A,SA:4546 H,N:3892 N,SA:3660 A,H:4778

SAVEE English 4 0 Acted 480 A,D,F,SA:240 J,N,SU:240 D,N,SA:240 A,F,J,SU:240

Emo-DB German 5 5 Acted 535 A,B,D,F,SA:385 H,N:150 B,D,N,SA:268 A,F,H:267

Euclidean distance between the input feature and the corre-
sponding class center.

Center(x, c) =
1

M

N∑
i=1

||xi − ci||2 (4)

cj =

∑m
i=1(cj − xi)
1 +m

(5)

To update the class center ci more efficiently, this loss func-
tion is trained on each mini-batch. In Equation 5, m is the
number of samples of class i in the new mini-batch. The over-
all objective function of emotion classifier is defined as:

LE(G(x, θ), y) = λSoftmax(G(x, θ), y)

+(1− λ)Center(G(x, θ), c) (6)

We set λ as 0.5 to control the weight of each loss term. By
combining the center loss with the softmax loss to jointly op-
timize our model, we can extract a more robust feature repre-
sentation for the cross corpus SER task.

3. EXPERIMENTAL SETUP

3.1. Emotional Speech Datasets

Four emotional corpora are used to evaluate our model. We
choose these four datasets because they are available to the
community and have different feature distributions to meet
real-life scenarios. The Interactive Emotional Dyadic Motion
Capture (IEMOCAP) database [16] contains 12 hours of
audiovisual data, including audio, video, and facial motion
information, and textual transcriptions from 10 speakers. We
use 5531 utterances from both scripted and improvised data
for our experiments. The emotional states recorded are: Hap-
piness, Sadness, Anger, and Neutral. The MSP-IMPROV
database [17] is a multimodal emotional database recorded
from actors interacting in dyadic sessions. The corpus con-
sists of 8,438 utterances of emotional sentences recorded
from 12 actors. The emotion categories in this dataset are
also Happiness, Sadness, Anger, and Neutral. The Surrey
audio-visual expressed emotion (SAVEE) dataset [18] con-
tains audio-visual recordings of four male subjects. This

dataset includes 480 native English utterances: 60 for each
of six basic emotions (Happiness, Sadness, Disgust, Anger,
Boredom, and Fear) and 120 utterances for Neutral. And
the Berlin Emotional Speech Database (Emo-DB) [19] was
performed by ten professional actors in a recording environ-
ment. The actors were asked to express each sentence in
seven emotional states (Neutral, Bordom, Disgust, Sadness,
Anger, Happiness, Fear). This corpus contains a total of 535
utterances.

As the emotional annotations of those datasets are differ-
ent, in this work, we defined the emotion recognition task
as binary classification of arousal and valence. We followed
Schuller et al. [8] to map the categorical labels of each emo-
tion into binary arousal and valence. The main attributes of
each dataset are summarized in Table 1.

3.2. Experimental Settings

We use two validation schemes to evaluate our model: 1)
cross-corpus evaluation: the model is trained only on the
IEMOCAP and tested on the other three corpora. 2) multi-
corpus evaluation: we split all four datasets into train set
(80%) and test set (20%), and evaluate our model using test
data from each corpus respectively. Note that there is no
speaker-overlap between train and test data. We used adadelta
as the optimizer and the mini-batch size was set as 128. Dur-
ing data-preprocessing, all the datasets are downsampled to
16 kHz. We use spectrogram as the input feature. The input
utterances are split into 265-ms segments, and the input spec-
trogram was calculated for each segment, with a frame size
of 25-ms. The time × frequency of the input spectrogram was
32 × 129.

4. RESULTS AND ANALYSIS

We choose unweighted accuracy (UA) as the evaluation crite-
ria. The baseline is the combination of CNN and BLSTM.
In this work, we compare two proposed DANN-based ap-
proaches: (1) in DANN 1, the recognition targets of domain
classifier are speaker and corpus; (2) in DANN 2, the speaker
classification is replaced by language and gender recognition.
We use S and C to represent the softmax and center loss.
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Table 2. Experiment results of multi-corpus evaluation. The domain recognition targets are speaker and corpus for DANN 1;
and gender, language, and corpus for DANN 2. The loss functions are softmax (S) and center loss (C).

Model Loss
Arousal (UA) Valence (UA)

IEMOCAP MSP SAVEE Emodb Average IEMOCAP MSP SAVEE Emodb Average

Baseline S 75.90 62.05 85.83 90.95 78.68 69.51 59.44 64.16 53.03 61.54

DANN 1 S 79.47 63.15 82.55 90.48 78.91 70.32 60.40 63.83 56.47 62.76

DANN 2 S 77.62 62.74 86.67 88.01 78.76 69.44 61.15 65.33 58.85 63.69

DANN 2 S+C 78.59 64.53 84.16 92.12 79.85 75.56 61.33 67.50 63.48 66.97

Table 3. Arousal recognition in cross-corpus evaluation.

Model Loss MSP SAVEE Emodb Average

Baseline S 59.72 73.75 67.35 66.94

DANN 1 S 60.51 74.58 66.05 67.05

DANN 2 S 63.57 74.79 69.58 69.31

DANN 2 S+C 62.97 75.20 71.64 69.94

Table 4. Valence recognition in cross-corpus evaluation.

Model Loss MSP SAVEE Emodb Average

Baseline S 59.52 54.79 49.73 54.68

DANN 1 S 59.19 56.15 47.53 54.29

DANN 2 S 57.57 57.08 49.05 54.57

DANN 2 S+C 57.26 58.12 49.46 54.95

4.1. Multi-corpus Evaluation

We present the results ofmulti-corpus evaluation in Table 2.
For arousal recognition, our proposed DANN 2 has achieved
the best performance for all four datasets, with a small but
steady improvement than the comparative experiments. For
valence, most comparative experiments show poor perfor-
mance in Emodb. The train set of Emodb mainly consists of
negative inputs. Furthermore, due to the language mismatch
of Emodb and other datasets, the recognition performance of
this dataset is relatively low. Despite this situation, our model
shows relatively equal recognition accuracy on positive and
negative, and thus improves the UA by 10.45%. Moreover,
the proposed center loss helps our model to extract more dis-
criminative feature representation and improve the average
accuracy by 3.28%. The results show that our model can
generalize emotion information across datasets.

4.2. Cross-corpus Evaluation

The experimental results of cross-corpus evaluation demon-
strated the effectiveness of our proposed model when dealing

with unseen datasets. As shown in Table 3 and 4, the aver-
age performance of DANN based model show significant im-
provement over the CNN-BLSTM baseline in arousal recog-
nition. Furthermore, due to the large number of speakers in
these four datasets (which is also common in real-life scenar-
ios), speaker recognition is difficult to achieve high accuracy
in this work; thus, the DANN 2 generates better average per-
formance than DANN 1. However, for the valence recogni-
tion, both DANN and baseline show relatively poor perfor-
mance (below 60%). For valence recognition of Emo-DB,
due to the language mismatch, the recognition performance
of all four comparative experiments is below the chance level.
These results indicate that domain invariant feature learning is
more challenging to achieve for valence, which has also been
reported in [20].

5. CONCLUSION

In this paper, we investigated adversarial domain adaption and
center loss for increasing the generalization ability of cross-
corpus SER systems. As a step towards domain invariant fea-
ture learning for the SER task, we modified the feature extrac-
tor as DANN and have reduced the domain divergence across
different datasets. Furthermore, we incorporated center loss
and softmax loss to learn discriminative feature representation
for emotion recognition. Experimental results indicate that:
1) compared with arousal, the deep learning model is more
difficult to generalize valence information to unseen datasets.
2) the proposed model achieves more promising average re-
sults than the traditional deep learning-based model, which
demonstrates the effectiveness of our proposed approach.
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