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AbstractÐSpeech-emotion recognition (SER) in noisy reverber-
ant environments is a fundamental technique for real-world ap-
plications, including call center service and psychological disease
diagnosis. However, in daily auditory environments with noise
and reverberation, previous studies using acoustic features could
not achieve the same emotion-recognition rates as in an ideal
experimental environment (with no noise and no reverberation).
To remedy this imperfection, it is necessary to find robust features
against noise and reverberation for SER. However, it has been
proved that a daily noisy reverberant environment (signal-to-noise
ratio is greater than 10 dB and reverberation time is less than 1.0
s) does not affect humans’ vocal-emotion recognition. On the basis
of the auditory system of human perception, previous research
proposed modulation spectral features (MSFs) that contribute
to vocal-emotion recognition by humans. Using MSFs has the
potential to improve SER in noisy reverberant environments. We
investigated the effectiveness and robustness of MSFs for SER in
noisy reverberant environments. We used noise-vocoded speech,
which is synthesized speech that retains emotional components
of speech signals in noisy reverberant environments as speech
data. We also used a support vector machine as the classifier to
carry out emotion recognition. The experimental results indicate
that compared with two widely used feature sets, using MSFs
improved the recognition accuracy in 13 of the 26 environments
with an average improvement of 11.38%. Thus, MSFs contribute
to SER and are robust against noise and reverberation.

I. INTRODUCTION

In speech-processing research, machine-learning techniques

have enabled computers to solve many speech-recognition

tasks as effectively as humans, such as the great success

achieved in automatic speech recognition [1]±[3]. To create

a user-friendly human-machine interface, it is not enough to

understand what the user said but also the user’s emotions

[4], [5]. Accurately recognizing emotional information is an

indispensable part of smooth communication. Accordingly,

speech-emotion recognition (SER) has become an important

task in speech processing.

Extracting suitable features to precisely describe the emotion

information is a core part of SER. By using the widely

used Mel frequency cepstral coefficient (MFCC) [6], [7],

several studies achieved high emotion-recognition rates in

ideal experimental environments without disturbances such as

noise. Researchers have been paying more attention to the

problem of speech recognition in real auditory environments.

In such environments, noise and reverberation always exist;

such disturbances often affect the perception of speech. As

shown in previous research, in an environment containing

background noise and room reverberation [8], the emotion-

recognition rates significantly decrease compared with clean

test data. Various solutions have been proposed to mitigate

such limitations from noise and reverberation. However, even

modified speech-recognition systems or enhanced algorithms

[9], [10] could not achieve the same emotion-recognition rates

as in ideal auditory environments.

To solve the lack of robustness against noise and rever-

beration of SER, one study on vocal-emotion recognition

using noise-vocoded speech (NVS) [11] provided the clue to

extract robust features against noise and reverberation from

the perspective of human speech perception. The experimental

results indicated that vocal-emotion recognition is not affected

by daily noise and reverberation conditions (signal-to-noise

ratio (SNR) is greater than 10 dB and reverberation time is less

than 1.0 s). Thus, it is necessary to extract important features

in vocal-emotion recognition. Based on evidence obtained

from both modern physiological [12] and psychological [13]

models, an auditory filterbank exists in the human auditory

system. The auditory filterbank decomposes speech signals

into channel signals (temporal amplitude envelope (TAE) and

temporal fine structure) in the time-frequency domain. Several

studies have proved that the TAE and its modulation cues play

an important role in speech recognition [14±16]. One study on

vocal-emotion recognition [17] proposed modulation spectral

features (MSFs) on the basis of the modulation analysis of

the TAE and proved that MSFs contribute to vocal-emotion

recognition. Due to vocal-emotion recognition being robust

against noise and reverberation, as important features for vocal-

emotion recognition, MSFs have the potential to improve the

emotion-recognition rate in noisy reverberant environments in

SER. However, how MSFs perform and whether they have

good noise-reverberation robustness is still unclear.

We focused on the effectiveness and robustness of MSFs

for SER in noisy reverberant environments. We used a support

vector machine (SVM) as the classifier to carry out emotion
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Fig. 1. Process of extracting MSFs [17].

classification to investigate the following two research ques-

tions: (1) Whether MSFs contribute to SER and (2) Whether

MSFs have good noise-reverberation-robustness for SER.

II. IMODULATION SPECTRAL FEATURE

EXTRACTION

We used the same MSF-extraction method as in a previous

study [17]. To extract MSFs from emotional speech signals,

it is first necessary to calculate the modulation spectrogram

using a modulation filterbank. Figure 1 shows the modulation

process we used. Emotional speech signals s were divided into

several frequency bands by using an auditory-based band-pass

filterbank:

sk(n) = s(n) ∗ hk(n), (1)

where * denotes the convolution operator, hk(n) is the impulse

response of the kth channel, and n is the sample number in

the time domain. The 6th-order Butterworth infinite impulse

response (IIR) band-pass filterbank was used as the auditory

filterbank. The bandwidth of each filter was the bandwidth

of the human auditory filter, and the order of the filters

was determined in accordance with the equivalent rectangular

bandwidth (ERBN) and ERBN-number scale [18], where the

unit of ERBN-number is Cam. The boundary frequencies of

the band-pass filters (BPFs) were defined as ERBN-number

from 3 to 35 Cam with an 8 ERBN bandwidth, and the number

of channels was 4.

The temporal envelope of the output signal from each BPF

sk(n) was extracted using the Hilbert transformation, and

a 2nd-order Butterworth IIR low-pass filter (LPF) (cut-off

frequency is 64 Hz) was used as follows:

ek(n) = LPF [|sk(n) + jH[sk(n)]|] , (2)

where H denotes the Hilbert transform.

The next step involved decomposing the temporal envelope

into several modulation-frequency bands by using a modula-

tion filterbank:

Ek,m(n) = gm(n) ∗ (ek(n)− ek(n)), (3)

where m is the channel number of the modulation filter, gm(n)

is the impulse response of the modulation filterbank, and

ek(n) is the time-averaged amplitude of ek(n). The modulation

filterbank consisted of six filters (one LPF and five BPFs). The

boundary frequencies of the filters were spaced on an octave

frequency band from 2 to 64 Hz.

The root-mean-square of Ek,m(n) is calculated as the mod-

ulation spectrogram,

Ēk,m(n) =

√

√

√

√

1

N

N
∑

n=1

E2

k,m(n), (4)

where the N is the length of the speech signal s(n).
In the next step, ten MSFs should be extracted from the

modulation spectrograms. They are the MSFs in the acoustic-

frequency domain (the subscript is m) and in the modulation-

frequency domain (the subscript is k): the modulation spectral

centroid (MSCRm/k), modulation spectral spread (MSSPm/k),

modulation spectral skewness (MSSKm/k), and modulation

spectral kurtosis (MSKTm/k), which are defined as follows:

MSCRm =

∑K
k=1

kĒk,m
∑K

k=1
Ēk,m

, (5)

MSSPm =

∑K
k=1

[k −MSCRm]2Ēk,m
∑K

k=1
Ēk,m

, (6)

MSSKm =

∑K
k=1

[k −MSCRm]3Ēk,m
∑K

k=1
Ēk,m

, (7)

MSKTm =

∑K
k=1

[k −MSCRm]4Ēk,m
∑K

k=1
Ēk,m

, (8)

MSCRk =

∑M
m=1

mĒk,m
∑M

m=1
Ēk,m

, (9)

MSSPk =

∑M
m=1

[m−MSCRk]
2Ēk,m

∑M
m=1

Ēk,m

, (10)

MSSKk =

∑M
m=1

[m−MSCRk]
3Ēk,m

∑M
m=1

Ēk,m

, (11)
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Fig. 2. Schematic diagram of noise-vocoded method used to generate experiment stimuli (NBN: narrow band noise). BPFs were defined as ERBN-number from
3 to 35 Cam with bandwidths of 2 ERBN. Number of channels was 16 [11].

MSKTk =

∑M
m=1

[m−MSCRk]
4Ēk,m

∑M
m=1

Ēk,m

. (12)

The last two MSFs in the acoustic-frequency and

modulation-frequency domains were modulation spectral tilts

(MSTLm and MSTLk), which are the linear regression coef-

ficients obtained by fitting the first-degree polynomial to the

modulation spectrograms.

III. EXPERIMENTAL SETTING

A. Original speech data

We used the Fujitsu Japanese Emotional Speech Database

used by Zhu et al. [11,16] as the original speech data. In

this database, a professional actress’s sentences are expressed,

and each sentence contains one of five emotions (neutral, joy,

cold anger, sadness, and hot anger). The speech data were

recorded with a sampling frequency of 20 kHz (the original

signal was 22.05 kHz but was resampled to 20 kHz to match

the conditions of other experiments) and 16-bit quantization,

and the duration of each utterance was about 3 to 4 s.

B. Noise-vocoded speech generation

We used the same method as in a previous study [11] to

generate NVS in noisy and reverberant environments as speech

data. NVS is synthesized speech that preserves the TAE infor-

mation, which contains important emotion information [11,17].

The experimental stimuli of NVS were synthesized in three

environments: noisy, reverberant, and noisy reverberant. The

experimental stimuli were created by the following procedure.

To produce noisy emotional speech, we used stationary noise

(white Gaussian noise), and the adjusted noise was added to the

speech so that the SNR of the original speech and noise would

differ. SNRs of 20, 15, 10, 5, 0, and −5 dB were selected.

Concerning reverberant emotional speech, previous research

used a statistical room impulse response (Schroeder model)

[19]. Five types of room-impulse responses with reverberation

times TR of 0.1, 0.2, 0.5, 1.0, and 2.0 s were convoluted into

the original speech.

For noisy reverberant emotional speech, a reverberant

speech was created by convolving three types of room-impulse

responses with TR of 0.5, 1.0, and 2.0 s into the original

speech. Then, five types of constant noise (white Gaussian

noise) with SNRs of 20, 10, 5, 0, and −5 dB were added

to the reverberant speech. From the combination of the above

cases, there were a total of 15 reverberation conditions.

After adding noise and reverberation, the experimental stim-

uli of NVS were created. NVS is speech obtained by driving

the TAE information using band-limited random noise as a

carrier signal. Figure 2 shows the generation of the NVS

stimuli. As the input signal, noisy reverberant emotional speech

was divided into several frequency bands by using an auditory

filterbank that simulates human frequency selectivity. The 6th-

order Butterworth IIR band-pass filterbank was used as the

auditory filterbank. The relationship between ERBN-number

and acoustic frequency is defined as

ERBN−number = 21.4log10

(

4.37f

1000
+ 1

)

, (13)

where f is the frequency in Hz, and the subscript N indicates

the characteristics of normal hearing. The signal was then

constructed at the boundary frequencies of the BPFs, BPFs

were defined as ERBN-number from 3 to 35 Cam with

bandwidths of 2 ERBN, and the number of channels of the

BPFs was 16.

In each frequency band, the TAE of the signal was extracted

using the Hilbert transform and a 2nd-order Butterworth IIR

LPF with a cut-off frequency of 64 Hz.

The TAE in each channel was then served with the band-

limited noise generated by band-pass filtering white Gaus-

sian noise at the same boundary frequency. All amplitude-

modulated noise was summed to generate the NVS stimulus.

The sampling frequency for stimulus creation was unified at

20 kHz.

C. Speech emotion recognition experiment setting

Since we used a small dataset [17] to evaluate the effec-

tiveness of the MSFs on emotion recognition, we used a SVM

as it effectively captures the data characteristics in a less-data

situation. In particular, we used the SVM as the classifier to
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conduct a five-class classification. The five classes correspond

to the five emotion labels in the Fujitsu dataset, which are

happy, sad, natural, cold anger, and hot anger. The input

to the model is the speech feature including the MSFs and

other feature sets as baselines, which are described below. We

investigated each noisy reverberant environment described in

Section III. B. The input features were extracted from each

corresponding speech environment.

We aimed to comprehensively evaluate the effect of each

single MSF and combinations of MSFs. Accordingly, we

divided the input of MSFs into two groups: a single MSF

and combination of MSFs. For the single MSF, we used each

single MSF as one input vector to the SVM. The input is a

one-dimensional vector accordingly. We evaluated each of the

ten MSFs in each speech environment. For the combination

of MSFs, we used each combination (contains several single

MSF) as the input to the SVM, so that the input’s dimension

would be from 2 to 10 in accordance with the features’

combination. As there are 1013 combinations from 10 MSFs,

we evaluated each of the 1013 combinations in each speech

environment.

We used two widely used feature sets as baseline features

to evaluate the effectiveness of the MSFs in each speech

environment:

The InterSpeech 2009 emotion feature set (IS09) [20] was

proposed for the emotion recognition challenge on InterSpeech

2009. This feature set contains 32 types of low-level de-

scriptors (LLD), each LLD has 12 functional features. The

features include fundamental frequency (F0), zero cross rate,

and MFCCs 1-12. The total dimension of this feature set is

384.

The extended Geneva Minimalistic Acoustic Parameter Set

(eGeMAPS) [21] was proposed as a minimalistic feature set to

provide a basic standard acoustic parameter for various areas of

automatic voice analysis. The eGeMAPS contains frequency,

energy, amplitude, and spectral features. The dimension of the

eGeMAPS is 88.

To reduce the effect of data distribution in the evaluation, we

used a five-fold training strategy. We split the dataset into five

folds, each time we used four of the folds as a training set to

train the model, and the remaining fold was used as the test set

to evaluate the model’s performance. We trained five SVMs for

each feature input in one noisy reverberant environment. The

average performance of the five SVMs was used to evaluate

the input feature’s performance in the noisy and reverberant

environments. Unweighted accuracy was used as the evaluation

metric.

IV. RESULTS

In all figures in this section, the black line indicates the

emotion-recognition accuracy of IS09, gray line indicates

that of eGeMAPS, green line indicates the highest emotion-

recognition accuracy of a single MSF among the ten MSFs,

and red line indicates the MSFs combination with the highest

emotion-recognition accuracy.

Figure 3 shows the results of the comparison of emotion-

recognition accuracy in different noisy environments. The

IS09 feature set performed better than eGeMAPS in all noisy

environments. The best combination of MSFs improved the

emotion-recognition accuracy by 4, 4, and 12% compared

with IS09 in the noisy environments of SNR of 10, 5, and

−5 dB, respectively. Although the best single MSF did not

perform better than the IS09, the best single MSF improved

the emotion-recognition accuracy by 4, 8, and 8% compared

with eGeMAPS in the noisy environments of SNR of 5, 0, and

−5 dB, respectively. These results indicate that the MSFs con-

tribute to SER in noisy environments. The mean and variance

of the best combination of MSFs among all noisy environments

were 90.67 and 0.11%. While the mean and variance of IS09

were 92.67 and 0.47%, those of eGeMAPS were 80.67 and

0.22%. The performance of the best combination of MSFs was

more stable than those of IS09 and eGeMAPS. These results

indicate that MSFs are robust against noise conditions.

Figure 4 shows the results of the comparison of emotion

accuracy in different reverberant environments. The IS09 fea-

ture set performed better than eGeMAPS in all reverberant

environments. The best combination of MSFs improved the

emotion-recognition accuracy by 8, 12, 4, and 24% compared

with ISO9 in the reverberant environments of TR of 0.1, 0.2,

0.5, and 1.0 s, respectively. The best single MSF improved

the emotion-recognition accuracy by 8 and 8% compared

with eGeMAPS in the reverberant environments of TR of 1.0
and 2.0 s, respectively. The mean and variance of the best

combination of MSFs among all reverberation environments

were 95.20 and 0.11%. While the mean and variance of IS09

were 87.20 and 1.23%, those of eGeMAPS were 71.20 and

0.27%. The performance of the best combination of MSFs was

more stable than those of IS09 and eGeMAPS. These results

indicate that MSFs are robust against reverberation conditions.

Figures 5-9 show the results of the comparison of emotion

accuracy in different noisy reverberant environments. Except

for the extremely harsh noisy reverberant environment (SNR =
−5 dB and TR = 2.0 s), IS09 performed better performance

than eGeMAPS in all noisy reverberant environments. The

best combination of MSFs improved the emotion-recognition

accuracy by 8, 20, 8, 28, 8, and 8% compared with ISO9

in the noisy reverberant environments of SNR = 5 dB and

TR = 0.5 s, SNR = 0 dB and TR = 1.0 s, SNR = 0
dB and TR = 2.0 s, SNR = −5 dB and TR = 0.5 s, and

SNR = −5 dB and TR = 1.0 s, respectively. The best combi-

nation of MSFs improved the emotion-recognition accuracy

by 8% compared with eGeMAPS in the noisy reverberant

environment of SNR = −5 dB and TR = 2.0 s. The mean

and variance of the best combination of MSFs among all noise

reverberation environments were 90.93 and 0.15%. While the

mean and variance of IS09 were 87.73 and 1.36%, those of

eGeMAPS were 71.47 and 1.19%. The performance of the

best combination of MSFs was more stable than IS09 and

eGeMAPS. These results indicate that MSFs are robust against

noisy reverberant environments.
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Original

NVS
SNR 20 dB SNR 15 dB SNR 10 dB SNR 5 dB SNR 0 dB SNR-5 dB

IS09 96% 100% 100% 88% 88% 96% 84%

eGeMAPS 76% 84% 88% 76% 80% 76% 80%

Best single MSF 68% 72% 80% 76% 84% 84% 88%

Best combination of MSFs 92% 88% 88% 92% 92% 88% 96%
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Fig. 3. Results of comparing emotion accuracy in different noisy environments

Original

NVS
TR 0.1 s TR 0.2 s TR 0.5 s TR 1.0 s TR 2.0s

IS09 96% 84% 84% 96% 72% 100%

eGeMAPS 76% 68% 76% 76% 64% 72%

Best single MSF 68% 52% 76% 72% 72% 80%

Best combination of MSFs 92% 92% 96% 100% 96% 92%
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Fig. 4. Results of comparing emotion accuracy in different reverberant environments

Original NVS SNR 20 dB TR 0.5 s SNR 20 dB TR 1.0 s SNR 20 dB TR 2.0 s

IS09 96% 100% 100% 100%

eGeMAPS 76% 84% 80% 76%

Best single MSF 68% 76% 64% 68%

Best combination of MSFs 92% 96% 96% 92%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

E
m

o
ti

o
n

-r
e

co
g

n
it

io
n

 a
cc

u
ra

cy

Comparison of emotion-recognition accuracy

in different noisy reverberant environments 

Fig. 5. Results of comparing emotion accuracy in different noisy reverberant environments (noise condition was SNR= 20 dB, reverberation condition changed)
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Original NVS SNR 10 dB TR 0.5 s SNR 10 dB TR 1.0 s SNR 10 dB TR 2.0 s

IS09 96% 100% 100% 88%

eGeMAPS 76% 72% 80% 88%

Best single MSF 68% 68% 76% 72%

Best combination of MSFs 92% 88% 96% 88%
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Fig. 6. Results of comparing emotion accuracy in different noisy reverberant environments (noise condition was SNR= 10 dB, reverberation condition changed)

Original NVS SNR 5 dB TR 0.5 s SNR 5 dB TR 1.0 s SNR 5 dB TR 2.0 s

IS09 96% 84% 88% 92%

eGeMAPS 76% 56% 64% 76%

Best single MSF 68% 76% 76% 72%

Best combination of MSFs 92% 92% 88% 88%
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Fig. 7. Results of comparing emotion accuracy in different noisy reverberant environments (noise condition was SNR= 5 dB, reverberation condition changed)

In summary, the experimental results indicate that using

MSFs improved the recognition accuracy in 13 of the 26

environments compared with the best baseline feature set by

an average improvement of 11.38%. These results also indicate

that, by describing the TAE characteristics of the speech

signals, the MSFs are robust against noise and reverberation

for SER.

V. DISCUSSION

As mentioned in previous sections, using MSFs has the

potential to improve emotion-recognition rates in noisy re-

verberant environments. The results are consistent with the

expectation that MSFs are robust against noisy and reverberant

environments for SER. This is assumed to due to the ex-

traction method of MSFs. MSFs were proposed on the basis

of the auditory modulation filterbank in the human auditory

system [17]. Thus, MSFs can reflect the characteristics of

the process of human vocal-emotion recognition while having

noise-reverberation-robustness similar to that of human vocal-

emotion recognition.

As the above results indicate, except for the extremely

harsh noisy reverberant environment (SNR = −5 dB and

TR = 2.0 s), the best combination of MSFs always achieved

higher recognition accuracy than the best single MSF. This

can be explained by the fact that different MSFs represent

different higher-order statistics in the processing of emotional

speech signals, and these high-order statistics play different

roles in different emotion-recognition processes. For example,

a breathy voice, such as sad speech, is produced when the

vocal fold motion is not broad enough to close the glottis

completely. This phenomenon makes a breathy voice have a

spectrum with a strong slope [22]. Consequently, the slope-

related modulation spectral tilts (MSTLm and MSTLk) are

important in sadness recognition. When we combine the MSFs,

different MSFs complement each other; thus, combinations of

MSFs have advantages during average emotional recognition
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Original NVS SNR 0 dB TR 0.5 s SNR 0 dB TR 1.0 s SNR 0 dB TR 2.0 s

IS09 96% 88% 76% 84%

eGeMAPS 76% 64% 72% 56%

Best single MSF 68% 76% 88% 80%

Best combination of MSFs 92% 88% 96% 92%
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Fig. 8. Results of comparing emotion accuracy in different noisy reverberant environments (noise condition was SNR= 0 dB, reverberation condition changed)

Original NVS SNR -5 dB TR 0.5 s SNR -5 dB TR 1.0 s SNR -5 dB TR 2.0 s

IS09 96% 60% 76% 80%

eGeMAPS 76% 56% 64% 84%

Best single MSF 68% 72% 68% 68%

Best combination of MSFs 92% 88% 84% 92%
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Fig. 9. Results of comparing emotion accuracy in different noisy reverberant environments (noise condition was SNR=-5 dB, reverberation condition changed)

over a single MSF.

VI. CONCLUSIONS

We investigated MSFs as robust features against noise and

reverberation for SER. We used NVS as speech data and an

SVM as the classifier to carry out emotion recognition. The

experimental results indicate that, compared with two widely

used feature sets, IS09 and eGeMAPS, using MSFs (containing

the best single MSF and best combination of MSFs) improved

the recognition accuracy in 13 of the 26 environments, with an

average improvement of 11.38%. These results also indicated

that the MSFs contribute to SER and are robust against noise

and reverberation.

For future work, we will further analyze the specific com-

ponents contained in the combination of MSFs. If an optimal

combination achieves the highest recognition rate many times

in all noisy reverberant environments, then this combination

can be considered an important combination of MSFs for SER.

By analyzing the important combinations of MSFs, a robust

and better-performing SER model can be designed.
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