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Abstract—IEEE 802.15.4 networks are promising solutions
for wireless personal area networks, and in particular for
wireless home area networks. IEEE 802.15.4 has numerous
applications in fields such as energy management and home au-
tomation. However, real-world trials with 802.15.4 devices are
difficult because of the characteristics of these devices (small
dimensions, wireless communication), and the potentially large
size of the network. We present in this paper an IEEE 802.15.4
network emulation testbed that makes possible repeatable and
controllable live experiments with 802.15.4-based devices. The
testbed is built by extending the functionality of the wireless
network emulation testbed named QOMB with 802.15.4 PHY
and MAC layer capabilities, as well as 802.15.4 device processor
emulation. We illustrate the usability of the 802.15.4 network
emulation testbed with a case study of home networking used
for automation related to environment control.

Keywords-IEEE 802.15.4; network emulation; processor em-
ulation; network testbed.

I. INTRODUCTION

IEEE 802.15.4 is a standard for the physical and media

access control layers of low-rate wireless personal area net-

works (LR-WPANs). The standard targets the low-cost, low-

speed ubiquitous communication between devices. IEEE

802.15.4 is also the basis of higher-layer specifications

such as ZigBee that add extra encryption, authentication,

and application services. Thus, 802.15.4 and ZigBee are

becoming the solution of choice for various home network

applications, such as energy management, remote control,

home automation, and health care. The popularity of IEEE

802.15.4 lead to significant R&D efforts related to this

standard in the fields of embedded systems and networking,

ubiquitous intelligence, and pervasive computing.

The reduced size of 802.15.4-based devices, the wireless

nature of their communication, and the large number of

devices typically required by a home network application

all make that real-world trials with 802.15.4 networks are

difficult to perform. The often-used alternative of network

simulation, while meeting some of the requirements, raises

questions regarding the realism of the experiments, and does

not typically allow to directly execute the device firmware.

In this paper we present an IEEE 802.15.4 network emula-

tion testbed that allows conducting realistic live experiments

with 802.15.4 networks in a repeatable manner by running

the real device firmware in controlled and reproducible

network conditions. The emulation testbed is based on the

framework of a generic wireless network emulation testbed

that we designed and developed, named QOMB. In this

work QOMB was extended for the purpose of 802.15.4

network emulation through the implementation of specific

functionality, such as IEEE 802.15.4 PHY and MAC layer

emulation, as well as 802.15.4 device processor emulation.

We illustrate the usage of our 802.15.4 network em-

ulation testbed with a case study of home networks for

sensing applications that could be used in connection with

automation for temperature regulation, and potentially also

for smart energy management. This case study demonstrates

the usability of our testbed, and its capabilities for the

performance evaluation and validation of 802.15.4 networks

in complex environments, including mobility.

The contributions of this paper are as follows:

• A probabilistic model for the 802.15.4 PHY layer;

• The implementation of an 802.15.4 device emulator,

including the MAC layer and the device processor;

• An 802.15.4 network case study of a temperature

sensing application.

The paper is organized as follows. In Section II we sum-

marize the main aspects related to QOMB, the framework

on which our testbed is built. In Section III we detail the

additional features that we implemented in order to support

802.15.4 network emulation on QOMB. We then illustrate

the use of the testbed for home automation in Section IV.

The paper ends with a section on related work (Section V),

and conclusions (Section VI).

II. QOMB WIRELESS NETWORK EMULATION TESTBED

QOMB is a wireless network emulation testbed that was

initially created for IEEE 802.11 (WLAN) network emu-

lation. The general architecture of QOMB, and utilization

examples in the context of WLAN were presented in [4]. The

modular architecture of QOMB and its components makes

it possible to extend the testbed to other wireless network

technologies and devices in a straightforward manner. By

adding the necessary features, we could employ QOMB for
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Figure 1. Logical hierarchy of QOMB components.

the performance analysis of a pedestrian localization system

using active RFID tags, as it was detailed in [2].

In this section we shall introduce the main components

of QOMB, and the generic architecture used on QOMB

for ubiquitous system emulation. In particular, the QOMB

wireless network emulation testbed is realized by integrating

the wired-network testbed that is StarBED (and its support

tools, SpringOS and RUNE) with the wireless network

emulation set of tools that is QOMET. The logical hierarchy

of the elements that compose QOMB is shown in Figure 1.

A. StarBED

StarBED is a large-scale wired-network testbed at the

Hokuriku Research Center of the National Institute of

Information and Communications Technology, located in

Ishikawa, Japan [8]. With more than 1000 interconnected

PCs available for experiments, StarBED makes possible

a wide range of network experiments, and represents the

infrastructure of QOMB.

1) SpringOS: The main experiment-support software tool

for StarBED is called SpringOS, and allows users to eas-

ily perform complex experiments with a large number of

hosts [8]. The main two functions of SpringOS are:

• Experiment preparation: configure the experiment hosts

and network so that they are ready for experiment

execution;

• Experiment execution: effectively carry out the experi-

ment by executing in the required order the necessary

commands on the experiment hosts.

SpringOS is oriented towards IP network experiments,

therefore in our work related to ubiquitous systems and in

particular to 802.15.4 networks, which do not employ IP

communication, we used another support tool: RUNE.

2) RUNE: The experiment-support software tool that is

aimed at making possible ubiquitous network emulation

experiments on StarBED is called RUNE (Real-time Ubiq-

uitous Network Emulation environment). RUNE is a frame-

work for performing emulation experiments with a large

number of emulated devices [9]. Different from SpringOS,

RUNE has no restrictions regarding the type of network used

in experiments. Hence, RUNE is the ideal choice for driving

802.15.4 system emulation on StarBED, as these devices do

not use IP communication.

For the purpose of this paper we summarize only the

most important aspects related to RUNE. First of all, RUNE

experiments are globally managed by a module called RUNE

Master executed on a master computer that can be any

StarBED host. RUNE Master communicates with modules

called RUNE Manager, an instance of which is executed

on each experiment host. The functionality of the emulated

ubiquitous devices is reproduced by entities that are generi-

cally called spaces in RUNE. Spaces on an experiment host

are controlled by the local RUNE Manager. They commu-

nicate with each other via abstractions of communication

channels called conduits. Note that conduits are only logical

channels for passing messages between spaces with the

assistance of RUNE Managers, and network emulation has to

be performed by using dedicated spaces for communication

condition emulation, as shown in Section II-C.

B. QOMET

QOMET (Quality Observation and Mobility Experiment

Tools) is a set of tools for wireless network emulation

in complex scenarios including mobility. QOMET provides

the necessary mechanisms for performing wireless network

emulation in a distributed manner by reproducing the com-

munication conditions between the current node and the

other nodes in the experiment. Note that QOMET is not

an emulator per se, and cannot be executed in a standalone

manner. Instead, QOMET relies on the experiment manage-

ment mechanisms of StarBED for its distributed execution.

This is why the integration of all the tools that we mentioned

so far effectively creates a new entity, the wireless network

emulation testbed QOMB.

The most important components of QOMET are the

libraries called deltaQ and chanel. Another library, called

wireconf, is only used in the context of IP network emula-

tion, hence it will not be discussed in this paper.

1) DeltaQ library: The deltaQ library is in charge of

computing the communication conditions between wireless

nodes given a user-defined scenario. The scenario specifies

the properties of the wireless nodes (position, network

technology parameters, mobility patterns, etc.), and of the

environment in which they are placed (attenuation, shad-

owing, street and building structures, and so on). These

properties are used to create a “virtual world” that corre-

sponds to the scenario, in which the wireless nodes move

and communicate with each other.

2) Chanel library: The communication conditions com-

puted by deltaQ are recreated during the live experiment by

the chanel library. This library is in charge of delivering the

messages from a wireless node to all the other nodes with

which it can communicate according to the scenario, after

applying the corresponding network degradation (packet

loss, delay, bandwidth limitation).
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Figure 2. Architecture of the QOMB ubiquitous network emulation testbed
framework.

C. Emulation Architecture

In Figure 2 we show the architecture of the QOMB

ubiquitous network emulation framework that is created by

combining the previously mentioned components. Note how

RUNE manages the experiment executed on StarBED hosts

via the global RUNE Master and the local RUNE Manager

modules (SpringOS is not mentioned in the figure because

it only plays a role in experiment preparation, as indicated

in Section II-A). Each logical ubiquitous device is in prac-

tice composed of two elements, which are implemented as

RUNE spaces: a communication space and a control space.

The communication space recreates the communication

conditions between each emulated ubiquitous device and the

other devices in the experiment. Practically, the communi-

cation space employs the chanel library to accomplish this

task. In its turn, the chanel library uses the communication

conditions computed by the deltaQ library. For 802.15.4

experiments, the QOMET deltaQ library had to be enhanced

by adding support for IEEE 802.15.4 PHY layer emulation.

These modifications will be discussed in Section III-A.

The control space reproduces the behavior of the emulated

ubiquitous device. Its most important part is represented by

the processor emulator, that emulates the execution of a

real ubiquitous device processor, so as to allow using on

QOMB the same firmware with the real ubiquitous device.

As processors are specific to the hardware whose behavior

is reproduced on QOMB, such a processor emulator needs

to be implemented for each type of ubiquitous device. Other

modules and functionality may be necessary too, depending

on the emulated device and type of experiment. All these

issues will be analyzed in Section III-B.

III. IEEE 802.15.4 NETWORK EMULATION

In order to add IEEE 802.15.4 network emulation capa-

bilities to QOMB, the two generic spaces used for ubiqui-

tous device emulation that were presented in Figure 2, the

communication space and the control space, need to support

802.15.4 specific functionality. While some of this function-

ality is generic, such as the 802.15.4 PHY layer emulation

capability integrated with the QOMET deltaQ library, some

of this functionality is necessarily device dependent. This is

because the goal of executing real device firmware in the

emulator requires considering particular devices.

In this work we focused on an 802.15.4 device named

JN5139, that is manufactured by Jennic, Ltd. The JN5139

is a general-purpose micro-controller that integrates a 32-

bit RISC processor with a fully compliant 2.4 GHz IEEE

802.15.4 transceiver. The processor has an OpenRISC ar-

chitecture and operates at 16 MHz. The memory consists

of 192kB ROM for system code, including protocol stack,

and 96kB RAM for system data and optional program code.

The device has other features such as comparators, timers,

counters, and various kinds of interfaces. In particular, the

device that we emulate has on-board temperature, light level

and humidity sensors, and an LCD display.

A. Communication Space

The generic communication space that was presented

in Figure 2 was extended so as to reproduce 802.15.4

communication conditions between the wireless nodes. For

realism purposes, we decided to execute an 802.15.4 MAC

layer implementation in the complementary control space;

hence, only the 802.15.4 PHY layer had to be modeled in the

communication space. This model was created by adapting

the 802.11 PHY layer model already existing in QOMET [3]

to meet the specifications of the 802.15.4 standard. This

model was integrated with the deltaQ library of QOMET.

The goal of the model is to compute the frame error rate,

delay and bandwidth limitation that should be applied to

the frames that are received from the control space before

sending them to the other emulated devices in order to

recreate the user-defined scenario. The computation is done

by starting from the properties of the virtual world in which

the emulated devices are located, and by taking into account

the properties of the 802.15.4 PHY layer.

Propagation effects are considered through the use of the

log-distance path loss model [11], which gives the received

power at a distance d, Pr, as function of the received power

at the distance of 1 m, Pr0, the attenuation coefficient α,
the wall attenuation W , and the standard deviation σ of the
shadowing component, as shown in Equation (1):

Pr = Pr0 − 10α · log10(d) − W + Xσ. (1)

Note that Pr0 depends on the transmit power Pt as given

by Equation (2) below, where c is the speed of light, and F
is the frequency of the electromagnetic waves used:

Pr0 = Pt − 20 · log10
4π · F

c
. (2)

The frame error rate is then probabilistically computed

from the received power by using Equation (3):

FERS = FERS0 · e
S−(Pr−N)−Nth , (3)
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where S is the receive sensitivity threshold of the device
transceiver (provided by manufacturer), FERS0 is the frame

error rate when Pr reaches the threshold S (specified by the
IEEE 802.15.4 standard), N is the background noise in the
virtual environment, and Nth is the thermal noise.

Note that FERS0 is specified by transceiver manufactur-

ers for a standardized frame size, that we denote by FSS .

Therefore, Equation (3) gives a result that is specific to this

frame size (which is equal to 20 bytes for 802.15.4). To

extend the calculation of the frame error rate to frames with

arbitrary sizes, the following equation is necessary:

FER = 1 − (1 − FERS)FS/FSS , (4)

where FS denotes the size of the frame for which the error
rate is calculated.

At PHY layer, frame delay is given by transmission delay

and propagation delay. Since the propagation delay, i.e., the

time needed for electromagnetic waves to travel from sender

to receiver, is very small for 802.15.4 networks (under 1µs),
we only consider the transmission delay in our model. In

particular, the equation we use to compute the transmission

delay, D, is:

D = TPHY + TPSDU + TIFS , (5)

where TPHY is the duration of the PHY header, TPSDU is

the duration of the PHY payload, and TIFS is the duration of

the inter-frame spacing. TPHY is constant, and TIFS values

depend on frame size, being 192 µs for frames under 18
bytes, and 640 µs for larger frames. As for TPSDU , it is

computed by:

TPSDU = (8 · FPSDU )/R, (6)

where FPSDU is the size of the PHY payload in bytes, and

R is the operating rate.

Finally, the amount of effective bandwidth that is available

at the PHY layer is:

B =
TPHY + TPSDU

D
· R. (7)

The computed frame error rate, delay, and bandwidth

(FER, D, and B, respectively) are used by the communi-
cation space to recreate conditions in the 802.15.4 emulated

network that correspond to the user-defined scenario. Table

I shows the model parameter values that are used for the

above equations when performing the experiments that will

be described in Section IV.

B. Control Space

The generic control space that was presented in Figure

2 needs specific functionality related to JN5139 devices in

order to be used for their emulation. The modules required

in order to provide this functionality will be described below.

Table I
PARAMETER VALUES FOR IEEE 802.15.4 PHY EMULATION

Parameter Value

Transmit power, Pt 1 dBm
Attenuation coefficient, α 4.02
Shadowing parameter, σ 0.0
Wall attenuation, W 9.6 dBm
Frequency, F 2.4425 GHz

Speed of light, c 2.9979 · 108 m/s
Receive sensitivity, S -96 dBm
Error rate threshold at S, FERS 0.01
Frame size at S, FSS 20 bytes
PHY header duration, TPHY 192 µs
Inter-frame spacing, TIF S 192 or 640 µs
Thermal noise, Nth -105 dBm
Operating rate, R 250 kbps

1) Processor Emulator: One of the most important re-

quirements for enabling realistic emulation experiments is

in our view the ability to execute the same firmware with

the real devices. Therefore, an emulator was implemented

for the processor of the JN5139 device, so that its firmware

can be executed directly on our emulation testbed.

The processor emulator that we implemented, called ORE

(OpenRISC Emulator), supports the hardware components

of the JN5139 micro-controller, including memory and

counters, but also the other features, such as sensors. The

only point that is not supported directly is the 802.15.4

transceiver, and the 802.15.4 MAC functionality that is

associated to it. Fully implementing the transceiver would

have made little sense, since we emulate the PHY layer in

the communication space, as mentioned in Section III-A.

The trade-off we faced was the following: (i) implement

the transceiver hardware emulation only so as to run the

Jennic proprietary 802.15.4 MAC implementation; or, (ii)

avoid implementing the transceiver, and instead implement

an equivalent for the 802.15.4 MAC functionality. The main

drawback of the first solution is the performance penalty

that would occur when executing the proprietary MAC

implementation on the emulated device processor.

As a result, we decided to proceed with the second

solution: an alternative 802.15.4 MAC implementation that

runs as a separate module in the control space, and is

executed natively on the CPU of the experiment host. Thus,

the processor emulator will handle all firmware instructions

except those related to MAC operation, which are passed

to this separate module. The resulting hierarchy of the two

components of the control space is shown in Figure 3, which

also represents the binary firmware running on top of the

processor emulator.

2) IEEE 802.15.4 MAC Emulator: As a result of the

decision explained above, whenever an application tries to

call an 802.15.4 MAC primitive, the ORE processor emula-

tor intercepts it, and passes to the 802.15.4 MAC emulator

module that each ORE instance manages (cf. Figure 3). The

MAC emulator module is executed as native binary code
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Figure 3. Hierarchy of the control space components.

on the experiment host on which emulation takes place,

hence with a speed that is much faster than the execution

speed of ORE (for instance, about 100 times faster when

running on an 1.6 GHz computer CPU versus the 16 MHz

RISC processor). As a result, the performance of the library

is significantly improved, and our emulation testbed can

support seamlessly the live execution of 802.15.4 application

firmware. We note that because of the faster execution of the

library, the MAC will actually run faster on our testbed that it

would do on JN5139 devices. This difference is nevertheless

compensated by the absolute delays built into the MAC pro-

tocol, which makes that overall the emulator produces and

consumes messages in real time and in synchronization with

the wall clock, albeit only a loosely-coupled synchronization

compared to that of the real devices.

3) Temperature sensor model: The JN5139 device has

on-board temperature, light level, and humidity sensors,

which are all supported by the emulator from the point of

view of interaction with them at hardware level. Neverthe-

less, in order to perform realistic experiments it was neces-

sary to also model the behavior of the sensors themselves.

At this point we only integrated with the control space a

model for the temperature sensor, but models for the other

sensors will be added in the near future. In particular, the

equation we use for computing the temperature reading of

the sensor at time t after the sensor is brought into a certain
environment, that we denote by T (t) is:

T (t) = TA − (TA − T0)e
−t/Cth , (8)

where TA is the environment temperature to which the

sensor is adapting, T0 is the initial temperature of the sensor,

and Cth is the thermal time constant of the sensor, for which

a typical value according to our survey is 10 s.

C. Discussion

We acknowledge the fact that some of the sensor charac-

teristics that we use as parameters of our models may not be

provided by all manufacturers. In that case, either generic

values can be used, or the characteristics of the sensors can

be determined by the researchers themselves through simple

field trials.

One other issue is time synchronization. Note that we

use no specific distributed time synchronization mechanism

in our testbed. Instead, where needed, each component

synchronizes itself with the local clock of the PC on which

it is run by timing its own execution. Moreover, all the PCs

Figure 4. Emulation experiment scenario.

are synchronized with a time source via NTP (Network Time

Protocol). This method ensures sufficient time accuracy for

our purposes.

IV. EXPERIMENTAL RESULTS

To illustrate the capabilities of our 802.15.4 network

emulation testbed we consider a home network scenario.

The scenario is based on the characteristics of a real house

that has been built in the vicinity of our research center

for the purpose of conducting real-world trials with home

networks. The relation between the real house and our

802.15.4 network emulation testbed is bidirectional. On one

hand, the real house is intended as a validation environment

for our emulation testbed. On the other hand, the testbed is

aimed at extending the scale of the experiments that can

be performed in the real house. For instance, one could

use more sensors in the virtual environment than physically

available in the real house.

A. Experiment Setup

The proof of concept experiments that we present involve

two types of 802.15.4 devices, namely:

• Coordinators (C) that form the root of the 802.15.4 net-

work star topology, and could bridge to other networks;

• End devices (ED) that execute the 802.15.4 application,

and connect to the root node.

The emulation experiment we designed is set up in

a virtual environment based on the ground floor of the

real house, which includes three rooms, “Kitchen”, “Living

Room”, and “Japanese Room”, as shown in Figure 4. The

ground floor also includes several smaller spaces, such as

a hallway, corridor, and lavatory, that we designated in the

figure as a forth area with the generic name “Hallway”.

In our experiment we considered that each of the three

rooms has an independent network, but they share the net-

work identifier. Each room includes a coordinator, and also a

static end device, denoted in Figure 4 by C1 to C3, and ED1

to ED3, respectively. Transceiver and environment properties
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were chosen so that there is no interference between these

three networks.

The functionality of the JN5139 application that we used

on the end devices is to measure the temperature, light level,

and humidity, and report them regularly to the coordinator

to which they are associated. In the experiment we assume

that the coordinators are all connected by a wired network

to a central computer that will manage the entire house

for purposes of ambient control, such as temperature and

lighting adjustments, by controlling systems such as air

conditioners and lights.

Note that more advanced functions could be provided

as well, such as energy management. Thus, the central

computer could select in an intelligent manner the most

energy-efficient way to achieve a certain goal. For temper-

ature regulation, for instance, several choices can be made:

whether to turn on or off the air conditioner, to open or close

the windows, to pull up or down the blinds, depending on

the internal and external temperatures, time of day, presence

of people in the room, etc. Although this functionality is still

only hypothetical, we want to stress the fact that the remote

control of the above mentioned devices is possible in the

real house that we use for trials, and such applications are

envisaged for the near future.

In addition to the six static 802.15.4 devices discussed so

far, we included in the emulation experiment a seventh one,

an end device which is mobile. Figure 4 shows the initial

position of the mobile end device, denoted by ED4, and also

its trajectory starting from the hallway area (which has no

network). As the three networks in the house share the same

network identifier, the mobile device can connect to any of

them which is in its communication range.

The mobile end device executes the same application as

the static end devices. The role of the mobile device is to

illustrate the mobility emulation capabilities of the testbed,

and is intended to represent any kind of mobile sensor; it

could also be indirectly used for presence detection, as its

messages or lack thereof would notify the system of the fact

whether the sensor is present or not in a room.

One target for these experiments is to validate the overall

functioning of the 802.15.4 emulator. As the application

used is performing sensing, and the temperature sensors of

JN5139 are fully supported in our emulator, we focused on

the temperature sensing functionality. The conditions of the

experiment from this point of view are given in Table II,

which shows the fixed temperatures that we assigned to each

room (expressed in Celsius degrees), as well as the time

interval during which the end device ED4 is present in each

of the areas (as the node starts and finishes moving in the

hallway, two intervals are shown for this area).

B. Sensing Functionality

To evaluate the sensing functionality as reproduced on the

802.15.4 emulation testbed we collected the temperature data

Table II
EXPERIMENT CONDITIONS FOR TEMPERATURE SENSING

Area name Temperature [◦C] ED4 presence interval [s]

Hallway 24 0–122 and 306–360
Kitchen 28 122–184
Living Room 26 184–249
Japanese Room 27 249–306
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ED1 to C1 (Kitchen)

ED2 to C2 (Living)

ED3 to C3 (Japanese)

ED4 to C1 (Kitchen)

ED4 to C2 (Living)

ED4 to C3 (Japanese)

Figure 5. Temperature data values as received by the three coordinators.

received during the experiment by the three coordinators, C1,

C2, and C3, from the four end devices, ED1, ED2, ED3, and

ED4. The data is plotted in Figure 5. Note that, although

the total experiment duration was 360 s, we do not take into

account the first 100 s of the experiment, which include the

initialization of the emulated devices. Moreover, motion of

ED4 starts at time 120 s.

Figure 5 shows that each static sensor reports the correct

temperature value for the virtual area in which it is located,

as follows: ED1 sensed the temperature of the kitchen

(28 ◦C), ED2 sensed the temperature of the living room

(26 ◦C), and ED3 sensed the temperature of the Japanese

room (27 ◦C). As we assumed the temperatures for each area

to be fixed, sensor data from static sources is also constant

during the entire experiment duration.

The mobile end device, ED4, goes through all the three

virtual rooms during its motion. As a consequence, sensor

data will be sent to the coordinator to which ED4 is

associated in the room in which it is located during a certain

period. Hence, the data will be sent to C1, placed in the

kitchen, in the first part of the trajectory, then to C2, placed

in the living room, in the second part, and finally to C3,

placed in the Japanese room, at the end. Note how sensor

readings for ED4 change in Figure 5 starting at the time the

emulated mobile device enters a certain room, as it adapts

to the ambient temperature of a room. Thus, the sensor data

provided by ED4 reaches 28 ◦C while the device is in the

kitchen (around time 180 s), then goes to 26 ◦C after the

device arrives in the living room (around time 230 s), and

raises to 27 ◦C while the mobile device is in the Japanese
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room (around time 290 s). The last two sensor data values

(after time 300 s), received as ED4 entered the hallway,

and before the communication with C3 was interrupted,

show how the temperature sensor begins adapting to the

temperature of the hallway, which is 24 ◦C.

Figure 5 demonstrates that, even when being executed

on our 802.15.4 emulation testbed, the temperature sensing

application functions in the same manner with the case when

it would be executed in reality. This means that the testbed

can be employed as a replacement of real-world trials, for

instance in the development of an intelligent environment

control system that uses the data provided by the sensors

to make the required decisions. Moreover, the testbed could

be employed for assessing 802.15.4 applications that are in

the development process, to evaluate whether they behave

as expected, and what are their performance characteristics.

C. Hand-off Procedure

We use the same experiment described above to show

how our testbed can be used to measure characteristics of

the emulated ubiquitous system that may be difficult to

determine by real-world trials. Such a parameter is the hand-

off delay. As the end device ED4 moves from room to room,

it will have to connect to the network in each room in order

to successfully send its sensor data. Measuring the hand-

off delay in the equivalent real scenario is difficult because

it requires capturing the key packets in each room and

recording their time, while making sure that all the capture

devices are time synchronized with each other.

However, all our emulated devices are time synchronized

by design, as the hosts they are executed on are synchronized

using the NTP protocol, and all device initialization is

essentially simultaneous given the architecture of RUNE.

Therefore, such time measurements can be made in a

straightforward manner on the emulation testbed from the

log files of each subsystem.

Table III presents the hand-off delay results for ED4 that

we calculated for a series of five experiments performed

in the same conditions as above. We show the minimum,

average, maximum, and standard deviation results separately

for each hand-off event, i.e, first when ED4 transitions

between C1 and C2, and then between C2 and C3, but

also as a global average with both hand-offs included. We

note that the results are reasonably stable for the first hand-

off, around 19 s. For the second hand-off, while results are

typically around 18 s, in one case hand-off succeeded with

one packet faster than usual, resulting in a best-case hand-

off of about 10 s; this gave a smaller average of around 16

s, but also increased the standard deviation for that hand-off.

V. RELATED WORK

To the best of our knowledge, there exists currently no

system which has an identical functionality with our IEEE

Table III
HAND-OFF DELAY RESULTS

Hand-off delay
Conditions Min. [s] Avg. [s] Max. [s] Std.

Hand-off from C1 to C2 19.35 19.51 19.66 0.15
Hand-off from C2 to C3 10.06 16.24 18.60 3.53
Both hand-offs included 10.06 17.88 19.66 2.92

802.15.4 network emulation testbed. There are, however,

several approaches and tools that are related to our research.

SensorRAUM is a project whose goal is to transfer the

physical environment into a quasi-realistic virtual represen-

tation within a computer [1]. This representation makes

possible the interaction between real sensors and the virtual

world. We also emulate the sensors themselves, giving the

user more control over the experiment.

TOSSIM is a TinyOS mote simulator targeting the devel-

opment of sensor network applications [7]. Its authors claim

that it scales to thousands of nodes, and compiles directly

from TinyOS code. Hence, developers can test not only

algorithms, but also their implementations, albeit through

simulation. ATEMU is a software emulator for systems

based on the Atmel AVR processor [10]. It also includes

support for other peripheral devices on the MICA2 sensor

node platform [5], such as the radio. ATEMU can be used to

conduct studies in a controlled simulation environment, and

is compatible at binary level with the MICA2 hardware. Both

TOSSIM and ATEMU are essentially simulators focusing

on particular processors, and use only basic modeling for

the wireless communication (for instance, ATEMU only

supports free-space propagation). Moreover, they provide no

guarantee as to how far from wall clock time the experiment

execution is, since everything is performed in logical time,

which is typically much slower than real time for large-scale

experiments. Our testbed has none of these drawbacks.

Emulab provides a sensor network testbed including 25

MICA2 motes [12]. All motes are equipped with a serial

port, for control and debugging purposes, and can be used

remotely for experiments. Another sensor testbed is Mote-

Lab [13], which consists of a set of permanently deployed

sensor network nodes connected to a central server which

handles their management. Even though both Emulab and

MoteLab are controlled environments, the devices used in

these testbeds are real, hence subject to potential inter-

ferences. Moreover, no mobility experiments are possible

on these testbeds. Mobile Emulab uses robots to achieve

reproducibility of the motion of the wireless nodes [6].

However, the communication is still subject to potential

undesired influences. In addition, the range and speed of

the mobile nodes are limited.

Closer to our approach are the wireless network emulation

testbeds, mainly related to IEEE 802.11 networks. A system

such as TWINE uses computer models to perform real-time

experiments [14]. Thus it avoids undesired interferences and
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side effects, in a similar manner to the approach used by

QOMB for IEEE 802.15.4. However, QOMB implemented

not only 802.15.4 network emulation, but also the emulation

of the hardware of real 802.15.4 devices.

VI. CONCLUSION

In this paper we presented an IEEE 802.15.4 network

emulation testbed that can be used to perform experiments

with 802.15.4 applications in a controlled virtual environ-

ment. The testbed is built by extending the functionality

of an existing wireless network emulation testbed called

QOMB, that was created by the integration of a large-scale

wired-network testbed, StarBED, with the wireless network

emulation set of tools QOMET.

The extension of QOMB for 802.15.4 experiments was

accomplished by adding, first of all, support for the 802.15.4

PHY layer, through a probabilistic communication model,

and for the 802.15.4 MAC layer, through the implemen-

tation of the corresponding primitives. Furthermore, we

implemented a processor emulator for an existing 802.15.4

device, namely the Jennic JN5139. The processor emulator

allows running in real time on the emulation testbed the

same binary firmware that is executed on the real JN5139

devices. Combined with the 802.15.4 network support, this

effectively transforms QOMB into a testbed that makes

possible realistic 802.15.4 network emulation experiments.

To illustrate the functionality of the 802.15.4 network

emulation testbed we presented an experiment using a sce-

nario based on the topology of a real house that is available

for ubiquitous network experiments in the vicinity of our

research center. The experiment demonstrated the successful

emulation of features of 802.15.4-based systems such as

temperature sensing, which can be used for home automation

and environment control. The emulated mobility capabilities

also made possible to measure characteristics of the 802.15.4

network such as the hand-off delay. Thus, we emphasized

how the testbed can be used to assess the performance of

802.15.4 applications.

Our future work will focus on several research directions.

Ongoing work refers to validating our testbed by using

802.15.4 nodes in the real house for trials, and comparing

those results with equivalent experiments executed on the

emulation testbed, including for large-scale scenarios. A cur-

rent limitation of our testbed is that it doesn’t consider some

sensor characteristics, such as power consumption; therefore,

we intend to add support for these type of characteristics as

well, which are important in scenarios with battery-operated

sensors. Another direction refers to implementing the nec-

essary components for making complete home automation

experiments, such as the communication with the actuators,

and an algorithm for environment control.
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