
AI-based Intent-Driven Secure System Designer
Sian En Ooi, Razvan Beuran, Yasuo Tan

Japan Advanced Institute of Science and Technology
Nomi-shi, Japan

sianen.ooi@jaist.ac.jp

Ryosuke Hotchi, Takayuki Kuroda, Yutaka Yakuwa, Takuya Kuwahara, Kozo Satoda, Norihito Fujita
NEC Corporation
Minato-ku, Japan

Abstract—In this paper, we present the AI-based Se-
cureWeaver, a system designed to enhance the generation of
secure network architectures. Our approach utilizes an intent-
based representation of network service requirements, annotated
with security constraints, and employs Design Space Exploration
(DSE) augmented with classical machine learning algorithms
to optimize system design. The primary input to our system
consists of network service requirements and security constraints,
while the output is a secure and functional network topology.
By integrating AI into the existing SecureWeaver framework,
our primary contribution lies in demonstrating significant per-
formance improvements through the application of five well-
established AI algorithms. Our experimental results show that
the AI-based SecureWeaver achieves substantial reductions in
the number of iterations and the time required to design secure
systems compared to the non-AI baseline. These improvements
are validated across various corporate network cases, highlight-
ing the practical benefits of our approach. This work provides
insights into the effectiveness of AI algorithms in accelerating
secure design.

Index Terms—Networked Systems, Automated System Design,
Secure System Design, Artificial Intelligence

I. INTRODUCTION

Modern networked systems are increasingly dynamic and
heterogeneous, yet administrators must still ensure that de-
ployed architectures meet both functional and security ob-
jectives. Intent-Based Networking (IBN) offers a compelling
abstraction for expressing operator goals at a high level,
decoupling what the system should achieve from how it is im-
plemented. IBN has been applied across SDN, fog/edge plat-
forms, and enterprise environments [2], [7], [10], and recent
advances in large language models (LLMs) have expanded the
ability to parse and decompose natural-language intents into
actionable policies and configuration fragments [3], [4]. At
the same time, standardization efforts (e.g., ETSI ZSM/ENI,
3GPP, IETF) are converging on structured representations and
lifecycle stages (translation, verification, and enforcement) that
are essential for automation in production settings [1], [5], [6].

Bridging the strengths of both formal and generative ap-
proaches remains necessary. LLM-driven pipelines offer broad
language understanding and rapid adaptation to diverse intents,
while formal-methods yield strong correctness guarantees and
verifiable security properties but can be computationally costly
and less adaptable to ambiguous, high-level specifications.

This paper therefore positions the research as complementary
to LLM-based work, it emphasizes verified-by-construction
secure design and shows how AI techniques can accelerate
formal search rather than replace formal verification.

Previous research introduced the AI-based Weaver, a
formal-methods system designer that constructs and verifies
candidate topologies using symbolic constraint solving and
automated theorem proving [8]. SecureWeaver extended this
approach by embedding security requirements into the spec-
ification and verification phases [9]. This paper integrates
these lines of research into an AI-accelerated secure system
design toolchain, AI-based SecureWeaver that accepts intent-
like specifications annotated with security goals, uses AI
techniques to guide and prune the search, and applies formal
verification to ensure correctness and security by construction.

This paper makes the following contributions:

• Integration of SecureWeaver with AI-based Weaver:
present an AI-based secure system designer that uses
as input an intent-based representation of the service
requirements annotated with security requirements.

• Empirical evaluation: evaluated several AI algorithms
from the point of view of the performance improvements
of the DSE approach in generating secure system designs.

II. AI-BASED SECUREWEAVER

This paper presents AI-based SecureWeaver, an AI-driven
system that synthesizes network topologies meeting security,
functional, and performance requirements. This section covers
three key areas: core design framework, reinforcement learning
framework, and security validation integration.

A. Core Architecture

The foundation of AI-based SecureWeaver is the AI-based
Weaver, which leverages Graph Neural Networks (GNNs)
to enhance design-space exploration (DSE). By modeling
network topologies as graphs, the GNN rapidly evaluates can-
didate topologies, eliminating suboptimal options and priori-
tizing viable solutions. This reduces computational overheads
in exploring large search spaces. The overall architecture of
the AI-based Weaver system designer is shown in Fig. 1



connTo

LAN

connTo

LAN

connTo

LAN

LAN HOST

LAN

LAN HOST

LAN HOST

LAN

(a) Intent Requirement

(d) System Design (c) Tree Search

Input

Output

R
e
f
i
n
e
m
e
n
t

connTo

LAN

(b) Rules

HOST

LAN

Web
App

Web
App

Web
App

Web
App

Web
App

Web
App

Web
App

(b) Trained Model

}

Fig. 1. Overall architecture of the AI-based Weaver system designer.

B. Reinforcement Learning Framework

AI-based Weaver integrates reinforcement learning (RL) to
optimize topologies. Key algorithms include: (i) Q-learning
which balances exploration (ε-greedy) with reward maximiza-
tion; (ii) N-step TD and H-N-step TD (Heuristic N-step TD)
which improves learning efficiency via multi-step updates and
heuristic-driven ε adjustments; (iii) MCTS and MH-MCTS
(Multi-Heuristic MCTS) which prioritize high-quality candi-
dates through tree-based search and neural/gradient-guided
heuristics. These algorithms collectively refine topologies
while respecting system constraints.

C. SecureWeaver Integration

AI-based SecureWeaver extends the framework by em-
bedding security verification into the design process. Each
generated candidate is evaluated by the function is_goal(),
enforcing two criteria:

1) Concreteness: The candidate must fully specify all com-
ponents and relationships without any abstract entities

2) Security: The candidate must satisfy all security require-
ments using SecureWeaver’s verification mechanism

Only configurations passing both checks receive positive re-
wards in the RL framework. By incorporating SecureWeaver’s
security verification into the reward function, after concrete-
ness is ensured, the system guarantees that only topologies
meeting qualitative, quantitative, and security requirements are
accepted (see [9]). This integration ensures output topologies
satisfy all required constraints.

III. EVALUATION FRAMEWORK FOR AI-BASED
SECUREWEAVER

This section presents the evaluation framework of the AI-
based SecureWeaver implementation. The system was devel-
oped in Python 3 and executed on an AWS EC2 p2.xlarge
instance (4 vCPUs, 64 GB RAM, NVIDIA K80 GPU).

A. Evaluation Scenarios

We evaluated the AI-based SecureWeaver against three
network design scenarios representing increasing complexity:

1) Case A (Baseline): Represents a corporate network with
thin clients and web services vulnerable to MITRE ATT&CK
threats (T1090/T1190). This scenario builds upon the deter-
ministic evaluation from the research presented in [9].

2) Case B (Alternative Design): A contrasting configu-
ration featuring configuration, mail, and monitoring systems
with distinct threat profiles (T1602, T1190).

3) Case C (Complexity Test): This case creates a larger,
more complex design scenario by combining the components
and requirements from Cases A and B. The full network
architecture for all cases is illustrated in Fig. 2.

B. Algorithm Evaluation Methodology

Three experiments characterized the evaluation process:
1) Algorithm Comparison (Exp #1): Baseline performance

assessment of five learning algorithms with fixed hyper-
parameters.

2) Parameter Optimization (Exp #2): Refinement of top-
performing algorithms using varying discount factors (γ)
and exploration rates (ε).

3) Case Validation (Exp #3): Final testing of optimized
algorithms on the complex system design requirements
of Cases A-C.

To address algorithmic randomness, models were trained
across multiple batches with periodic model saving (every 500
episodes). This approach enabled statistical analysis through
repeated training and design cycles for both deterministic and
AI-based implementations. The complete evaluation frame-
work systematically compares AI-driven strategies against the
deterministic SecureWeaver, focusing on performance stability
across varying network configurations.

C. Preliminary Experiments: Deterministic versus non-
deterministic DSE

The deterministic SecureWeaver (v0.1.3) averaged 214152
iterations, while the non-deterministic version (v0.1.4) av-
eraged 397964.8 iterations (175523 to 701859). The non-
deterministic approach reduced iterations by 18% in optimal
cases but required up to 2.3× more iterations otherwise.
Runtime analysis showed deterministic execution at ∼5500
seconds, while the non-deterministic version ranged from 3988
to 18020 seconds, averaging a 77.7% increase but occasion-
ally reducing runtime by 26.8%. These results indicate that
non-deterministic DSE introduces variability but can improve
efficiency by escaping local optima.

D. Exp #1: Initial evaluation of all the five AI algorithms

We evaluated five AI algorithms to identify the most effec-
tive for secure system design. Models were saved every 500
training episodes and applied to Case A. Fig. 3 shows design
iterations per episodes for each algorithm.

Algorithms were ranked based on two criteria: standard
deviation below 100 and maximum iterations of 10000. If an
algorithm met both conditions for a specific episode number,
it was considered stable and effective.



bizLAN:LAN

bel
ong

To

Usr2:User

API2:ExtAPI

WAN:WAN

T1190

c
o
n
n
T
o

T1040

connTo

MonitorSys

Term:
Terminal

MgmtLAN:

LAN

wire:extWAN

T1602

Job1

Job2

co
nn
To

Job
Mgmt
Sys

Conf
Mgmt
Sys

MailSys

Requirement

WS:
WebStorage

WSSys:

WebSys

b
e
l
o
n
g
T
o

belongTo

BKSys:
BackUpSys

Req:

Requirement

Usr1:User

API1:ExtAPI

wire:REQsupport

include

wire:extWAN

T1190

co
nn
To

c
o
n
n
T
o

T1040

c
o
n
n
T
o

TC:
ThinClient

TCSys:
ThinClientSys

belongTo

co
nn
To

T1090

wire
:ext

WAN

wire:extWAN

belongTo

bel
ong

To

be
lo
ng
To

A B

Fig. 2. Input service requirement of Case C (combination of Cases A and B).

D
e

si
g

n
 I

te
ra

ti
o

n
s

Episodes

Q-learning
N-step TD
Heuristic N-step TD
MCTS
Multi-heuristic MCTS

Fig. 3. The number of design iterations versus episodes for each AI algorithm
in Exp #1.

N-step TD led with stable performance at 5500 episodes
(min=34, max=149, µ=68.56, σ=42.6), followed by MH-
MCTS at 10500 episodes (min=36, max=98, µ=53.68,
σ=19.29) and H-N-step TD at 12500 episodes (min=34,
max=66, µ=47.56, σ=10.95). Q-learning and MCTS did not
meet these criteria and were excluded. Therefore, N-step
TD, H-N-step TD, and MH-MCTS were selected for detailed
evaluation in Exp #2. TD-based algorithms showed sensitivity
to initial parameters, whereas MCTS, while unbiased, required
more samples for stability due to higher variance.

E. Exp #2: Detailed evaluation of the best three AI algorithms

After Exp #1, we examined N-step TD, H-N-step TD,
and MH-MCTS by varying γ (0.95, 0.97, 0.99) and ε-
stride (0.0006188, 0.0012375). N-step TD performed best,
with its top configuration at 5000 episodes (γ=0.99,
ε-stride=0.0012375), achieving an average of 90 itera-
tions (min=69, max=128, σ=17.92). Another strong set-
ting for N-step TD was at 5500 episodes (γ=0.95, ε-
stride=0.0012375), with an average of 93.36 iterations. H-
N-step TD was competitive, particularly at 6000 episodes
(γ=0.95, ε-stride=0.0012375), averaging 60.76 iterations
(min=37, max=117, σ=30.55). MH-MCTS ranked lower, with
its best configuration at 7000 episodes (γ=0.95), averaging
73.12 iterations. Results showed N-step TD as the most
effective, so it was chosen for further testing in Exp #3.

TABLE I
COMPARISON OF AI AND NON-AI PERFORMANCE ACROSS CASE A AND

CASE B.

Metric Case A
(Non-AI)

Case A
(AI)

∆

[%]
Case B

(Non-AI)
Case B

(AI)
∆

[%]
Avg. Iter. 397964.8 90.0 -99.9 51830.6 39.6 -99.9

σ Iter. 204067.6 17.1 -99.9 27634.7 7.3 -99.9
Total
Time [s]

9771.9 6044.2 -38.2 1004.4 14077.8 +1301.6

Learn
Time [s]

— 6035.5 — — 14071.5 —

Design
Time [s]

— 8.7 — — 6.3 —

σ Total
Time [s]

5393.4 102.8 -98.1 558.4 409.0 -26.8

F. Exp #3: Additional AI-based SecureWeaver evaluation

In this set of experiments, we further evaluated the per-
formance of the non-deterministic SecureWeaver with AI,
addressing the scalability, stability, and computation efficiency.

1) Case A Results: We compared N-step TD (γ=0.99, ε-
stride=0.0012375, 5000 episodes) with non-deterministic Se-
cureWeaver (no AI). As shown in Table I, the AI approach
reduced average design iterations by 99.9% (from 397964.8 to
90.0) and σ by 99.9%, showing improvements in consistency.

Average total design time decreased by 38.2% (from 9771.9
to 6044.2 seconds), with 6035.5 seconds for learning and only
8.7 seconds for execution. These results highlight the trade-off
between training time and design efficiency, showcasing AI’s
ability to accelerate the design process significantly.

2) Case B Results: In Case B, N-step TD (γ=0.97, ε-
stride=0.0012375, 10500 episodes) was compared it with non-
AI SecureWeaver. AI reduced average design by 99.9% (from
51830.6 to 39.6) and σ from 27634.7 to 7.3, indicating more
consistent outcomes. Total time increased by 1301.6% (from
1004.4 to 14077.8 seconds), with 99.96% spent on training
(14071.5 seconds) and only 6.3 seconds on design. This high-
lights AI’s ability to front-load computation during training,
enabling rapid and reliable design generation at deployment.

3) Case C Results: Lastly, Case C evaluated the AI-based
SecureWeaver on a significantly more complex system. Using



B

bizLAN:LAN

FW:Firewall

VM2:VM

RTR:Router

T1190

T1040

MonitorSys

Term:
Terminal

T1602

Job1

Job2

Job
Mgmt
Sys

Conf
Mgmt
Sys

MailSys

Req2

RX TX

Job1

Job2

VM

R
D
P

T1040

R
D

T119T1602

NIDS

marked:
include TC

TCSys

RDP

T1090T109

w
i
r
e
:
L
A
N

wire:LAN

OS1:
RHEL

HOST1:
PhysicalServer

TCS:
MWThin
Client

wire:HOST

wire:OS

L3

MgmtLAN:LAN

WSSys BKSysReq1

wire:REQ

marked
:

suppor
t

T1190

VM

MW

L3

WS

T1

WS

VM1:VM

OS3

MWAPS:
MWAppServer

SAN:
SAN

wi
re
:S
AN

wire:STGE

OS2

HOST2

BK:
MWBackUp

API1:ExtAPI
WAN:WAN

wire
:ext

WAN

API2:ExtAPI

wire:extWANUsr1:User

Usr2:User

R
D
P

T1040

R
D
P

T1040

wire:extWAN

wire:extWAN

IPS
EC

IPS
EC

OS4 OS5 OS6

OS7:Windows

VPN:VPNServer
NIDS:

NIDS

A A

Fig. 4. System design output generated by the AI-based SecureWeaver for Case C.

N-step TD (γ=0.97, ε-stride=0.0012375), we increased the
total episode number to 100000. The non-AI version failed
to complete the design due to storage exhaustion, while the
AI-enabled SecureWeaver succeeded in certain cases.

Figure 4 shows the output for Case C, combining elements
from Cases A and B. For the Case A portion (left- and
right-hand side), TCSys, WSSys, BKSys, and their compo-
nents are fully concretized, mitigating threats T1090, T1040,
and T1190. For Case B (middle), MonitorSys, JobMgmtSys,
ConfMgmtSys, MailSys, and their components are also fully
concretized, mitigating threats T1040, T1602, and T1190.

We ran three AI training sessions, evaluating success rates
across five designs. While Training 3 achieved full success
at 15000 episodes, Training 2 performed poorly across all
episodes. Neither Training 1 nor 3 achieved stable convergence
after 100000 episodes, though many models within these
sets successfully completed all five designs. Future work will
explore parameter adjustments to improve stability.

IV. CONCLUSION
This paper introduces SecureWeaver, an AI-based system

designer that uses intent-based network service requirements
with security annotations and employs a machine learning-
enhanced DSE approach to create system designs. The updated
framework incorporates security verification mechanisms from
the original SecureWeaver into the new AI-based version.
We evaluated the AI-based SecureWeaver through multiple
experiments across various corporate network cases to identify
the most suitable AI algorithms and assess the impact of AI
on improving the system designer’s performance. The results
showed significant performance improvements, by three orders
of magnitude compared to the original SecureWeaver. Future
work includes exploring AI algorithm parameters to achieve

more stable design results and integrating online feedback
mechanisms to dynamically adapt AI algorithms during the
design process. By continuously learning and adapting to
changing network conditions and security constraints, the AI-
based SecureWeaver could produce even more robust and
secure designs.

REFERENCES

[1] 3GPP: Management and orchestration; intent driven management ser-
vices for mobile networks: Ts 28.312 (2020)

[2] Collet, A., Banchs, A., Fiore, M.: Lossleap: Learning to predict for
intent-based networking. In: IEEE INFOCOM 2022-IEEE Conference
on Computer Communications. pp. 2138–2147. IEEE (2022)

[3] Dinh, L., Cherrared, S., Huang, X., Guillemin, F.: Towards end-to-end
network intent management with large language models. arXiv preprint
arXiv:2504.13589 (2025)

[4] Dzeparoska, K., Tizghadam, A., Leon-Garcia, A.: Emergence: An in-
tent fulfillment system. IEEE Communications Magazine 62(6), 36–41
(2024)

[5] ETSI: Experiential networked intelligence (ENI): Processing and man-
agement of intent policy. Tech. rep., ETSI (2020)

[6] ETSI: Zero-touch network and service management (ZSM): Intent-
driven closed loops. Tech. rep., ETSI (2020)

[7] Jacobs, A.S., Pfitscher, R.J., Ribeiro, R.H., Ferreira, R.A., Granville,
L.Z., Willinger, W., Rao, S.G.: Hey, Lumi! Using natural language for
intent-based network management. In: 2021 USENIX Annual Technical
Conference (USENIX ATC 21). pp. 625–639 (2021)

[8] Kuroda, T., Yakuwa, Y., Maruyama, T., Kuwahara, T., Satoda, K.:
Automation of intent-based service operation with models and ai/ml.
In: NOMS 2022-2022 IEEE/IFIP Network Operations and Management
Symposium. pp. 1–6. IEEE (2022)

[9] Ooi, S.E., Beuran, R., Kuroda, T., Kuwahara, T., Hotchi,
R., Fujita, N., Tan, Y.: Intent-driven secure system design:
Methodology and implementation. Computers & Security 124, 102955
(2023). https://doi.org/https://doi.org/10.1016/j.cose.2022.102955,
https://www.sciencedirect.com/science/article/pii/S0167404822003479

[10] Sebrechts, M., Volckaert, B., De Turck, F., Yang, K., Al-Naday, M.: Fog
native architecture: Intent-based workflows to take cloud native toward
the edge. IEEE Communications Magazine 60(8), 44–50 (2022)


