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Abstract

In this paper we introduce a distributed emulator for
a pedestrian tracking system using active tags that is cur-
rently being developed by the authors. The emulator works
on StarBED which is a network testbed consisting of hun-
dreds of PCs connected to each other by Ethernet. The three
major components of the emulator (the processor emulator
of the active tag micro-controller, RUNE, and QOMET) are
all implemented on StarBED. We present the structure of the
emulator, how it functions and the results from the emula-
tion of the pedestrian tracking system. The system met the
requirements to create a flexible experimental platform to
support the development of the pedestrian tracking system.
We confirmed the results obtained by running tests corre-
sponding to a real-world experiment.

1. Introduction

As Matsushita Electric Industrial Co., Ltd. is developing
a pedestrian tracking system using active tags, one require-
ment is to carry out a large number of trials. Real-world
experiments with wireless network systems, and active tags
in particular, are difficult to organize and perform when the
number of nodes involved is larger than a few devices. Prob-

lems such as battery life or undesired interferences often in-
fluence experimental results. We are currently implement-
ing a solution by developing an emulation system for active
tag applications that runs the real active tag firmware within
a virtual, emulated environment. Through emulation, much
of the uncertainties and irregularities of large real-world ex-
periments are placed under control. In the same time, us-
ing the real active tag firmware in experiments enables us
to evaluate exactly the same program that will be deployed
on the real active tags; this is a significant advantage com-
pared to simulation. For performing the practical experi-
ments we use StarBED, a network experiment testbed. In
order to be able to use this testbed for active tag emula-
tion we developed several subsystems, and integrated them
with the existing testbed infrastructure. These subsystems
were developed on the basis of existing tools that are al-
ready used on StarBED, namely the wireless network em-
ulator QOMET [5], and the experiment support software
RUNE [9].

Active tags were so far mainly studied through simula-
tion, such as the work presented in [6]. Public domain wire-
less communication emulation research is currently mainly
done in relation to Wireless LANs (WLANs). One can use
real equipment, and hence be subject to potential undesired
interferences. Two examples from this class that allow a
controlled movement of wireless nodes are the dense-grid
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approach of ORBIT [1], or the more realistic robot-based
Mobile Emulab [7]. An alternative which avoids undesired
interferences and side effects is to use computer models for
real-time experiments. TWINE [12] is an example from this
class. TWINE is a wireless emulator that combines wireless
network emulation and simulation in one setup, but only
supports 802.11b WLAN so far. Our development started
from an existing wireless emulator, QOMET, which uses
similar concepts.

There are already a number of implementations of ex-
periment tools for ubiquitous systems that could be used in
conjunction with active tag devices. Some of these tools
focus on the operating system level, such as TOSSIM [8],
which is a TinyOS simulator aiming to simulate TinyOS ap-
plications accurately in a virtual environment. ATEMU [11]
is able to emulate TinyOS applications at processor level;
its flexible architecture has support for other platforms too.
ATEMU is thus closer to our purpose, since our low-cost ac-
tive tags do not use any operating system. We aimed to run
in emulation experiments the same firmware with the one
used by the real devices. The manufacturer of the active tag
processor , Microchip, only provides two alternatives for
system development: real-time emulation in hardware us-
ing either the MPLAB REAL ICE In- Circuit Emulator, or
the PICMASTER Emulator, or processor simulation using
the MPLAB-SIM Simulator [2]. However none of these so-
lutions are appropriate for our purpose; thus we developed
our own real-time processor emulator running on PCs.

The pedestrian tracking system developed by Matsushita
Electric Industrial Co., Ltd. makes use of active tags so as
to provide to a central pedestrian localization engine the in-
formation needed to automatically calculate the trajectory
to date and the current position of the active tag wearer.
Using the prototype of the pedestrian localization system,
real-world experiments were carried out in March 2007, as
reported in [?]. The experiment consisted in the orches-
trated movement of 16 pedestrians both in indoor and out-
door environments. A system overview and experimental
conditions will be presented later in this paper.

One of the important conclusions of the experiment was
that it is very difficult to organize a real-world experiment
for such applications of active tags. The number of people
involved, and the accuracy of their movement following the
predefined scenario, are only a few of the issues encoun-
tered. Nevertheless, the results of the above-mentioned ex-
periment are currently being used as a basis for improving
the prototype of the pedestrian localization system and ex-
tending it for use with very large groups of people, of the
order of one thousand. The active tag emulation system that
we designed and implemented plays an essential role at this
point, since it makes it possible to continue the experiments
in the development phase with ease and in a wide range of
controllable conditions.

2. System Description

The technique of emulation implies creating a virtual en-
vironment in which the movement, the communication, and
the behavior of active tags are all reproduced. Emulation
has two main requirements in the case of our project: (i)
Emulate in real time the wireless communication of the ac-
tive tags; (ii) Emulate the active tag processor so that the
same firmware used by the real devices can be tested in em-
ulation experiments. The conclusions of the real-world ex-
periment using the pedestrian localization prototype system
were used as guidance during the design and implementa-
tion of the emulation testbed. In addition, we put to use our
previous experience with emulation systems, such as those
presented in [4] and [10], as we built the wireless com-
munication emulation implementation on QOMET [5], as
discussed in Section 3.

The experiment-support software RUNE (Real-time
Ubiquitous Network Emulation environment) [9]

is used to effectively run and manage the experiment in
real time, as it can be seen in the overview given in Figure
1. RUNE Master and RUNE Manager are modules used in
all RUNE-based experiments for controlling the experiment
globally and locally, respectively. The active tag module
was specifically designed and implemented for this appli-
cation. This module includes: (i)Active Tag Communica-
tion and chanel spaces, used to calculate and manage the
communication conditions between active tags. These func-
tions will be discussed in Section 3; (ii)Active Tag Control
space, which is powered by the active tag processor (PIC)
emulator, and runs the active tag firmware in real time to
reproduce the active tag behavior, as it will be discussed in
Section 4. The experiment itself is performed using stan-
dard PCs (running the FreeBSD operating system) that are
part of the StarBED testbed. They are labeled as Execution
Units in Figure 1.

Figure 1. Overview of the active tag emulation
system.
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3. QOMET

One of the most important elements when using emula-
tion for studying systems that use wireless communication
is to be able to recreate with sufficient realism the communi-
cation between them. For the active tags used in our pedes-
trian tracking system this was accomplished by extending
the WLAN emulator QOMET [5] to support the wireless
transceiver used by active tags.

QOMET uses a scenario-driven architecture that has two
stages. In the first stage, from a real-world scenario rep-
resentation we create a network quality degradation (ΔQ)
description which corresponds to the real-world events (see
Figure 2).

Figure 2. Active tag communication emula-
tion.

The ΔQ description represents the varying effects of the
network on application traffic, and the wireless network em-
ulators function is to reproduce them.

The CHANel Emulation Library, chanel, is used to
recreate scenario-specific communication conditions based
on the ΔQ description (FER probabilities) computed by
QOMET. Given that we emulate wireless networks, a sec-
ond function of chanel is to make sure the data is commu-
nicated to all the systems that would receive it during the
corresponding real-world scenario.

3.1. Active Tag Emulation

Our pedestrian tracking system uses the AYID32305 ac-
tive tags from Ymatic Corporation, also known under the
name S-NODE [3]. They were nicknamed communication
tags or c-tags in the framework of the current pedestrian
localization project. S-NODEs use as processing unit the
PIC16LF627A microcontroller. The wireless transceiver of
the active tag operates at 303.2MHz, and the data rate is
4800bps (Manchester encoding), which results in an effec-
tive data rate of 2400bps. The electric field emitted by ac-
tive tags is 500uV/m; according to the specification, this
produces an error-free communication range of 3-5m.

The active tag communication protocol was custom de-
signed as a simple protocol based on time-division multi-
plexing. Each tag will select at random one of the available
communication slots and advertise its identifier and the cur-
rent time. Currently the number of available communica-

tion slots for advertisement messages is 9. There are addi-
tional communication slots that can be used on demand to
transmit position tracking records from mobile tags to gate-
ways.

The active tag communication model we currently use
establishes the relationship between the distance between
two nodes and the Frame Error Rate (FER, a data link
layer parameter). This conversion is done based on mea-
surements we made in an RF shielded room with the heli-
coidally shaped antenna, also used in the practical experi-
ment, and 4-byte frames. By fitting a second degree equa-
tion on the measurement results we obtained the following
equation:

FER4(d) = 0.1096d2 − 0.1758d + 0.0371, (1)
where FER4 is the frame error rate (the index shows it is

based on 4-byte frame measurements) and d is the distance
between the receiver and transmitter active tags. The above
equation gives a goodness-of-fit coefficient, R2, equal to
0.9588.

Since the measurements were done using 4 byte data
frames, the result of equation (3.1) must be scaled accord-
ingly for other frame sizes, as given by:

FER = 1 − (1 − FER4)
H+x
H+4 , (2)

where FER represents the frame error rate for a data
frame of x bytes, and H is the frame header size in bytes.

Slot collisions arising during the time-multiplexed com-
munication are an additional and independent source of er-
rors. However they are handled in real time during the live
experiment in the receiving procedure of the processor em-
ulator.

4. Processor Emulator

One advantage of network emulation is that already-
existing network applications can be studied through this
approach to evaluate their performance characteristics. Al-
though this is relatively easy for typical network applica-
tions that run on PCs, the task is complex when the network
application runs on a special processor. In order to execute
the active tag application unmodified on our system, we em-
ulate the active tag processor so that the active tag firmware
can be run in our emulated environment without any modi-
fication or recompilation.

Processor emulation in our system had to take into ac-
count the following aspects that we implemented: (i) In-
struction execution emulation; all 35 PIC instructions are
supported by our processor emulator. (ii) Data I/O emula-
tion; the only I/O access method used by the active tag ap-
plication is USART (Universal Synchronous Asynchronous
Receiver Transmitter). The application uses USART to in-
terface with the active tag transceiver, and also with the
back-end system in the case of gateway tags. (iii) Interrupt
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emulation; all interrupts necessary for the active tag appli-
cation, i.e., timer0, timer1, and timer2 are supported. We
used a pseudo-DMA data transfer technique which is not
implemented by the real device instead of emulating the ac-
tive tag transceiver. It makes easier to integrate the active
tag application and the peripheral components of the exper-
iment such as the chanel space etc. We also used random
number generation functionality to compensate the original
active tag software’s weakness in random number genera-
tion.

In our emulation, the PIC Emulator works as a part of
Active Tag Control space as mentioned in section 2. First
of all, a PIC Emulator instance is allocated and initialized
by invoking pic16f648Alloc(). The function allocates the
data block for holding all processor internal states, registers,
and memory and also launches the main emulation thread,
which executes the fetch-decode-execute cycle repetitively.
The main emulation thread controls the timing of progress
of the emulation by using the RDTSC instruction of IA-32
architecture, which reads the Time Stamp Counter (TSC)
register implemented in Intel IA-32 architecture processors.
The advantage of this approach is: i) The accuracy obtained
in this way is theoretically the highest in a normal PC sys-
tem, unless it has an external device which aids obtaining
extremely accurate time such as GPS. ii) It takes less time
to execute the RDTSC instruction than typical C functions
used to get system time, since the RDTSC instruction can
be executed without the transition between kernel mode and
user mode. There is also a thread created in the initializa-
tion process of the Active Tag Control space which takes
care of the Pseudo-DMA data transfer. During emulation,
both threads work together to accomplish real-time emula-
tion of PIC processor.

When emulating active tag applications such as ours it is
important to introduce cycle-accurate processor emulation.
In our case active tags use the time information contained
in messages to synchronize with each others autonomously.
Incorrect time information may lead to artificial desynchro-
nization problems and potentially communication errors,
therefore it must be avoided.

One of the main concerns regarding a processor emula-
tor is how well the execution speed is reproduced, especially
in the case when running multiple instances of the emula-
tor. In Figure 3 we show how emulation accuracy changes
depending on the operating frequency and the number of
instances of the PIC emulator that are run in parallel. We
remind that frequency used in the active tag application is
4MHz. The figure shows that, good accuracy is obtained for
up to about 40 instances running in parallel when the oper-
ating frequency is 4MHz. We tried some scheduling algo-
rithms such as Round Robin, EDF (Earliest Deadline First)
etc. in order to obtain better performance. But no signifi-
cant difference couldn’t be seen because the scheduling of
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the processor instances takes place always in synchronous
manner unlike the process scheduling of operating system.

5. Preliminary Trial

The real-world experiment was carried out in March
2007 by Matsushita Electric Industrial Co., Ltd. Each ex-
periment participant was equipped with an active tag based
pedestrian localization system prototype (c-tag).

A group of 16 participants were provided with instruc-
tions regarding the path they should follow in the 100 x
300m experiment area. An example of instructions, as re-
ceived by participant #1 is shown in Figure 4.

The real-world experiment also included a number of
tags with known position. These tags are divided into two
classes: fixed and gateway c-tags, denoted in Figure 4 by
F0 to F3, and GW0 to GW2, respectively. The role of fixed
tags is to provide specific information to the mobile ctags
that come in their vicinity to makes it possible to localize
those tags. Gateway c-tags, in addition to c-tag commu-
nication, also allow information to be transferred between
them and to the back end system. The gateways are placed
at 3 known outdoor locations Gateways are also connected
to the back-end servers; their data is used by the localization
engine to determine the trajectories and positions of pedes-
trians.

The real-world experiment was successful in the sense
that data collected from the active tags could be used to lo-
calize the pedestrians in most cases with sufficient accuracy.
The active tag localization approach doesn’t use any GPS-
like or triangulation system. Instead the logs of each mobile
tag, as collected by gateways, are used. The c-tag logs con-
tain information regarding the time at which other mobile
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Figure 4. Pedestrian movement instructions
as received by participant #1.

or known-position c-tags were encountered, and their iden-
tifiers. This information is used to predict the trajectory of
c-tag wearers and track their position.

6. Results

The experimental results we present here were obtained
by emulation on StarBED. The experiment shown uses ex-
actly the same conditions as the real-world experiment de-
scribed in Section 5, and was used to validate the emula-
tion system. For simplicity each active tag and the associ-
ated chanel component are run on one PC. The experimental
setup follows the overview presented in Figure 1.

The initial position of the 16 pedestrians and the loca-
tions of the 4 fixed c-tags and 3 gateway c-tags, the build-
ing topology, and pedestrian movement were all described
by converting the real- world experiment instructions to the
QOMET XML-based scenario description. Time granu-
larity used when computing communication conditions, as
well as during real-time execution was 0.5s. RUNE was
used to configure the host PCs according to the experiment
description and run the experiment.

In Figure 5 we show the visualization tool we use for the
communication protocol of the active tags. Such a graphical
representation gives an insight in the timing of the messages
sent and received by active tags, as well as other elements
of the communication protocol. This tool was successfully
used to identify some potential firmware implementation
problems. For instance, a weakness of the random num-
ber generator implementation led to the choice of the same
time slot for communication in our emulation experiments.
This fact produced an unusually large number of collision
effects, for which the cause became obvious using the com-
munication visualizer tool. As mentioned in Section 4, we

implemented an alternative random number generator in the
PIC emulator as a temporary solution. random number gen-
eration will be improved in the next prototype localization
system.

Figure 5. Active tag communication visualiza-
tion tool.

Another issue we were able to identify by emulation ex-
periments is related to time synchronization between active
tags. At the moment a mobile active tag synchronizes its
clock based on the time received from neighboring tags.
Gateways and fixed nodes do not synchronize their time.
We observed in our emulation system that the time accuracy
without time synchronization (e.g., for gateways) is better
than with time synchronization (i.e., for mobile tags). The
time drift of two or more mobile nodes that are not in the
vicinity of a gateway or fixed tag becomes quickly signifi-
cant using the current synchronization algorithm, while the
gateways and fixed tags themselves seem to be relatively
stable, although not using time synchronization. This issue
had not been noticed in the real-world experiment, but it is
very important. A significant time drift leads to localization
inaccuracy and must be solved in the next prototype. We
circled in Figure 5 an example of time drift for a pair of
mobile tags (P10 and P11).

Figure 6 shows at where the #1 tag exchanged packets
that used for localization to other tags. As the figure shows,
enough number of packets necessary for localization were
exchanged in our emulation. All the result presented in this
section indicates the emulated tag software works properly
even though we, unfortunately, have no way to confirm if
the behavior of emulated tag software is correct by compar-
ing with the result obtained from the real-world experiment
since the real tags does not have any logging functions due
to memory and processing ability restrictions.
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Figure 6. Packet exchanged location and tra-
jectory of the #1 tag.

7. Conclusion

In this paper we presented an emulation system that we
designed and developed for active tag applications. This
emulation system is currently employed for the develop-
ment phase experiments of a pedestrian localization sys-
tem by Matsushita Electric Industrial Co., Ltd. By using
our system it was possible to simplify the development and
testing procedures of the localization engine, and identify
several firmware implementation issues.

In order to validate the emulation system we carried out
results that reproduced a real-world 16 pedestrian experi-
ment that took place in March 2007 using the prototype
of the active tag based pedestrian localization system. The
emulation experiment results show the good agreement that
exists between the virtual motion patterns of pedestrians,
reproduced according to the real-world scenario, and the
actual conditions that were recreated in our emulation ex-
periment.

Our future work has several main directions: improve
the scalability of the system so as to enable experiments of
pedestrian groups as large as 1000; improve the realism of
the wireless communication emulation by using more ac-
curate 3D models for topology and electromagnetic wave
propagation; combine the behavioral motion model with a
GIS-based urban area description to create a realistic pedes-
trian trajectory generator for large-scale urban experiments.
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