
Network Emulation Testbed for DTN

Applications and Protocols

Razvan Beuran

Hokuriku StarBED Technology Center,

National Institute of Information and

Communications Technology,

Ishikawa, Japan

Email: razvan@nict.go.jp

Shinsuke Miwa

Hokuriku StarBED Technology Center,

National Institute of Information and

Communications Technology,

Ishikawa, Japan

Email: danna@nict.go.jp

Yoichi Shinoda

Research Center For Advanced

Computing Infrastructure,

Japan Advanced Institute of

Science and Technology,

Ishikawa, Japan

Email: shinoda@jaist.ac.jp

Abstract—Wireless devices are widely used today to access
the Internet, despite the intermittent network connectivity they
often provide, especially in mobile circumstances. The paradigm
of Delay/Disruption Tolerant Networks (DTN) can be applied
in such cases to improve the user experience. In this paper we
present a network testbed for DTN applications and protocols
that we developed based on the generic-purpose wireless network
emulation testbed named QOMB. Our testbed is intended for
quantitative performance assessments of DTN application and
protocol implementations in realistic scenarios. We illustrate the
practicality of our emulation testbed through a series of exper-
iments with the DTN2 and IBR-DTN implementations, focusing
on mobility in urban environments. The scalability issues that we
have identified for DTN2 emphasize the need to perform large-
scale repeatable evaluations of DTN applications and protocols
for functionality validation and performance optimization.

I. INTRODUCTION

Given the advent of smartphones and tablets, Internet
access is being done more and more often using such kind of
wireless devices, many times in mobile scenarios. It is said that
about 85% of the world population is covered by commercial
wireless signals, providing a greater reach than the electrical
grid [14]. It was also estimated that, with over 1.6 billion users,
mobile Internet will exceed desktop Internet use by 2015 [13].

The Delay/Disruption Tolerant Networks (DTN) approach
seems to be a promising solution for improving user experience
in such scenarios with intermittent connectivity by ensuring a
“smoother” network access. Although the DTN concept was
first put forward in connection with deep-space communi-
cations, it was later extended to the more generic class of
challenged networks [10].

The DTN paradigm can be applied to a wide range of net-
work categories, such as mobile networks, ad hoc networks, or
sensor networks. It is notable that the MobilityFirst project of
the Future Internet Architecture program of NSF also includes
robustness and usability among the high-level requirements of
the mobile Internet, and proposes “Generalized DTN” (GDTN)
as means to meet these requirements [20].

Although current DTN implementations do not necessarily
answer all the needs of the Future Internet, their built-in
robustness mechanisms and features such as tunneling make it
possible to start deploying DTN protocols in order to provide
better connectivity over intermittent network connections.

Nevertheless, a wide-scale deployment of DTN protocols
and applications cannot be made without a proper evaluation
of the corresponding implementations in realistic scenarios,
so as to ensure that they perform as expected under various
circumstances. The main requirements for making it possible
to perform such quantitative assessments are:

• Ability to execute in a controlled manner the DTN
applications and protocols under test;

• Ability to accurately reproduce the communication
conditions between the DTN nodes;

• Ability to recreate scenarios that are meaningful and
realistic, including with regard to node placement and
mobility, the communication environment, etc.

In order to meet these requirements, we based our work
on the generic-purpose wireless network emulation testbed
named QOMB, developed at the Hokuriku StarBED Technol-
ogy Center, National Institute of Information and Communica-
tions Technology, Japan [3]. The emulation approach used by
QOMB permits to directly execute application and protocol
implementations. Moreover, the support for various wireless
communication models, as well as the versatile scenario defi-
nitions in QOMB made it possible to extend its functionality as
required for various DTN-related experiments. We note that the
QOMB testbed is open for researchers worldwide, and details
about its utilization are provided on the following web page:
http://starbed.nict.go.jp/en/index.html.

The main contributions of this paper are:

• Detail the functionality enhancements that made pos-
sible DTN emulation experiments on QOMB;

• Demonstrate the practicality of our testbed through the
performance assessment of the DTN2 and IBR-DTN
implementations in several use-case scenarios.

The remainder of this paper is organized as follows. In
Section II we present an overview of QOMB and of its
components. In Section III we detail the extensions of QOMB
that were needed in order to make DTN emulation experiments
possible. Then, we discuss a series of DTN experiments in
which we illustrate the practicality of our testbed by evaluating
the performance of the DTN2 and IBR-DTN implementa-
tions (Section IV). In Section V we introduce several related
projects. The paper ends with conclusions and references.

978-1-4673-1017-8/13/$31.00 ©2013 IEEE

16th IEEE Global Internet Symposium

3607

II. QOMB OVERVIEW

QOMB is a wireless network emulation testbed that was
initially created for IEEE 802.11 network emulation. The
general architecture of QOMB and utilization examples in this
context were presented in [3]. The modular architecture of
QOMB and of its components makes it possible to extend the
testbed to other wireless network technologies and devices.

In this section we introduce the main components of
QOMB, and the generic architecture for DTN emulation. In
particular, the QOMB wireless network emulation testbed is
realized by integrating the large-scale wired-network testbed
that is StarBED (and its support tools, such as SpringOS) with
the wireless network emulation set of tools that is QOMET.

A. StarBED

StarBED is a large-scale wired-network testbed at the
Hokuriku StarBED Technology Center of the National Institute
of Information and Communications Technology, located in
Ishikawa, Japan [16]. With over 1100 interconnected PCs made
available for experiments, users can perform a wide range
of network experiments on StarBED, and it represents the
physical infrastructure of QOMB. The experiment network in
StarBED is completely separated from the control network so
as to avoid interactions between these two networks.

SpringOS is the main experiment-support software tool
for StarBED, and it allows users to easily perform complex
experiments with a large number of hosts [16]. The most
important functions of SpringOS are:

1) Experiment preparation: Configure the experiment
hosts and network for experiment execution;

2) Experiment execution: Effectively carry out the ex-
periment by executing the required commands on the
experiment hosts.

SpringOS has a message-based client-server architecture.
Thus, a module called “SpringOS master” is in charge of
controlling the experiment execution on all the experiment
hosts. This is done with the assistance of local modules, called
“SpringOS client”, executed on each experiment host.

B. QOMET

QOMET (Quality Observation and Mobility Experiment
Tools) is a set of tools for wireless network emulation [3].
QOMET allows the definition of various complex scenarios,
including experiments with node mobility and urban settings.
QOMET includes several wireless propagation models, as well
as mobility models, such as random walk and a behavioral
mobility model. QOMET provides the necessary mechanisms
for performing wireless network emulation in a distributed
manner by reproducing the communication conditions between
the emulated nodes that are part of an experiment. QOMET
relies on the experiment management mechanisms of StarBED
for its distributed execution. Thus, the integration of StarBED,
SpringOS and QOMET effectively results in a wireless net-
work emulation testbed that we call QOMB.

The most important components of QOMET that make
wireless network emulation possible are:

Fig. 1. Architecture of the QOMB-based DTN emulation framework.

1) deltaQ library: This library is in charge of computing
the communication conditions between wireless nodes given a
user-defined XML-based scenario. The scenario specifies the
properties of the wireless nodes (position, parameters of the
network technology that is utilized, mobility patterns, etc.),
and of the environment in which they are placed (attenuation,
shadowing, street and building structures, and so on). These
properties are used to create a “virtual world” that corresponds
to the user-defined scenario, in which the emulated wireless
nodes move (virtually) and communicate with each other. The
traffic exchanged is created by the real protocol and application
implementations used in the experiments.

2) wireconf library: The communication conditions com-
puted by the deltaQ library are recreated during the real-
time experiment by the wireconf library. This library is in
charge of controlling the communication conditions between
the emulated wireless nodes in the experiment according to the
user-defined scenario, by applying the corresponding network
degradation (packet loss, delay, bandwidth limitation) to the
traffic being generated and received by the nodes; more details
on this functionality will be provided in Section III-A.

C. Emulation architecture

In Figure 1 we show the architecture of the QOMB-
based network emulation framework used in our DTN experi-
ments, created by combining the components mentioned so far.
Note how SpringOS manages the experiment executed on the
StarBED hosts via the global SpringOS master and the local
SpringOS client modules. These operations are done through
the control network in StarBED. SpringOS also plays a role
in experiment preparation, as indicated in Section II-A.

The communication conditions between the emulated
nodes are recreated in the experiment network by the
wireconf library that interacts with the deltaQ library
for condition computation purposes. The instances of the
wireconf library on all the experiment hosts exchange infor-
mation with each other in order to adjust the communication
conditions in function of the continuously changing state of the
emulated network, e.g., to account for the contention created
by the wireless nodes as they use the communication channel.

The traffic through the emulated network is generated by

16th IEEE Global Internet Symposium

3608

DTN applications, that in their turn run on top of the DTN
protocol layer (see Section III-D for the supported protocols).

An experiment feature that was recently added to QOMB
and that further differentiates it from other testbeds is the abil-
ity to conduct hybrid experiments in which real and emulated
wireless nodes can be seamlessly integrated into the same
network experiments [4]. In this context one can envisage
using real wireless devices for the static nodes in a given
DTN experiment scenario, thus achieving high fidelity, and
use emulated wireless devices for the mobile nodes in the
experiment, thus also attaining reproducibility and scale.

III. DTN EMULATION

Several new features and components were required in
order to make DTN system emulation possible on QOMB.

A. Linux support

In the original version of QOMET the wireconf library
was designed on top of the FreeBSD 5.4 ipfw2/dummynet
system. However, many recent DTN implementations, such as
DTN2, are mainly supported on Linux; thus, it was necessary
to port the wireconf library to Linux.

For this purpose we took advantage of the fact that ipfw
itself was also ported to Linux by its developers as of version
ipfw3 [8]. Therefore, we made the necessary changes in
the source code of the wireconf library so that it can
be compiled and executed on top of ipfw3. The operating
systems that we selected as target for experiment execution
are Scientific Linux 6.0 and CentOS 6.0, which are both free
variants of RedHat Enterprise Linux (RHEL) 6.0.

The main changes required in wireconf were:

1) Modify the interface used by wireconf to enforce
the scenario communication conditions, so that it can
drive the new ipfw3 module;

2) Modify the interface used by wireconf to obtain
routing information from the kernel on our target
RHEL-based operating systems.

The changes related to item (1) above implied adapting the
wireconf code to take into account the changes in the ipfw3
source code compared to the previous version ipfw2. As for
the interface with the kernel, some modifications were required
since kernel headers and structures are different between
FreeBSD 5.4 and RHEL 6.0. As RHEL 6 will receive support
from its manufacturer at least until 2017, we don’t envisage
the need for porting the code again in the near future.

We stress in this context the fact that the other main
component of QOMET, the deltaQ library, doesn’t have
similar limitations regarding execution, since it is mainly a
computation engine. From start deltaQ has provided support
both for FreeBSD and Linux, as well as for Windows.

B. Multi-interface support

In previous QOMET versions, the user was limited to
defining a single wireless interface per node in the emulation
scenario. However, modern wireless systems, such as smart-
phones, typically have multiple wireless interfaces, for instance

GSM or LTE and WLAN. Therefore we added support for
describing such experiments in QOMET.

This was accomplished by adding the “interface” element
to the XML scenario description that is the input of the
deltaQ library. This new element was introduced as a sub-
component of the “node” element that existed previously, and
which used to implicitly define a single network interface. With
the new “interface” element, users can define several network
interfaces for each node in the scenario, each with its own
properties (transmit power, receive sensitivity, etc.). During the
experiment, the interface elements in QOMET are associated
by wireconf to network interfaces of the experiment host
according to user-defined settings.

A possible use of a multi-interface system in connection
with DTN is that a certain application could leverage the
presence of multiple interfaces in order to optimize its per-
formance. For instance, by sending important traffic on links
with low loss rate, and traffic that must be delivered quickly
on links with low delay, an application could better cope with
potential network disruptions. In this context we mention that,
in addition to WLAN, we are currently adding WiMAX/LTE
support in QOMET, thus making possible realistic experiments
with such multi-interface wireless devices.

C. Fault injection

Assessing the behavior of DTN protocols and applications
implies being able to create the necessary disruptions of the
communication conditions. Until now, QOMET has relied on
realistic scenarios in order to create meaningful communica-
tion conditions for the applications and protocols under test.

While we still believe that realistic scenarios are a fun-
damental requirement for a thorough evaluation of a network
application or protocol, we acknowledge the fact that under
certain circumstances — and in particular in the context of
DTN — it is important to also be able to create disruptions
in a controlled manner, even though they may not be entirely
realistic. Such an approach allows to leverage the characteris-
tics of emulation (repeatability, control, etc.) to test a certain
system in simple network conditions, so as to assess its basic
properties and/or debug its major issues [2].

We call fault injection the mechanism of introducing con-
trolled disruptions in a network. This issue was analyzed in
detail in [15]. We focus here on the features that were added
to QOMET in order to support fault injection mechanisms that
can be used in the context of DTN. Thus, we distinguish two
categories of disruptions:

1) Communication environment disruptions;
2) Network condition disruptions.

Communication environment disruptions are created by the
artificial injection of faults in the wireless communication
environment between the emulated nodes. A typical example
of such fault injection is the introduction of artificial elec-
tromagnetic noise in the emulated virtual world. As electro-
magnetic noise will interfere with the communication in the
virtual environment, it will affect the network conditions in
the experiment in an indirect and realistic manner; support for
this feature was added to the deltaQ library. Electromagnetic
noise can be controlled by the user in terms of position of the

16th IEEE Global Internet Symposium

3609

noise source, its intensity, as well as the starting time and
duration of noise generation, but the user has no direct control
over the resulting communication conditions.

Network condition disruptions refer to the case when
the user defines explicitly the network conditions between
a certain pair of nodes, and the deltaQ and wireconf

libraries recreate the specified conditions without performing
any computation. Although this approach is not very realistic,
it provides a good quantitative control over the network condi-
tions, such as directly indicating the available bandwidth, delay
and jitter, and/or loss rate. The user specifies in the QOMET
scenario the interval during which a certain set of conditions
should be applied, making it easy to describe the time-varying
network conditions that characterize DTNs.

D. DTN protocols

The fact that our testbed supports Linux-based OSes means
that most current DTN implementations can be compiled and
executed, although minor changes may be required in some
cases depending on the precise requirements of each DTN
implementation in terms of libraries. This makes it straightfor-
ward to support both standard DTN implementations as well as
any novel DTN implementation that may appear in connection
with Future Internet research, such as the Generalized DTN of
the MobilityFirst project [20].

The DTN implementations that we have used so far on our
network emulation testbed are briefly described below:

1) DTN2: Reference implementation of the bundle proto-
col, which is a general overlay network protocol [19]. DTN2
represents the main focus of the implementation effort in the
Delay Tolerant Networking Research Group (DTNRG) of the
Internet Research Task Force (IRTF) [7]. We integrated in
our testbed the latest version of DTN2, dtn-2.9.0, released in
July 2012, and two preceding versions: dtn-2.8.0, released in
August 2011, and dtn-2.7.0, released in February 2010.

The DTN2 implementation of the bundle protocol is rep-
resented by the module “dtnd” that must be running on all
the nodes in the network. DTN2 also includes several sample
applications. We used the following two: (i) dtnping, equivalent
to the typical “ping” command; (ii) dtnperf, equivalent to
the widely-used “iperf” command for network performance
assessment.

To configure the dtnd module we used the default param-
eters, with a few exceptions. Thus, in order to establish links
between nodes we used the built-in discovery protocol (with a
“hello” message frequency of 5 s for most experiments); the
links were constructed over TCP. We used two of the routing
protocols built into dtnd: (i) flood that sends each message to
all the known neighbors of a node; (ii) dtlsr, a delay-tolerant
routing protocol similar to OLSR.

2) IBR-DTN: Lightweight bundle protocol implementation
of the IBR group of the Technical University Braunschweig
that mainly targets embedded systems [18].

We integrated version 0.6.5 of IBR-DTN from November
2011, which has a limited set of features in comparison
with DTN2, as no implementation of “dtnperf” or “dtlsr” are
included. However, IBR-DTN development is very active, and

its latest version 0.8.0 (released in June 2012) includes new
options for dtnping and new routing protocols, thus reducing
the gap with respect to DTN2.

E. Discussion

Amongst the DTN features that we have discussed so far,
the most challenging to consider is fault injection, since it
is important to strike a balance in this context between user
control and effect realism. Hence, we focused on the two
categories of disruptions mentioned above, thus providing full
flexibility for the user to choose the best approach for any
given scenario.

A minor feature that we nevertheless consider important
for enabling realistic experiments, including in the context
of DTN, is the possibility to import motion trajectories into
QOMET, such as those obtained from GPS devices during
real-world experiments. Since there is no global standard
way for storing GPS data, we instead implemented support
for importing mobility data in the QualNet trace format, a
flexible text format which can be easily produced from any
kind of motion data, including from GPS traces. Moreover,
many mobility generators, such as BonnMotion [1], support
exporting mobility data in the QualNet format, hence they can
be used to produce mobility traces for QOMET.

Another important feature in the context of WLANs, for
which development is still ongoing, is the support for the
emulation of Wi-Fi access point (AP) behavior. QOMET was
so far used exclusively for ad hoc networking scenarios. How-
ever, in order to extend the range of possible experiments we
are currently implementing support for AP-like functionality,
mainly the association/disassociation process typical to AP-
based communication.

IV. EXPERIMENTAL RESULTS

The main focus of this paper is introducing the DTN em-
ulation testbed that we designed and implemented. Therefore
the experimental results presented in this section are simply
examples that serve to illustrate the practicality of our testbed
in this context. We shall not perform any evaluation of the
core characteristics of the testbed, such as wireless network
emulation and mobility, since such evaluations have already
been done in previous publications [3].

A. Experiment overview

Our extensive evaluation of DTN2 and IBR-DTN leads us
to the following general conclusions that demonstrate the need
to perform repeatable experiments with DTN implementations:

1) Simple scenarios: With 2-3 nodes, both the DTN2
and IBR-DTN bundle protocol implementations behaved as
expected. For dtnperf in DTN2 we noticed reasonable per-
formance characteristics, especially for large bundle sizes.
However, the RTT results shown by dtnping in DTN2 are
one order of magnitude larger than the RTT measured with
the dtnping command in IBR-DTN, pointing at significant
overheads in DTN2. The performance of dtn-2.7.0 seems to
exceed that of dtn-2.8.0, which is in its turn better than the
performance of dtn-2.9.0.

16th IEEE Global Internet Symposium

3610

TABLE I. SUCCESSFUL DTNPING REPLIES IN 26 AND 10-NODE

EXPERIMENTS

Experiment type DTN2 flood IBR-DTN flood DTN2 dtlsr

26 nodes (25 mobile) 6% 47% 28%

10 nodes (3 mobile) 42% 91% 93%

2) Larger scenarios: DTN2 performance degrades quickly
with scale, leading to poor results for scenarios with as few
as 26 nodes, even if only some of them are mobile. This low
performance seems to be caused by performance bottlenecks
that cause high CPU utilization on the participating DTN
nodes even for relatively-low traffic loads. Results are much
improved for IBR-DTN, including for large node counts, as
Table I illustrates.

Results appear somewhat better for goodput measurements
conducted using dtnperf in DTN2, but since we did no equiv-
alent experiments with IBR-DTN it is not possible to make a
comparative analysis.

3) Routing protocols: The implementation of flood routing
in both DTN2 and IBR-DTN generally behaved as expected,
having good performance in sparsely connected networks
(hence for low overall network load), and poor performance
in good connectivity conditions and with many traffic sources
(hence with a high overall network load). On the other hand,
while dtlsr in DTN2 had relatively good performance in
good connectivity conditions, the performance was poorer
than expected in sparse networks and in the presence of
mobility, which leads us to believe that the performance of the
dtlsr implementation itself is to be blamed in some of these
circumstances.

B. Experiment example

We summarize here one of our experiments, with an urban
environment including 5 mobile nodes of a total of 26 nodes
(including a fixed one acting as a gateway); more detailed
information is available in [5]. A snapshot of the scenario at
time 100 s is shown in Figure 2. The 5 mobile nodes are
#1, #3, #6, #18 and #22, and they move from the gateway to
their respective destinations, whereas all the other nodes are
placed from the beginning at their corresponding locations. The
experiment area is of about 400x300 m. Each experiment run
lasted for 10 minutes. We used either flood or dtlsr as routing
protocols for DTN2 and flood for IBR-DTN. Other conditions
were: transmit power 10 dBm (802.11b) and attenuation 3.32.
The interval between dtnping requests was 10 s for DTN2 and
1 s for IBR-DTN (not configurable).

We conducted four types of such experiments with dtnping:

• 5 mobile: All the 5 mobile nodes and the gateway send
dtnping towards the gateway GW0;

• 1 mobile: Only the mobile node #1 and the gateway
send dtnping towards the gateway GW0;

• 5 fixed: A total of 5 fixed nodes, #8, #11, #15, #17
and #20, and the gateway send dtnping towards GW0;

• 1 fixed: Only fixed node #8 and the gateway send
dtnping towards the gateway GW0.

The percentage of successful dtnping replies for these
experiments is shown in Figure 3. We observe that DTN2 flood

139.6875 139.688 139.6885 139.689 139.6895 139.69 139.6905 139.691

35.542

35.5425

35.543

35.5435

35.544

35.5445

35.545

Longitude [degrees]

L
a

ti
tu

d
e

 [
d

e
g

re
e

s
]

GW0

D01

D02

D03

D04
D05

D06

D07

D08

D09

D10

D11

D12

D13

D14

D15

D16

D17

D18

D19

D20

D21

D22

D23

D24

D25

Position of the nodes at time 100.00 s

Fig. 2. Urban mobility scenario for DTN emulation experiments with 5
mobile nodes out of 26.

DTN2 flood IBR−DTN flood DTN2 dtlsr
0

20

40

60

80

100

DTN implementation and routing protocol

S
u

c
c
e

s
s
fu

l
d

tn
p

in
g

 r
e

p
lie

s
 [

%
]

5 mobile

1 mobile

5 fixed

1 fixed

Fig. 3. Successful dtnping replies in DTN emulation experiments with 5
mobile nodes out of 26.

results are better than DTN2 dtlsr because of the higher success
probability given by the flooding mechanism. Overall, DTN2
flood results are between 20% and 50%, whereas DTN2 dtlsr
are between 10% and 30%. For comparison, in exactly the
same circumstances and with a 10 times higher data rate per
sending node IBR-DTN has a success rate of around 90% in
all the tested scenarios.

A preliminary investigation showed that the bundle pro-
cessing overhead in DTN2 is rather high, and the gateway,
which is the destination of the dtnping request becomes quickly
overloaded, with CPU utilization around 100% even on the
Intel Pentium 4 3.2 GHz CPUs that we used. The difference
with respect to IBR-DTN emphasizes the fact that there is still
room for performance optimization of DTN2, and we believe
it should be the focus of the next iterations of its development.

V. RELATED WORK

To the best of our knowledge, no equivalent to our DTN
emulation testbed exists. However, below we present some
related projects and research work.

16th IEEE Global Internet Symposium

3611

DTN implementations have been previously evaluated, but
only at a small scale. For instance, in [9] two scenarios with
one sender, one receiver and up to 4 hops are compared through
emulation experiments done on Emulab. The work in [17] uses
4 real wireless nodes for the evaluation, and includes a low-
level performance analysis.

On the other hand, there is a considerable number of
DTN evaluations at large-scale through simulation, such as
[12], which used a realistic scenario with 600 vehicles. By
contrast, our testbed allows to assess performance of real DTN
implementations in large-scale scenarios, hence leads to results
that have a direct practical application.

A DTN testbed using real nodes is DTN-Bone, described
as an “effort to establish a worldwide collection of nodes
running DTN bundle agents and applications” [6]. This testbed
currently connects around 9 institutions, but makes available
only a little more than a dozen nodes. Hence, we position
DTN-Bone more as an inter-operability testbed (given that 5
different implementations of DTN are being run on it), rather
than a testbed for DTN performance evaluation. The DTN
testbed presented in [11] also includes only 12 geographically-
spread nodes. Although not a DTN testbed per se, but a more
generic WLAN testbed, the TWINE project takes an approach
similar to our emulation testbed, albeit with more limited
support in regard to wireless standards, mobility, etc. [21].

VI. CONCLUSION

This paper presented an emulation testbed intended for
DTN application and protocol experiments. We discussed in
detail the main changes that were necessary in order to make
possible DTN experiments on the QOMB wireless network
emulation testbed, such as multi-interface support, fault injec-
tion mechanisms, etc.

Several series of experiments, including some that were
not detailed in this paper, demonstrated the practicality of
using our testbed for assessing the performance characteristics
of DTN2 and IBR-DTN implementations. Our results have
shown that DTN2 exhibits poor performance in scenarios with
as few as 26 nodes, whereas IBR-DTN behaved as expected in
all the tested scenarios. This emphasizes the need to perform
repeatable large-scale experiments with DTN applications and
protocols.

Our testbed makes possible performance optimization pro-
cedures, by allowing to both identify performance bottlenecks
through precise controlled experiments, and to test the im-
proved implementation in exactly the same scenarios, so as to
confirm that the problems were fixed. Only such procedures
guarantee that applying the DTN paradigm to real-life scenar-
ios can be done without affecting network performance.

REFERENCES

[1] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, M. Schwamborn, Bon-
nMotion: a mobility scenario generation and analysis tool, Proc. of the
3rd International ICST Conference on Simulation Tools and Techniques
(SIMUTools’10), Malaga, Spain, March 15-19, 2010.

[2] R. Beuran, Introduction to Network Emulation, Pan Stanford Publishing,
2012.

[3] R. Beuran, L. T. Nguyen, T. Miyachi, J. Nakata, K. Chinen, Y. Tan, Y.
Shinoda, QOMB: A Wireless Network Emulation Testbed, IEEE Global
Communications Conference (GLOBECOM 2009), Honolulu, Hawaii,
USA, November 30-December 4, 2009.

[4] R. Beuran, S. Miwa, Y. Shinoda, Making the Best of Two Worlds: A

Framework for Hybrid Experiments, ACM Intl. Workshop on Wireless
Network Testbeds, Experimental Evaluation and Characterization (WiN-
TECH 2012), in conjunction with MobiCom 2012, Istanbul, Turkey,
August 22-26, 2012, pp. 75-81.

[5] R. Beuran, S. Miwa, Y. Shinoda, Performance Evaluation of DTN Im-

plementations on a Large-scale Network Emulation Testbed, ACM Intl.
Workshop on Challenged Networks (CHANTS 2012), in conjunction
with MobiCom 2012, Istanbul, Turkey, August 22-26, 2012, pp. 39-42.

[6] Delay-Tolerant Network Research Group, DTN-Bone, Internet Research
Task Force, http://dtnrg.org/wiki/DtnBone.

[7] Delay-Tolerant Network Research Group, DTNRG home page, Internet
Research Task Force, http://www.dtnrg.org/wiki.

[8] M. Carbone, L.Rizzo, Dummynet revisited, ACM SIGCOMM Computer
Communications Revue, Vol. 40, No. 2, April 2010.

[9] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, R. Patra, Implementing
Delay Tolerant Networking, Intel Research Technical Report, IRB-TR-
04-020, December 2004.

[10] K. Fall, A Delay-Tolerant Network Architecture for Challenged Inter-

nets, Intel Research Technical Report, IRB-TR-03-003, February 2003.

[11] E. Koutsogiannis, S. Diamantopoulos, G. Papastergiou, I. Komnios,
A. Aggelis, N. Peccia, Experiences from architecting a DTN Testbed,
Journal of Internet Engineering, Vol. 3, No.1, Dec. 2009, pp. 219-229.

[12] P. Luo, H. Huang, W. Shu, M. Li, M. Wu, Performance Evaluation of

Vehicular DTN Routing under Realistic Mobility Models Proc. of IEEE
Wireless Communications and Networking Conference (WCNC 2008),
Las Vegas, Nevada, USA, March 31-April 3, 2008, pp. 2206 - 2211.

[13] M. Meeker, S. Devitt, L. Wu, Internet Trends, Morgan Stanley, Report,
April 2010.

[14] M. Meeker, L. Wu, Internet Trends 2011, Kleiner Perkins Caufield
Byers, Report, October 2011.

[15] T. Miyachi, R. Beuran, S. Miwa, Y. Makino, S. Uda, Y. Tan, Y.
Shinoda, Fault Injection on a Large-Scale Network Testbed, Asian
Internet Engineering Conference (AINTEC 2011), Bangkok, Thailand,
November 9-11, 2011.

[16] T. Miyachi, K. Chinen, Y. Shinoda, StarBED and SpringOS: Large-

scale General Purpose Network Testbed and Supporting Software, Intl.
Conf. on Performance Evaluation Methodologies and Tools (Valuetools
2006), ACM Press, Pisa, Italy, October 2006.

[17] E. Oliver, H. Falaki, Performance Evaluation and Analysis of Delay

Tolerant Networking, Proc. of ACM/USENIX Conference on Mobile
Systems, Applications, and Services (MobiSys 2007), MobiEval Work-
shop, Puerto Rico, June 2007.

[18] S. Schildt, J. Morgenroth, W.-B. Pottner, L. Wolf, IBR-DTN: A

lightweight, modular and highly portable Bundle Protocol implementa-

tion, Electronic Comm. of the EASST, Vol. 37, 2011, pp. 1-11.

[19] K. Scott, S. Burleigh, Bundle Protocol Specification, RFC 5050, IETF,
November 2007.

[20] I. Seskar, K. Nagaraja, S. Nelson, D. Raychaudhuri, MobilityFirst

Future Internet Architecture Project, ACM AINTEC 2011, Bangkok,
Thailand, November 9-11, 2011.

[21] J. Zhou, Z. Ji, R. Bagrodia, TWINE: A hybrid emulation testbed for

wireless networks and applications, IEEE INFOCOM 2006, Barcelona,
Spain, April 23-29, 2006.

16th IEEE Global Internet Symposium

3612

