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Am conceput şi implementat un sistem care permite măsurarea parametrilor 
calităţii serviciilor (QoS) în reţelele de calculatoare. Folosind acest sistem am 
evaluat performanţele unor componente de reţea şi am studiat în mod obiectiv 
cerinţele câtorva aplicaţii de reţea, astfel încât acestea să ofere o calitate 
acceptabilă de către utilizator. In acest articol prezentăm rezultate pentru transferul 
de fişiere prin FTP şi performanţa protocolului de reţea subiacent, TCP. Am definit 
două măsuri obiective ale calităţii la nivelul utilizatorului: debitul util şi eficacitatea 
temporală a transferului. Am identificat relaţia între parametrii QoS şi calitatea 
percepută de  utilizator pentru transferul de fişiere. 

We designed and implemented a system that permits the measurement of 
network Quality of Service (QoS) parameters. Using this system we evaluated the 
performance of several network devices and studied objectively the requirements of 
network applications for delivering user acceptable quality. In this article we 
present results on file transfer by FTP and the performance of the underlying 
network protocol, TCP. We defined two user-level metrics: goodput and transfer 
time performance. We identified the relationship between network QoS parameters 
and user-perceived quality for file transfer. 

Keywords: QoS measurement, performance evaluation of network applications, 
user-perceived quality, file transfer performance, TCP performance evaluation.  
 
 

Introduction  

Network applications with real-time requirements have started to spread 
on a larger and larger scale over the Internet. This lead to a wider recognition of 
the issues related to Quality of Service (QoS). We consider QoS to be the fidelity 
of a system’s observable behaviour to expectations: one can only assess quality by 
comparing the result of a measurement with the expected value for that 
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measurement. Determining the performance characteristics of a network system is 
the first step in understanding the application-level behaviour. This must be 
followed by an evaluation of the user-perceived quality (UPQ) for that particular 
application and establishing the relationship with the measured QoS parameters. 

Each network application requires a minimum QoS level in order to run 
according to user expectations [1], [2]. Network elements along the path cause 
degradation that accumulates. There is a maximum end-to-end degradation within 
which the network must deliver the application traffic for it to run in a satisfactory 
manner. The number of systems designed to correlate the quality differentiation 
provisioned by networks with the UPQ for specific applications is reduced. 
Knowing the requirements of applications, such as file transfer or Internet 
telephony, allows predicting whether a certain connection is valid for a certain 
application and what will be the perceived quality for that application.  

Several projects are currently involved in studying service differentiation 
by QoS techniques. Mechanisms deployable in order to ensure service 
differentiation in networks were studied by the Quantum project [3]. TEQUILA 
concentrates on network service definition and traffic engineering tools built upon 
DiffServ in order to obtain quantitative end-to-end QoS guarantees [4], [5], [6]. 
Internet2 started the End-to-End Performance Initiative [7] aiming to create a 
predictable and well-supported network environment. While these projects focus 
on network QoS mechanisms, we established first the application requirements 
such that user expectations are fulfilled. Only subsequently QoS mechanisms may 
be deployed to meet these requirements. 

A number of projects focus on the relationship between network 
conditions and application performance. A survey on QoS application needs was 
published by the Internet2 QoS Working Group [8], but their approach is not 
objective and the conclusions are vague. TF-STREAM reported on best-practice 
guidelines for deploying real-time multimedia applications [9]. ITU-T defined 
network performance objectives for IP-based services in [10]. HEAnet reviewed 
several aspects of perceived quantitative quality of applications [11]. Most of 
these approaches are qualitative, whereas we aim at creating a quantitative 
representation of UPQ that can be related to QoS parameters. 

File transfer is one of the basic applications running over today’s 
networks. It is largely used for the simple purpose of transferring data between 
two points using FTP (File Transfer Protocol), but its most important use is within 
Web browsing using HTTP (Hyper Text Transfer protocol). We studied FTP 
which is extensively used in LANs, as well as over the Internet. There is also 
research focusing on HTTP, see for example [12]. 

File transfer is an elastic TCP-based application. TCP tries to occupy as 
much of the available bandwidth as it can handle. It also adapts its transmission 
rate to prevailing network conditions – with high loss rates it backs off to a slower 



transmission rate. It also provides reliable data transfer by means of its loss 
recovery mechanisms. 

TCP behaviour is analysed by a multitude of researchers. Some of them 
take the analytical approach [13], [14], [15]. Another path is that of simulation 
[16], [17]. There exists also the possibility to do experimental work in real 
networks, to assess raw network performance [18] or to collect traffic traces [19]. 
Each of these methods has certain advantages and disadvantages related to their 
accuracy and the range of conditions that are analysed. Emulation is a hybrid 
performance evaluation methodology enabling controlled experimentation with 
real applications. We consider that this approach is the most effective; therefore it 
is an integral component to our approach of studying QoS. 

There are two major approaches to measuring network QoS parameters: 
active and passive. Active measurement implies generation of traffic that is 
injected in the network systems under test and analysis of their response. 
Examples of this type are simple applications, such as ping and traceroute, or 
more complex ones, like Iperf [20]. Some of them, and also NetIQ Chariot, a 
commercial product, emulate transaction traffic from real applications and 
measures response time, throughput etc. A QoS testbed topology was described 
by the SEQUIN project [21]. For passive measurement on the other hand, one 
does not interfere with network functioning and monitors the traffic of real 
applications to compute the network QoS parameters. Hence application 
behaviour can be correlated with measured network conditions. This is the 
approach we undertook in our experiments. We built a system [1] able to measure 
non-intrusively the network QoS parameters and obtained a one-way delay 
measurement accuracy of 1 µs, for any size packets, up to loads of 100 Mbps. 

In parallel with monitoring network traffic for computing QoS parameters, 
we quantify the perceived quality for applications, in this case file transfer by 
FTP, based on specifically defined metrics. Consequently we can correlate 
network conditions with the UPQ for these applications. For FTP this allows 
studying the performance of the underlying TCP mechanisms under various 
networks conditions. 

Note that TCP can be redesigned to perform better in current best-effort 
networks. Initially the TCP congestion avoidance and control mechanisms were 
designed for networks that were relatively slow [22]. Nowadays networks have a 
much higher bandwidth, therefore new mechanisms could be used to improve 
performance [23]. However these enhancements are not widely spread, therefore 
our work concentrates only on standard out-of-the-box applications. 

 

 



1  Measurement System 

The system we designed is shown in Figure 1 in a typical test setup. A 
detailed description of the system is available in [1]. For a better understanding 
we present here the basics. We mirror the traffic on the link between two PCs that 
run the network application under study using FastEthernet taps. This traffic is fed 
into programmable Alteon UTP network cards. From each packet all the 
information required for the computation of the network QoS parameters is 
extracted and stored in the local memory as packet descriptors. The host PCs, 
which control the programmable NICs, periodically collect this information and 
store it in descriptor files. This data is then used to compute off-line the following 
network QoS parameters: one-way delay and jitter, packet loss and throughput. 
We can calculate instantaneous or average values, and various histograms. 

 
 

Figure 1. Measurement system setup. 
 
The same collected data is used to assess the UPQ for FTP, using the 

metrics described in section 3. What follows is the most important step of our 
approach: correlating the network QoS parameters that have been computed for 
the connection with the UPQ calculated for the studied application. This 
correlation allows testing network connections before deploying network 
applications, and predicting the expected UPQ for those applications. 

Our test setup makes use of a network emulator, NIST Net [24]. The 
emulator can degrade network QoS by introducing in a controlled way artificial 
delay, jitter, packet loss and throughput limitations. We have used such a solution 
in order to be able to analyze a wide range of controllable network conditions, 
while using real applications. This would not have been possible using real 
networks or simulators. 



2  QoS metrics 

Based on the data collected by the QoS measurement system we compute 
off-line the following QoS parameters: average one-way delay and jitter, average 
throughput and packet loss [25], [26]. The average one-way delay is computed by 
taking into account only the data frames. The average jitter is computed in three 
ways, only for the data frames, based on the generic formula (1): 

∑
=

−=
N

i
referencei DD

N
J

2

1 ,      (1) 

where J is the average jitter, N is the total number of transmitted data frames, Di is 
the one-way delay of each data frame, Ni ,1= , and Dreference is the reference 
delay. The reference delay can be the delay of the first frame [25], the average 
delay or the delay of the previous frame [26]. Since the average jitter an 
application would experience is influenced by the delay of the previous frame, we 
consider it the most relevant from an application-oriented perspective. From 
Figure 2 one can also observe that this is has a smoother variation with packet 
loss. 

 
Figure 2. Average jitter computation comparison. 

 
The average throughput is computed taking into account all transferred 

frames, with respect to the duration of the test. Packet loss is determined using a 
packet identifier associated by the monitoring system to each frame and written in 
the descriptors. A packet is considered lost if its identifier, which appears in the 
descriptor file at the first measurement point, doesn't appear in the descriptor file 
at the second measurement point. 



3  FTP UPQ metrics 

A very important aspect of our work is the definition and quantification of 
application specific metrics. The two UPQ metrics we propose for FTP, goodput 
and transfer time performance, allow the assessment of the user-perceived quality 
for this particular application.  

Goodput (G) quantifies the network efficiency of the file transfer. It is 
computed as follows: 
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where Bmin is the minimum number of bytes required for that file transfer 
(including protocol overhead for Ethernet, IP, TCP and FTP) and B is the count of 
the actually transmitted bytes. 

 Goodput values are on a scale from 0 to 1, where 1 means maximum 
efficiency of the file transfer. Goodput decreases due to packet retransmission 
when loss occurs. Given its definition, G doesn’t depend on any time parameter 
related to the transfer (e.g. transfer duration, round-trip time (RTT)) but only on 
the amount of bytes being effectively transmitted. Therefore an additional  metric 
is required to take this aspect into account. 

Transfer time performance (TTP) allows the evaluation of the time 
efficiency for a file transfer: 
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where Tth is the theoretical transfer duration and T is the measured transfer 
duration. The theoretical transfer duration is the ratio of the minimum number of 
transmitted bytes required for that transfer, Bmin, to the line speed, L (in our case 
100 Mbps). T is computed as the difference between the time when the last packet 
from a transfer was received and the time when the first packet was sent. 

TTP is also on a scale from 0 to 1, with 1 meaning the ideal, optimum 
performance. Packet retransmission delays make TTP values decrease. TTP 
depends indirectly on all parameters that influence transfer duration, such as RTT, 
TCP window size etc. 

4  Experimental Results 

In the experiments we performed, we introduced artificial packet loss 
using the NIST Net network emulator [24]. Packet loss was introduced in both 
traffic directions. 

We ran our tests using the setup depicted in Figure 1, with different 
transferred file sizes. The conditions for our file transfer tests were the following: 
FTP client with Linux kernel 2.4.6 (64 kB maximum TCP window), ftp-0.17-7, 



FTP server with Linux kernel 2.4.9 (64 kB maximum TCP window), wu-ftpd-
2.6.1-20. In what follows, we present values obtained by averaging over 100 
experiments for each intended loss rate. We ran two series of tests, one with a 
RTT of 0.8 ms (emulating a local network scenario) and the other with a RTT of 
60 ms (emulating a wide area network). 

We present first two graphs that show the moments of time packets arrive 
at the receiver and the throughput. The gaps correspond to the delay occasioned 
by one or more packets being lost, that triggers the retransmission mechanism. 
This leads of course to a short-term decrease of the instantaneous throughput. 

 
Figure 3. Packet count of received frames with respect to their reception time (file size = 1 MB, 

RTT = 0.8 ms, packet loss = 1%). 

 
Figure 4. Instantaneous throughput with respect to time (file size = 1 MB, RTT = 0.8 ms, packet 

loss = 1%). 
 



Table 1 shows the TTP values obtained in zero loss conditions for two 
different RTTs and several transferred file sizes. It can be seen that the time 
efficiency increases with file sizes, since the overhead of the connection 
establishment and termination becomes less significant compared to the file 
transfer time itself. The variation of TTP between the two RTTs is of an order of 
magnitude. 

  
File size 10 kB 100 kB 1MB 10MB 

0.8 ms RTT 0.0219 0.1650 0.8696 0.8919 
TTP 

60 ms RTT 0.0029 0.0141 0.0559 0.0791 

Table 1. Transfer time performance depending on file size and RTT (packet loss = 0%). 
 
TCP window size is an important parameter regarding TCP performance. 

The optimal window size, Woptimal, is given by the bandwidth-delay product: 
RTTBWWoptimal ⋅= ,       (4) 

where BW is the bottleneck bandwidth of the connection (100 Mbps in our case). 
Considering the 0.8 ms RTT we obtain W0.8 = 10 kB. For the 60 ms RTT 

we get W60 = 750 kB. Given that the default maximum window size was 64 kB, 
this doesn’t represent a limitation for the 0.8 ms RTT, but it limits the traffic for 
60 ms RTT, and the performance is one order of magnitude lower, exactly as 
observed in Table 1. 

The results presented below were obtained for a 10 kB file, which is the 
typical file size for Internet traffic [27]. For larger file sizes, the graphs of goodput 
and TTP have a similar shape. TTP values approach 1 for large files and small 
RTTs (see Table 1), which shows that it is more efficient to send the same amount 
of data in one large transfer than in multiple short ones. For these tests, intended 
packet loss rates ranged from 0% to 25%. 

Goodput (see Figure 5) decreases almost linearly with packet loss, 
showing the diminution of link utilization efficiency. As expected RTT doesn't 
have any influence on goodput, since G is not time dependent. Therefore goodput 
is not a stand-alone indicator of file transfer UPQ and must be correlated with 
TTP.  

Transfer time performance (see Figure 6) shows the significant 
dependency of transfer time on packet loss. The maximum value of TTP equals 
0.0219 due to the additional durations of connection establishment and 
termination, which represent approximately 96% of the transfer time for 10 kB 
files. 



 
Figure 5. Goodput versus packet loss for file transfer tests (10 kB file). 

 
Figure 6 shows that for 0.8 ms RTT, TTP value decreases 20 times for 

packet loss rates of 5% compared to the value obtained at zero loss. This is 
equivalent with an increase of 20 times of the transfer duration, which means a 
significant degradation of the UPQ. For loss rates of 10% and higher, performance 
degrades hundreds of times. For 60 ms RTT TTP is smaller than for 0.8 ms RTT 
and loss has a less dramatic influence on it. 

 
Figure 6. Transfer time performance versus packet loss for file transfer tests (10 kB file). 

 
The influence of packet loss on TCP performance depends on the type of 

the lost packets: losing a data packet is easily hidden by the retransmission 
mechanism, whereas losing a TCP connection establishment or termination packet 
has a more important effect due to the relatively large timeouts. For 10 kB files, 
transfer duration has increased by an order of magnitude in such cases. 



The two figures below show, for comparison. the goodput and TTP for 
three file sizes (the RTT was 0.8 ms, intended packet loss ranged from 0 to 40%). 
Note the similarity between the goodput graphs (Figure 7) and the performance 
improvement with transferred file size emphasized by the TTP graph (Figure 8). 

 
Figure 7. Goodput for three file sizes (RTT = 0.8 ms). 

 
Figure 8. Transfer time performance for three file sizes (RTT = 0.8 ms). 

Conclusions 

The novelty of our work is that we are able to both accurately measure 
network QoS parameters and objectively assess application UPQ in parallel. This 
allowed us to quantify the relationship between QoS parameters and UPQ for file 
transfer and identify its QoS requirements in a standard configuration. 

Goodput diminishes as expected with packet loss. The dependency is 
linear and goodput decrease is not very large in the range of 0 to 5% packet loss. 



Setting the value of 0.9 as the threshold of acceptability for network utilization 
efficiency, we determine that packet loss should not exceed 5%. For loss rates 
above 20%, goodput indicates a transfer efficiency lower than 0.7. This 
approaches 0.5 for loss rates close to 40%. 

The transfer time performance graph has a negative exponential shape, 
showing that the time needed to transfer a file increases significantly with packet 
loss. For loss rates around 5% and low RTTs, the TTP is one order of magnitude 
smaller than the value obtained at zero packet loss. The degradation observed is 
less significant for the 60 ms RTT than for the 0.8 ms RTT. At 25% loss rate, the 
time to transfer has become several hundred times larger than in the case the loss 
rate is smaller than 5%. This renders the connection practically unusable for file 
transfer. 

We conclude that file transfer applications require packet loss not to 
exceed 5% in order to keep the network utilisation efficiency above 0.9 and not 
have an increase of the transfer time larger by more than an order of magnitude 
with respect to no loss conditions. Good performance requires even tighter 
bounds: packet loss should not exceed 1% in order to obtain a network utilization 
efficiency around 0.99 and a transfer time not larger than three times with respect 
to no loss conditions. 

Using our results it is possible to predict an application UPQ based on the 
corresponding measured network QoS parameters and understand the reasons of 
possible application failure. One can also determine the end-to-end network QoS 
requirements for an application to run with a desired UPQ level. Mapping high-
level user requirements to network QoS conditions is also a key issue in Service 
Level Agreement contracts. 
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