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Abstract: The smart grid is one of the core technologies that enable sustainable economic and social
developments. In recent years, various cyber attacks have targeted smart grid systems, which have
led to severe, harmful consequences. It would be challenging to build a real smart grid system for cy-
bersecurity experimentation and validation purposes. Hence, analytical techniques, with simulations,
can be considered as a practical solution to make smart grid cybersecurity experimentation possible.
This paper first provides a literature review on the current state-of-the-art in smart grid attack analysis.
We then apply graphical security modeling techniques to design and implement a Cyber Attack
Analysis Framework for Smart Grids, named GridAttackAnalyzer. A case study with various attack
scenarios involving Internet of Things (IoT) devices is conducted to validate the proposed framework
and demonstrate its use. The functionality and user evaluations of GridAttackAnalyzer are also
carried out, and the evaluation results show that users have a satisfying experience with the usability
of GridAttackAnalyzer. Our modular and extensible framework can serve multiple purposes for
research, cybersecurity training, and security evaluation in smart grids.

Keywords: smart grid; cybersecurity; cyber attack; vulnerability; graphical security modeling; attack
graph; attack tree

1. Introduction

A smart grid refers to the inter-operation of electricity (and power) related technology,
information technology, and communication technology, to improve the serving load of
electrical power systems and facilitate the development of relevant end-user applications.
In this next-generation electrical power system, the computing technology is integrated
into the conventional electrical grid to improve different power network components’
connectivity, communication, and automation.

The Cabinet of Japan attempts to build new economic and social development strate-
gies, “Society 5.0” [1], which debuted in 2016. The program envisions a future super-
intelligent society that will benefit humanity with a better quality of life and a shift in social
norms. The smart grid is described as one of the key concepts supporting this initiative.
Furthermore, the U.S. Department of Homeland Security (DHS) [2] defined the smart grid
as a “special” critical infrastructure supporting necessary services to sustain society and
ensure economic development since it is essential to many of the 18 critical infrastructures.
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Cybersecurity has become a major challenge for smart grid systems. For example,
almost one-third of the cybersecurity incidents reported by the U.S. Industrial Control Sys-
tems Cyber Emergency Response Team (ICS-CERT) targeted the energy sector in 2014 [3].
Therefore, research on smart grid security needs to be enhanced. Due to its two essential
parts, the power grid and network communication, the structure of the smart grid system
is complex. In addition, the relationship between these two components needs to be con-
sidered for further research and improvement. Unfortunately, implementing a real smart
grid system for cybersecurity experiments and validation is not trivial. Obviously, there is
a considerable risk of damaging the electrical equipment and infrastructure, resulting in
massive economic consequences or even putting human lives in jeopardy.

Fortunately, simulation testbeds and analytical techniques can be applied to conduct
cybersecurity experimentation in the critical domains where testing on a real system is
prohibited, such as smart grid. A smart grid simulation approach was applied in our
related research in [4,5]. Besides, there is an increasing interest in the development of smart
grid cyber-physical testbeds [6]. Along with their undeniable benefits, there are various
disadvantages and drawbacks of these approaches, including costly and time-consuming
implementation, scope limited to the current system, scalability problems, and mobility
issues, as summarized in [7]. Consequently, the analytical approach is discussed and
implemented in this research.

Through certain assumptions about how a method progresses, an analytical model is a
mathematical abstraction that can be generalized to deal with different working conditions.
In some instances, it is possible to determine a solution, and a result can be obtained
in a wide variety of situations. The strength of an analytical model is that it provides a
generalized method for obtaining performance results by using a mathematical formulation
under different conditions. The model accuracy relies on ensuring the validity of the
assumptions on which the mathematical formula is based. To estimate the modeling and
measurement model, some uncertainties can be addressed with a stochastic model.

The application of analytical and simulation techniques for smart grid cybersecurity
experimentation research has been increasing in recent years, from nearly 4000 papers in
2010 to more than 17,000 in 2019 (These figures were obtained from Google Scholar by
using the search pattern as (“Smart Grid” OR “Smart Grids”) AND (“Analysis”) AND
(“cybersecurity” OR “cyber security” OR “security”)). The attack analysis and simulation
tools are principally utilized to investigate attacks and emulate their characteristics, es-
pecially network topologies and system settings. The use of real-world event simulation
technologies for cybersecurity experimentation is believed to be the most critical aspect in
improving the efficacy of the process. However, only a few research studies focus on the
application of analytical techniques in conjunction with real security vulnerability data for
the smart grid. To the best of our knowledge, this work is one of the first academic papers
to examine this critical problem in-depth.

We start this article with a state-of-the-art literature survey of smart grid attack anal-
ysis. We then describe the design and implementation of GridAttackAnalyzer, a Cyber
Attack Analysis Framework for Smart Grids, via graphical security modeling and security
evaluations. To validate our framework, a case study involving a variety of attack scenarios
is conducted. Using GridAttackAnalyzer, researchers can ascertain the repercussions of
various attack types. In addition, our proposed framework facilitate the early development
and evaluation of novel anomaly detection and mitigation techniques, even before they
are implemented.

The main contributions of this paper are:

1. We applied graphical security modeling techniques and designed and implemented
GridAttackAnalyzer, one of the first smart grid attack analysis frameworks, to enable
researchers to easily create, modify the attack experimentation content, and facilitate
their interaction with the system.

2. We conducted several case studies using various network models, power grid test
feeders, and attack types to validate the proposed framework.
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3. We performed a comprehensive comparison among the existing research on smart
grid attack analysis and conducted an user evaluation for the GridAttackAnalyzer to
demonstrate the usability of the framework.

The remainder of this paper is organized as follows. Background and related work are
represented in Section 2. The architecture of GridAttackAnalyzer is explained in Section 3.
In Section 4, the implementation and selected results of GridAttackAnalyzer are introduced.
Section 5 discusses the functionality and user evaluations of GridAttackAnalyzer. Finally,
Section 6 concludes the paper and points out future work directions.

2. Background and Related Work

A thorough overview of the most current analysis tools and their smart grid applica-
tions has been provided in our previous study [8].

Several approaches for modeling attackers’ behavior have been proposed recently.
These approaches were designed to understand the system’s socio-technical perspective
and explore how an intruder could influence the system’s functioning.

A smart grid system’s components, including IoT-enabled devices and essential
communication protocols, are examined for security and safety risks in the work of
Shama et al. [9]. In detail, the “multiarmed bandit” problem has been reformulated into an
adaptive Bayes-based network security model. This new method examines how network
defenders might efficiently distribute cyber defense teams among nodes, taking a dynamic
approach to cyber security investment. The research finding can help answer the typical
question of the smart grid system: How smart is smart enough?

M. Zekeriya et al. [10] provide an overview of cyber-attacks on power systems ap-
plications. In detail, this research introduces attacker types, attack types, and massive
cyber-attacks on smart grid. In addition, a discussion of the most important goals and
prerequisites for cyber security in smart grids is presented. In addition, the different kinds
of attacks that can be carried out on smart grids are categorized according to the principles
of confidentiality, integrity, and availability.

Liu et al. [11] contributed an i*-based framework, which is an agent-oriented require-
ment modeling language [12], for agent-oriented software engineering and requirement
analysis. The work focuses principally on internal attackers rather than external hackers
targeting a system. A similar approach was suggested by Mouratidis et al. [13] utilizing
scenarios to demonstrate the nature of software security risks during the development
process. A simple attacker model, where the attackers have to complete sub-goals to
achieve the final target, was considered. Another study in [14] examined scenarios of
attack during service layer application development. Obstacles were considered as the
system’s anti-goals; hence, it is the attacker’s target. Asnar et al. [15] extended the i*-based
framework by adding risks related to the system’s goal. However, the risk sources were
not discussed in detail.

Beckers et al. [16] proposed a threat analysis structured method that involves the
mapping of the attacker’s plan (documented in an attack tree) to particular system vulner-
abilities (represented as an attack graph). They demonstrated that a part of an elaborate
graph related to a particular target in the attack tree could be extracted. The research result
showed that the complexity of the analysis of attack graphs was significantly reduced.
Additionally, an algorithm to calculate an attacker’s overall success probability to reach the
target was proposed in this research.

Ge et al. [17] proposed a framework for the security graphical modeling and evaluation
of Internet of Things (IoT). The framework has five phases, including data processing,
generation of security model, security visualization, security analysis, and model updates.
An IoT Generator, a Security Model Generator, and a Security Evaluator were developed in
this study. On the one hand, the IoT Generator’s role is to construct an IoT network based
on the node vulnerability and network reachability data. In addition, based on the given
IoT network, the Security Model Generator generates the extended Hierarchical Attack
Representation Model (HARM). On the other hand, by using different security metrics,
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the Security Evaluator analyses the network’s security. The framework’s performance
was evaluated by the implementation of the three distinct scenarios, including healthcare
monitoring, smart home, and environmental sensing. The extended HARM [18] was
applied to calculate all possible attack paths, and the selected security metrics values
were determined in the security analysis process. The research encompasses a variety of
security metrics, including Attack Graph Generation (AGG), Attack Tree (AT), attack cost
(ac), attack impact (aim), attack success probability (p), and attack risk (r). In addition,
the mathematical formulas for calculating security metrics were described in detail. The
security decision-maker can identify the most vulnerable segment of the network from the
study results, analyze the efficacy of various protection strategies, and decide the most
efficient way to defend the network. Therefore, the impact of possible attacks can be
mitigated. However, the framework addresses IoT systems issues in general, rather than
focusing on smart grid attack scenarios specifically. Hence, there are still limitations in
creating visualizations for attack graphs, likelihood, and application for smart grids.

Attack graph visualization is a useful approach for cybersecurity professionals and
non-experts to investigate the system’s suspicious activities and examine all possible
hacking attempts. The likelihood of an attack, which strongly enhances the risk evaluation
process, can be defined using p. The lack of studies that focus on likelihood and attack
graph visualization creates a gap in the smart grid field. Therefore, to bridge this gap, we
employ the framework in this research.

3. GridAttackAnalyzer: Cyber Attack Analysis Framework for Smart Grids

Based on an attack analysis approach where it is feasible to integrate the different
smart grid components and provide the ability to analyze various cyber attack scenarios,
we propose a Cyber Attack Analysis Framework for Smart Grids or GridAttackAnalyzer.
Figure 1 illustrates the architecture of GridAttackAnalyzer. GridAttackAnalyzer is com-
prised of eight main components, including the database, smart grid model, security
settings, database manager, attack analysis manager, attack model generator, attack model
evaluator, and output (attack graph and security metrics).
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Figure 1. The architecture of GridAttackAnalyzer.



Sensors 2022, 22, 4795 5 of 26

3.1. Input

GridAttackAnalyzer investigates vulnerability exploitation attacks and evaluates their
impact. By using the smart grid database, these attacks are instantiated. The database
structure is provided in Table 1. It is organized by using a structured JSON-format file.
Such a database is the input to enable reconfiguration to examine a wide variety of attacks
on the same smart grid architecture. This searchable database comprises three sub-modules,
including the smart grid model, smart grid devices, and Common Vulnerability Exposure
(CVE) list [19], which is the publicly-known list of vulnerabilities and exposures.

The network model and power grid model are two critical parts of a smart grid
system. To simulate each of these components, different studies have been conducted.
On the one hand, various smart grid network architectural models were proposed in
recent years [20]. These network models were formed by the connections between smart
grid devices. Since GridAttackAnalyzer aims to allow the users to optimize the network
security, these connections are not physically stored in the database. The network model is
configured by users later. On the other hand, various distribution test feeders, which vary
in control data, complexity, and scale have been developed [21]. Each test feeder contains
several residential loads or houses organized into smaller areas to facilitate attack analysis.
This information is stored in the database.

Table 1. The database structure of GridAttackAnalyzer.

Sub-Module Object Description

Smart Grid
Model

ID ID of the Smart Grid Model

list_name Name of the Smart Grid Model

streets_and_houses List of the streets and
the corresponding houses

description Smart Grid Model description

Smart Grid
Devices

ID ID of the Smart Grid device

device_name Name of the Smart Grid device

CVE_list The CVE list of the
Smart Grid device

group Group of the device
(HAN, NAN, SCADA)

description Smart Grid device description

CVE List

ID ID of the CVE

description CVE description

CVSS_Base_Score_2.0 CVSS Base Score 2.0

Impact_Subscore Impact Subscore

Exploitability_Subscore Exploitability Subscore

A smart grid involves various energy measures and operations; for instance, smart
meters, smart appliances, and Supervisory Control and Data Acquisition (SCADA). A smart
meter or a smart electric energy meter is a piece of equipment that measures electrical
data (e.g., current, electricity consumption, power factor, and voltage levels). Smart meters
enhance the visibility of energy usage, power consumption behavior, and customer billing.
Further, they enable various smart grid applications, for instance, dynamic pricing and
demand response. Smart appliances have the ability to respond to the dynamic pricing and
demand response signals. These applications add additional value for smart grid appliances
through intelligent control, power management, and network technologies. In addition,
one feature of designing the capability of a smart grid is incorporating SCADA systems
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to allow the utilities to track and control network equipment remotely. The information
gathered by these smart meters, smart appliances, and SCADA devices are organized in the
database. The structure includes ID, name of the device, the CVE list of the device, group,
and description.

3.2. Processing

Each of the smart grid devices has a corresponding CVE List. The list is collected
from the National Vulnerability Database (NVD) website [22] by searching the name of a
smart grid device. Each CVE is stored in the database under the components of the CVE
List sub-module.

The database manager module is the interface that interacts with end-users, attack
analysis manager, and the database to capture and analyze an attack. It first obtains data
from the database, then enables the users to select the power grid and network model
from the smart grid model module, attack entry point, attack target, and vulnerability
scores from the security settings module. The information is then transmitted to the attack
analysis manager module to start the processing stage.

3.2.1. Attack Analysis Manager

The attack analysis manager serves as the engine of GridAttackAnalyzer. It initializes
the running environment, and the configuration of the network model, the power grid
topology, and the security setting. Additionally, this attack analysis manager controls the
composition of the attack analysis scenarios and manages the attack model generator and
attack model evaluator.

When analyzing a scenario, the attack analysis manager module uses the data from the
data manager module to prepare the analysis environment. Then, the data is transferred to
the attack model generator for the next steps.

3.2.2. Calculation of Security Metrics

The security metrics are calculated using the security model generator and security
model evaluator modules proposed in [17]. When the network is constructed, the security
model generator module takes the network topology and vulnerability information as
inputs to compute all possible attack paths in the smart grid network. For reference,
a summary of mathematical symbols appearing throughout is given in Table 2.

Vulnerability scanners are widely used to identify a network’s security vulnerabilities
and their components, including type, number, and location. The CVE employs the
Common Vulnerability Score System (CVSS) [23] to determine the severity levels of these
vulnerabilities. For the attack analysis process, these CVSS scores can be utilized as inputs
to generate the Graphical Security Model (GrSM) [24]. This model depicts how a system
can be compromised via various attack vectors. Therefore, solutions to defend against these
threats can be formulated. The two essential parts of GrSM are the Attack Graph (AG) [25]
and Attack Tree (AT) [26]. ATs are conceptual diagrams that represent the various ways
in which an asset or target can be compromised. An AG is a concise representation of all
paths through a system that ends with an attacker achieving their target successfully. The
advantages of the AT and AG application for smart grid attack analysis are discussed in
our related research in [8].

In this approach, we denote a node as t, a set of nodes as T where t ∈ T, a vulnerability
as v, a set of vulnerabilities for node t as Vt. Vulnerabilities in each node are constructed as
an AT (vulnerabilities as leaf nodes; AND gate if all vulnerabilities need to compromised to
gain the privilege; OR gate if only one of the vulnerabilities needs to be compromised to
gain the privilege) via the graphical security model, denoted as att. We define an attack
path, ap is a sequence of nodes that can be compromised by an attacker along the path
from an entry point to an attack target in the AG. Each AG has a set of attack paths AP
(from each possible entry point to each possible attack target) where ap ∈ AP. We define
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security metrics in node-level, path-level, and network-level and describe the calculation of
these metrics.

Table 2. List of mathematical symbols in alphabetical order.

Symbol Description

acap attack cost of an attack path
acg attack cost of an inner node

aimap attack impact of an attack path
aimg attack impact of an inner node
att attack tree t
pg attack success probability for each inner node g in att
pt the root value in att
pv attack success probability value of a vulnerability
rap attack risk of an attack path
rg attack risk of an inner node
Vg the set of vulnerabilities under gate g
ac attack cost

AC the attack cost of the network
aim attack impact

AIM the attack impact of the network
g inner node (gate)
p attack success probability
P the attack success probability of the network
r attack risk
R the attack risk of the network

The vulnerability’s attack success probability (p) is the value used to estimate the
likelihood of an attacker succeeding in exploiting the vulnerability. At the node level,
the metric is used to measure the probability of success when an attacker compromises
the node. We first calculate attack success probability for each inner node g in att where
g ∈ {AND, OR}, denoted as pg and measured by Equation (1); we then calculate pt, which
is the root value in att.

pg =

{
Πv ∈ Vg pv; g = AND

1−Πv ∈ Vg(1− pv); g = OR
(1)

where pv is the attack success probability value of a vulnerability and Vg is the set of
vulnerabilities under gate g. At the path level, the value of attack success probability is
measured by Equation (2). This value represents the hacker’s ability to access a target
through a specific attack path.

pap = ∏
t∈ap

pt; ap ∈ AP (2)

At the network level, the metric value is the maximum attack success probability of
the path among all possible attack paths.

P = max
ap∈AP

pap (3)

The quantifying value of the cost that an attacker spend for exploiting a vulnerability
is called an attack cost (ac). At the node level, the metric is used to measure the attack cost
for successfully compromising a node. For node t ∈ T of an attack tree and each inner
node, the value of attack cost for a node is calculated by Equation (4). At the path level,
the measure is the cost spent by an attacker to compromise the target over the attack path.
This cost is calculated by Equation (5).
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At the network level, the measure is the minimum attack cost to compromise the
target along one attack path among all possible paths. The cost of network level is given by
Equation (6).

acg =

{ ∑
v ∈ Vg

acv; g = AND

min
v ∈ Vg

acv; g = OR
(4)

acap = ∑
t∈ap

act; ap ∈ AP (5)

AC = min
ap∈AP

acap (6)

The attack impact (aim) of a vulnerability is a quantitative representation of the
possible damage that an attacker could cause by exploiting a vulnerability. At the node
level, the metric is used to measure the potential damage that an attacker could cause by
compromising a node. The value of attack impact for a node is calculated by Equation (7).
The aim value of node t is defined as the aim of the root node.

Similarly, as indicated in Equation (8), the aim value of an attack path is calculated by
adding the attack values of each node t. Then, a network-level attack impact is a maximum
impact of one attack path among all possible paths taken, as shown in (9). The aim values
are calculated by the following formulas:

aimg =

{ ∑
v ∈ Vg

aimv; g = AND

max
v ∈ Vg

aimv; g = OR
(7)

aimap = ∑
t∈ap

aimt; ap ∈ AP (8)

AIM = max
ap∈AP

aimap (9)

The risk of a vulnerability (r) is the probability of loss resulting from the vulnerability
exploitation. At the node level, the metric is the probability of loss from the node compro-
mise. It is computed by summing the product of the probability of attack success pra and
the amount of damage aima on an attack path ap, as in Equation (10). Similarly, at the path
level, r is calculated by prt and aimt values of node as shown in Equation (11). The R value
of the network is the maximum value of rap, as explained in Equation (12).

rg =

{ ∑
v ∈ Vg

prv × aimv; g = AND

max
v ∈ Vg

prv × aimv; g = OR
(10)

rap = ∑
t∈ap

prt × aimt; ap ∈ AP (11)

R = max
ap∈AP

rap (12)

By using the security metrics, the security evaluator can perform three functions.
The first is to produce the analysis results directly. The second is to generate and export a
CSV-format output file. The final function is to generate the AG automatically. In addition,
attack paths are classified based on the five-level of attack success probability, ranging from
almost certain, likely, possible, unlikely, and rare.



Sensors 2022, 22, 4795 9 of 26

3.3. Output

Data output is an essential part of any analysis system, and our attack analysis on the
smart grid is no exception. Attack Graph and various security metrics, including attack
cost, attack success probability, attack risk, attack impact, and likelihood, are the outputs
of GridAttackAnalyzer. After finishing the attack analysis process, the output in CSV
(comma-separated values) format can be loaded. It is a simple file format used mainly to
store tabular data; for instance, a spreadsheet or a database. By using the user-friendly GUI,
the analytical outputs can be selected and visualized. GridAttackAnalyzer allows users
to generate an AG automatically. Furthermore, attack paths are classified by likelihood
based on the probability ranges. This function facilitates the users in making a qualitative
comparison between the attack scenarios quickly. Consequently, the characteristics of the
attacks can be easily distinguished. Currently, bar graphs are supported.

4. Implementation and Analysis Results of GridAttackAnalyzer

We discuss the proof-of-concept prototype of the proposed framework in this section.
Using a Python binding to the Tk GUI toolkit named Tkinter [27], we implemented the
framework as a smart grid attack analysis desktop application. The user interface of
GridAttackAnalyzer is depicted in Figure 2.

Figure 2. GridAttackAnalyzer desktop application.

4.1. Smart Grid Model

In the smart grid research community, the Pacific Northwest National Laboratory
(PNNL) taxonomy feeders [28] and IEEE feeders [29] are commonly applied from the power
grid simulation research. For the network model, there have been numerous network
architecture designs for the smart grid system [30,31]. We have employed the IEEE feeders
in our previous research in [4,5]. Hence, in the scope of this study, PNNL taxonomy feeders
will be used. Note that GridAttackAnalyzer is designed to integrate more network and
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power grid models. Therefore, the models applied in the case studies can not be considered
as the only ones.

4.1.1. Power Grid Model

We consider the following scenario. The expanding incorporation of smart grid
technologies in the U.S. power network demonstrates the value of test feeders’ availability,
enabling the effect of attacks on cyber-physical models to be assessed.

The current US power grids have a wide variety of topologies and appliances due
to their vast scale and numerous services. Hence, test feeders should also represent these
variations based on factors such as voltage and climatic area. In 2009, PNNL developed
a 24-node taxonomy radial distribution test feeder reflecting the U.S. continental region.
Through a clustering algorithm involving 17 different utilities and their 575 current test
feeders, these distribution test feeders have been created. In order to implement this
categorization, the mainland region was split into five climate zones, where 35 statistical
and electrical properties were studied.

R4-12.47-2 gains its advantage from the 24 prototypical feeders by combining a mod-
erately populated urban area with a small suburban area. In addition, there are mainly
one-family homes in the less populated city, which is appropriate for our case study.
Figure 3 shows the R4-12.47-2 infrastructure which consists of 352 houses. A smart meter
was attached to each house to collect electric energy consumption data. These houses are
divided into five smaller areas, A, B, C, D, and E, to improve the control of performance.
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Figure 3. R4-12.47-2—A PNNL taxonomy feeder [32], where A, B, C, D, and E, are the correspond-
ing areas.

4.1.2. Network Model

The smart grid in this study consists of three interdependent networks including
Wide Area Network (WAN), Neighbor Area Network (NAN), and Home Area Network
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(HAN) [33]. To reflect network relationships with the utility, the research [34] proposed two
different types of HAN architectures. The smart meter controls all house devices in the first
architecture. This design’s drawback is that all smart home appliances have to exchange
data using the same communication technology. In order to handle the complexity of
several network n protocols, the second architecture, in which all appliances are connected
to the smart meter via a gateway, was designed.

Based on the power grid’s selected configuration, the smart grid communication
network with the gateway is illustrated in Figure 4. For the sake of our case study, we
note that this network model has been simplified. Each residential house in the network
model represents a residence in the power grid model. Furthermore, in the electricity
grid model, these residential houses are clustered into smaller areas in the same way that
individuals are aggregated. Smart appliances such as an IP camera, smart TV, smart light,
smart thermostat, and smart vacuum, are installed in every home. Through using the
gateway, smart appliances transmit the collected data to the smart meter. Then, the data
was forwarded to the associated street concentrator. Finally, data is obtained by the
SCADA system.

A Front End Processor (FEP) is a computing device that interfaces to the SCADA
system. For practical reasons, such as avoiding the need for a new pair of modems, FEP
can be considered a central node in the network model. Its function is to establish a solid
communication link from HAN and NAN devices, for instance, the street concentrators and
substations. Furthermore, it ensures the connection with the SCADA system. FEP aims to
offload the SCADA system from transmitting and receiving data, managing the peripheral
devices, error correction and error detection, and packet assembly and disassembly.

Since the power system goes through numerous operating states such as normal, alert,
emergency, and restorative, Energy Management Systems (EMS) is designed to maintain
the capability of the system by monitoring its behavior and making decisions to get it
back to normal operation. EMS also supports the demand response (DRP) application.
The operation of EMS relies on data acquired by SCADA. It is at the top level of our applied
network model. Due to the scope of this research, other devices are not discussed in detail.

Smart Meter

HAN NAN

WAN

Smart TV

Smart Thermostat

IP
Camera

Robot 
Vacuum Cleaner

Smart Light

Gateway
Street

Concentrator

SC
AD

A 
LA

N

FEP

Historian
Server

Application 
Server

Active Directory
Server

Communications
Server

ICCP
Server

WAN SCADA and EMS System

EMS/DRP  
Server

Work
Station

HMI

Substation
RTU

Local
Terminal PMU

PLC

Figure 4. An example of the smart grid simplified network model with a gateway.

An ID is assigned to each smart appliance or node in the system following a predeter-
mined pattern, comprising the device name, area, and home ID. For example, the ID of an
IP camera belongs to area A’s house number 2 is denoted as CamA2 . Similarly, ThermostatB2 ,
CleanerB2 , LightB2 , TVB2 , GatewayB2 , and MeterB2 represent the devices in the second house
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of the area B. In addition, ConcentratorA, ConcentratorB, ConcentratorC, ConcentratorD,
and ConcentratorE are the concentrator IDs for each area A, B, C, D, and E, respectively.
Local_Terminal, RTU, FEP, Communication_Server, ICCP, and EMS/DRP serve as the
IDs for the local terminal, substation RTU, FEP, Communications, ICCP, and EMS/DRP
servers in our simplified network model (part of smart grid).

4.2. Devices and Vulnerabilities

Vulnerabilities are serious security flaws that hackers can exploit to compromise a
susceptible network. Attackers can use sequences of software, open-source exploit kits,
or commands to explore security vulnerabilities and carry out malicious activities. This
research assumes that attackers can exploit the vulnerabilities listed in Table 3. Any HAN
device, consisting of smart thermostats, smart TVs, robot vacuum cleaners, IP cameras,
and smart lights, one by one or even all of them, can be used as the entry points to start an
attack. Further, some smart grid devices in the substations and the SCADA system can be
used as the attack’s entry points.

Table 3. CVE list for smart grid devices.

No. Smart Devices CVE Lists

1 IP Camera CVE-2020-11623, CVE-2020-11949, CVE-2020-3110

2 Smart TV CVE-2020-9264, CVE-2019-12477, CVE-2019-11336,
CVE-2019-9871, CVE-2018-13989

3 Smart Vacuum Cleaner CVE-2019-12820, CVE-2019-12821, CVE-2018-20785,
CVE-2018-17177, CVE-2018-10987

4 Smart Thermostat CVE-2013-4860, CVE-2018-11315

5 Smart Light CVE-2020-6007, CVE-2019-18980,
CVE-2017-14797

6 Smart Meter CVE-2017-9944

7 Gateway CVE-2018-3880, CVE-2018-3879, CVE-2018-3902,
CVE-2018-3909, CVE-2018-3907, CVE-2018-3911

8 Concentrator CVE-2020-1638

9 FEP CVE-2019-6810, CVE-2018-4838,
CVE-2019-14813

10 ICCP Server CVE-2015-6574, CVE-2006-0059

11 Communication Server CVE-2021-20501, CVE-2020-7247, CVE-2020-27777

12 Local Terminal CVE-2021-33200, CVE-2019-19816, CVE-2019-19814

13 Substation RTU CVE-2019-14931, CVE-2020-7801,
CVE-2019-16879, CVE-2019-20045

14 EMS/DRP Server CVE-2020-9391, CVE-2019-6454,
CVE-2019-14813

4.3. Attack Scenarios

According to the report by the European Union Agency for Cybersecurity (ENISA) [35],
channel jamming, DNS attacks, injection attacks, and malicious code are among the attacks
that should be considered in Smart Grid area. The simulation of these attack types are
detailed in our related research in [4]. In this work, we focus on vulnerability exploitation
attacks. Once attackers control the devices via vulnerability exploitation attacks, they can
launch further attacks (e.g., denial of service attacks, injection of false information).
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This research assumed all that smart appliances in seven households, which are nearly
2% of the system’s 352 residential houses, have vulnerabilities. In particular, one house in
areas C, D, and E and two households in areas A and B contain vulnerabilities.

We perform five case studies in the context of scenarios for training learners/trainees
about cybersecurity attacks on smart grids via IoT devices. Four case studies consider
entry points in HAN because IoT devices can be easily compromised by attackers and
used as stepping stones to reach other attack targets; the last case study considers the local
terminals for substations as entry points in the NAN to show that these devices can be
compromised and used as entry points to break into the SCADA system.

1. Multiple-entry single-target attack model (entry devices of single type): we assume
one type of device has vulnerabilities in this case study. Consequently, in order to
launch an attack, attackers can only manipulate this type of device within the infected
houses. For example, all IP cameras in the seven selected residential houses contain
different types of vulnerabilities. Therefore, these infected IP cameras can be exploited
as attack entry points. This basic scenario is used to introduce the trainees to the
system’s functions.

2. Multiple-entry single-target attack model (entry devices of multiple types): vulnera-
bilities exist in all types of devices in the seven selected houses. Therefore, attackers
would probably manipulate any of the equipment in order to execute an attack. This
circumstance aims to equip the users with attack analysis ability.

3. Multiple-entry single-target attack model with patch: patching refers to the process
by which the vulnerabilities in a specific device is repaired. The case study extends
the multiple-entry single-target attack model under multiple device types scenario
to incorporate patches’ deployment as a defense strategy. For instance, all smart
TVs’ security vulnerabilities have been resolved. Since the issues are fixed, they
are not appropriate entry points for the attacker to start an attack. This training
scenario is applied to introduce the trainees to the patching functions and evaluate
the effectiveness of a given defense strategy.

4. Multiple-entry multiple-target attack model: this case is the extension of the multiple-
entry single-target attacker model under multiple device types by expanding the
attack target to the SCADA system’s core. This scenario aims to demonstrate the
massive attack analysis ability of the training system. The users can learn how a
large-scale attack happens and what the consequences are.

5. Attack model with local terminals for substations as entry points: all local terminals of
the substations have vulnerabilities. Hence, attackers would probably manipulate any
of these local terminals as the entry points to conduct an attack. This case study aims
to show how a physical device controlled by the SCADA system might be hacked and
leads to the compromise of the SCADA system.

The attack targets in these scenarios are the SCADA system’s devices. In detail, the case
studies from 1 to 3 aim to control the FEP, while EMS/DRP is targeted in the 4th and last
scenarios. If a smart grid device has multiple vulnerabilities, attackers can choose one at
random to use in their attempt.

The GridAttackAnalyzer enables users to construct a network model by selecting
smart grid devices, as well as an attacker model by choosing potential entry points and
attack targets. Therefore, the considered attack scenarios in this paper are illustrative.
The framework allows trainers to create new network models based on chosen devices,
assign vulnerabilities, and modify CVE values easily. Hence, more attack scenarios can
be analyzed.

4.4. Attack Analysis Execution and Result Visualization

To start an attack analysis session, a trainee (or the system’s user) selects a smart
grid model. There is a “Show” button next to the smart grid model dropbox to visualize
the smart grid model structure. Next, smart grid connection and CVE selection types
should be selected. Currently, two smart meter connection types, including “via a gateway”
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and “direct connection”, as well as two CVE selection types, namely, “manually” and
“automatically”, are supported. Devices and the corresponding vulnerability should be
selected by clicking on their checkboxes. An “Info” button is located next to a corresponding
CVE to show the CVE information, including CVE description, CVSS Base Score v2.0,
Impact Subscore, and Exploitability Subscore. An example of CVE information is shown in
Figure 5.

Figure 5. An example of CVE information.

After the smart grid model, smart meter connection, CVE selection type, and devices
and vulnerability have been chosen, the system is ready to create the source file by the user
clicking on the “Generate File” button. This source file is a CSV-format file that contains
all of the necessary data for an attack analysis session. GridAttackAnalyzer enables users
to modify this source file before starting an analysis session by two options. The first
option is to open the CSV-format file and manually change the data. This option allows the
trainees to modify the source file freely. However, it is sometimes tiresome and error-prone.
Another option is to select a specific IoT device and update its CVE information. By using
this option, the error-prone issue can be eliminated.

When the source file is ready and the entry points and targets are selected, the attack
analysis session is ready to start by clicking on the “Run” button. After finishing the
attack analysis process, the outputs are stored in the CSV-format files. The attack graph
source file, which contains the information of all attack paths, can be accessed by clicking
on the “Graph Source File” button. All paths can be gathered to form an attack graph
and visualized by clicking the “Attack Graph” button. On the other hand, the calculated
security metrics are also archived in a CSV-format file. It can be accessed by selecting the
“Security Metrics” button. Finally, these security metrics can be visualized for the result
comparison among different attack scenarios. Currently, the bar chart option is supported.

4.5. Analysis Results

By applying the mathematical formulas discussed in Section 3.2.2, the security met-
rics values, including attack cost (ac), attack success probability (p), attack impact (aim),
and attack risk (r), are calculated in node, attack path, and network levels. Attack paths
are classified into five categories based on the range of p taken from [36,37], including
almost certain (0.8 ≤ p ≤ 1), likely (0.6 ≤ p ≤ 0.79), possible (0.4 ≤ p ≤ 0.59), unlikely
(0.2 ≤ p ≤ 0.39), and rare (0.0 ≤ p ≤ 0.19) paths. These categories are summarized in
Table 4. In addition, Table 5 shows the network-level analysis results. In detail, the first five
scenarios represent the results for the multiple-entry attack model under one device type,
the sixth scenario shows the results for the multiple-entry attack model under multiple de-
vice types, the seventh and eighth scenarios demonstrate the results for the multiple-entry
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attack model with patch, the ninth scenario represents the large-scale attack on the smart
grid system, and the last one shows the result of the substation to SCADA system scenario.

Table 4. The classification of attack paths based on the probability ranges adapted from [36,37].

Likelihood Probability Ranges
(p)

Almost Certain 0.8–1.0

Likely 0.6–0.79

Possible 0.4–0.59

Unlikely 0.2–0.39

Rare 0.0–0.19

Table 5. Attack analysis results.

Scenario Entry Point Patch
Security Metrics Number of Paths

p c aim r Total Rare Unlikely Possible Likely Almost
Certain

1 Smart
TV No 1 21.7 33.9 33.9 16 0 3 0 5 8

2 Smart
Thermostat No 0.65 19.7 33.9 22.04 16 0 2 8 6 0

3
Robot

Vacuum
Cleaner

No 0.86 21.7 33.9 29.15 16 1 6 2 4 3

4 Smart
Light No 1 21.7 30.3 30.3 16 1 9 2 0 4

5 IP
Camera No 0.8 19.7 33.9 27.12 16 0 7 2 5 2

6 All No 1 19.7 33.9 33.9 80 2 27 14 20 17

7 All Smart TV 1 19.7 33.9 33.9 64 2 24 14 15 9

8 All
Smart TV

and
Smart Light

0.86 19.7 33.9 29.15 48 1 15 12 15 5

9 * All No 0.39 22.09 36.29 14.15 125 66 59 0 0 0

10 Substation
(Local Terminal) No 0.05 18.57 22.17 1.131 12 12 0 0 0 0

* Multiple-entry Multiple-target Attack Model.

4.5.1. Multiple-Entry Single-Target Attack Model under One Device Type

It is clear that compromising the smart lights and smart TVs incurs the highest success
probability (p) of 1. However, the attack cost (ac) associated with attacking the smart lights
is higher than those targeting smart TVs. As a result, attackers can access the FEP via 16
smart TVs’ entry point paths, eight of which are almost certain. Consequently, hackers are
more motivated to target smart TVs as entry points (if they are aware of the vulnerabilities).

Attack cost at the network level refers to the most negligible possible cost, whereas
attack impact refers to the most significant loss caused by an attacker attempting to com-
promise the target via all possible paths. As a result, even in the single-entry attacker
model, an optimal path for attackers to compromise the victim may not exist. For example,
the following path from TVA2 to FEP has the maximum attack risk (r) and impact (aim) at
33.9, maximum attack success probability at 1, and minimum attack cost at 21.7:

• Attackers→ TVA2 → GatewayA2 → MeterA2 → ConcentratorA → FEP



Sensors 2022, 22, 4795 16 of 26

However, the following path from TVB1 to FEP has the maximum impact at 33.9 but
lower attack success probability:

• Attackers→ TVB1 → GatewayB1 → MeterB1 → ConcentratorB → FEP

Once the smart grid system has been analyzed, an attacker can decide which paths to
compromise in order to achieve their goal. Security specialists can use this knowledge to
defend the system against an attack.

4.5.2. Multiple-Entry Single-Target Attack Model under Multiple Device Types

By increasing the number of entry points, attackers gain additional attack vectors. It
is highly likely that the smart grid system will be attacked, as there are 17 almost certain,
20 likely, and 14 possible paths among 80 potential ones. In this case, hackers need to spend
less cost at 19.7. Unfortunately, the attack risk and attack impact are at their maximum of
33.9. Therefore, to prevent intruders from hacking into the system, smart lights and smart
TVs should also be secured first.

4.5.3. Multiple-Entry Single-Target Attack Model with Patch

We independently change the vulnerability data for (1) both smart TVs and smart
lights or (2) smart TVs only.

Due to the fact that the potential attack vectors are created by both smart lights and
smart TVs, the effect of patching for smart TVs is not immediately apparent. The attack
risk, attack impact, and attack success probability, remain the same as in the previous
model. In addition, the total number of paths has been reduced. The number of paths with
almost certain likelihood is reduced to 9.

By mitigating vulnerabilities in smart lights and smart TVs, we reduce the likelihood
of an attack success and the associated risk. Unfortunately, the attack impact and attack
cost remain unchanged. This is because of the smart thermostats and IP cameras, which
cost attackers less effort to compromise but can cause more significant consequences. There
are 5 almost certain paths. As a result of the findings, it is clear that securing both smart
lights and smart TVs is more beneficial than defending each of them separately.

4.5.4. Multiple-Entry Multiple-Target Attack Model

In this case study, attackers can use all of the HAN devices to start an attack. The target
is the EMS/DRP server. Since more entry devices are provided, there are more paths to
conduct an attack. There are a few serious vulnerabilities in this scenario. Therefore,
the attack success probability is just 0.33, and the attack risk is just 14.15. Among 125 attack
paths, there are 59 unlikely paths and 66 rare paths. However, attackers need to spend
more effort since they have to compromise more devices to reach the target. The attack cost
is 22.09, which is the highest in the scenarios. Similarly, the attack impact is high at 36.29.
Therefore, more effort is required to conduct this attack. However, there is an enormous
consequence if attackers achieve the target. The following is an example of an attack path
which has the highest attack impact:

• Attackers → TVC2 → GatewayC2 → MeterC2 → ConcentratorB → FEP→ ICCP→
EMS/DRP

4.5.5. Attack Model with Local Terminals for Substations as Entry Points

In this scenario, the substations’ local terminals were employed as the entry points for
the hackers to conduct an attack. EMS/DRP server is also the target of this case study. Since
the CVSS values of the local terminals and substation RTUs are not high, the maximum
attack success probability is low as p = 0.05. There are 12 paths that allow attackers
to compromise the EMS/DRP server. Fortunately, all of them are rare paths. However,
the attack cost for an attacker to achieve their goal is still high as c = 18.57, and the attack
impact is 22.17. Therefore, severe damage can be still observed if the EMS/DRP server is
compromised. Due to the low attack success probability, the attack risk is low at 1.131.
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The path from Local_TerminalB to EMS/DRP, which is shown in the following, has
the maximum attack success probability:

• Attackers→ Local_TerminalB → RTUB → FEP→ ICCP→ EMS/DRP

4.5.6. Example of Result Visualization

One of the main functions of GridAttackAnalyzer is to analyze the attacks on the smart
grid system. To enable users to understand the attack graphs easily, GridAttackAnalyzer
automatically generates the attack graphs. The visualization shows all of the possible
attack paths for attackers to reach the targets. An attack graph that needs to be considered,
for instance, with the highest value of the selected metric, is highlighted in the graph.
The automatic attack graph generation is one of our contributions to fill the gap in current
work. For instance, by utilizing attack success probability, an attack graph with all possible
attack paths is automatically constructed by GridAttackAnalyzer from scenario Section 4.5.1
as shown in Figure 6. The highlighted path is from TVA2 to FEP, which has maximum
attack success probability at 1:

• Attackers→ TVA2 → GatewayA2 → MeterA2 → ConcentratorA → FEP

Along with the CSV format output files, GridAttackAnalyzer allows users to visualize
the results. The security metrics, including attack impact, attack success probability, attack
risk, and attack cost, can be visualized. Furthermore, the number of attack paths classified
as almost certain, likely, possible, unlikely, and rare can be visualized in charts.

Figure 6. An illustration of an attack graph produced as part of a case study.

The data in CSV-format output files are too numerous or complex to be represented
appropriately here, due to space limitations. However, we note that this function enables
the trainee to compare the results of different attack scenarios. Using charts, data can be



Sensors 2022, 22, 4795 18 of 26

displayed, and further exploration of an analysis result can be facilitated. An example of a
visualization of attack analysis results is shown in Figure 7. Currently, the bar chart type
is supported.

Figure 7. An example of attack analysis result visualization.

5. Evaluation

We report on an evaluation of our system based on two aspects: a comprehensive
functionality comparison and scenario analysis by selected users.

5.1. Functionality Comparison
5.1.1. Evaluation Method

Our related research indicated that a useful smart grid experimentation system should
integrate both the network and power grid models with security components [38]. There-
fore, GridAttackAnalyzer meets the requirements for smart grid cybersecurity experimen-
tation with the combination of these components. To highlight the useful functions of
GridAttackAnalyzer, we compare its functionalities with related research. More specifically,
GridAttackAnalyzer is evaluated by comparing the ability to calculate various interest
metrics, including likelihood, attack cost, attack success probability, attack risk, and at-
tack impact.

5.1.2. Evaluation Results

For smart grid attack analysis, most research only considers limited attack metrics
calculations when hackers attempt to compromise the cyber-physical system. Furthermore,
attack graph visualization and likelihood are also typically not included in those imple-
mentations, unlike our work. Additionally, smart grid attack analysis is still a new area
of research. To the best of our knowledge, GridAttackAnalyzer is one of the pioneering
frameworks for smart grid attack analysis. Hence, GridAttackAnalyzer is more comprehen-
sive than other related frameworks in terms of smart grid application and security metrics
calculations, including a wide range of metrics, i.e., attack cost, attack risk, attack success
probability, attack impact, as well as likelihood, as shown in Table 6.
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Table 6. Functionality evaluation of GridAttackAnalyzer (a blank cell indicates a functionality/aspect that is not present).

No. Year Research Attack Tree
Attack Graph Security Metrics Calculation

LikelihoodAttack Graph
Generation

Attack Graph
Visualization

Attack Success
Probability

Attack
Cost

Attack
Impact

Attack
Risk

1 2011 Security Risk Analysis of Enterprise Networks
Using Probabilistic Attack Graphs Y Y Y Y

2 2011 Defining and Assessing Quantitative Security Risk
Measures Using Vulnerability Lifecycle and CVSS Metrics Y Y Y

3 2012 Aggregating CVSS Base Scores for Semantics-Rich
Network Security Metrics Y Y

4 2012 Dynamic Security Risk Management Using
Bayesian Attack Graphs Y Y Y Y Y

5 2014 Determining the Probability of Smart Grid Attacks
by Combining Attack Tree and Attack Graph Analysis Y Y Y

6 2014 Attack Graph-Based Risk Assessment and
Optimisation Approach Y Y Y Y

7 2015 A Framework for Modeling and Assessing Security
of the Internet of Things Y Y Y Y Y Y

8 2016 Security Modelling and Analysis of
Dynamic Enterprise Networks Y Y Y Y

9 2017 A Quantitative CVSS-Based Cyber Security
Risk Assessment Methodology For IT Systems Y Y Y Y

10 2017 A framework for automating security analysis of
the internet of things Y Y Y Y Y Y

11 2018 A Comprehensive Analysis of Smart Grid Systems
against Cyber-Physical Attacks Y Y Y Y Y Y

12 2019 CloudSafe: A Tool for an Automated Security
Analysis for Cloud Computing Y Y

13 2019 Quantitative Model of Attacks on Distribution Automation
Systems Based on CVSS and Attack Trees Y Y Y
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Table 6. Cont.

No. Year Research Attack Tree
Attack Graph Security Metrics Calculation

LikelihoodAttack Graph
Generation

Attack Graph
Visualization

Attack Success
Probability

Attack
Cost

Attack
Impact

Attack
Risk

14 2020 A Bayesian Attack Tree Based Approach to Assess
Cyber-Physical Security of Power System Y Y Y Y Y

15 2020
A Framework for Real-Time Intrusion Response in
Software Defined Networking Using Precomputed
Graphical Security Models

Y Y Y Y Y

16 2021 Monitoring Cyber-Physical Layer of Smart Grid
Using Graph Theory Approach Y Y

17 2022 GridAttackAnalyzer Y Y Y Y Y Y Y Y
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5.2. User Evaluation
5.2.1. Evaluation Method

We also conducted an external user evaluation. Particularly, ten participants, who are
Ph.D. candidates in cybersecurity or related topics, were invited to use GridAttackAnalyzer.
There were five participants from JAIST and five from other institutions.

We had a session to introduce the functions of GridAttackAnalyzer to each participant.
After this session, a user guide was provided to the participants. Each of the 10 Ph.D.
students attempted to carry out the case studies introduced in Section 4. All the participants
succeeded in reproducing the case studies results. Moreover, they were encouraged to use
the frameworks to simulate and analyze new case studies, for example, to change attack
entry points or targets with the new CVE values. After completing the experiment, all
participants were asked to complete a usability questionnaire to measure their satisfaction
with the frameworks’ cognitive-load.

A reliable tool for measuring the usability, the System Usability Scale (SUS), was ap-
plied to enable users to respond to a usability questionnaire. This well-known standardized
questionnaire was first introduced in 1996 by Brooke [39] and is accounted for more than
40% of post-test questionnaire usage [40]. The structure of SUS is simple with a ten-item
attitude Likert scale, ranging from 1 for “strongly disagree” to 5 for “strongly agree”. Even
for a small sample of participants, it has been proven to produce highly reliable results [41].
The outcome of SUS is a single score on a scale from 0 to 100. The qualitative interpretation
of SUS scores is defined in [42] as follows:

• 0 ≤ SUS Score < 36: Poor
• 36 ≤ SUS Score < 51: OK
• 51 ≤ SUS Score < 72: Acceptable
• 72 ≤ SUS Score < 85: Good
• SUS Score ≥ 85: Excellent

The questions used in the questionnaire for GridAttackAnalyzer are shown in Figure 8.
Among the 10 questions, five are positive and five are negative, and negative items alternate
with positive ones. By listing these negative and positive statements in an alternating way,
the participant is challenged to to read every question and try to think whether they agree
with it or not (other possible randomized interleaving of positive and negative questions
can also be used).

The score contributions from each question, ranging from 1 to 5, were used to calculate
the SUS score by Equations (13)–(15), and were explained as follows:

• The score contributions from the odd items: the scale position minus 1.
• The score contributions from the even items: 5 minus the scale position.
• The overall SUS value in the range of 0 to 100: the 10 question’s total score is multiplied

by 2.5.
• The mean SUS score is the average SUS scores of n participants.

Scorei =

{
ai − 1, if i%2 6= 0

5− ai, if i%2 = 0
(13)

SUSj = 2.5×
10

∑
i=1

Scorei (14)

SUS =
∑n

j=1 SUSj

n
, n ∈ N (15)
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Figure 8. SUS questionnaire for GridAttackAnalyzer.

5.2.2. Evaluation Results

The analysis reflects the result values of SUS for GridAttackAnalyzer, which is shown
in Table 7. Standard deviation, which is the dispersion measure of a data set from its
average, was calculated by the (16) equation where σ is the data standard deviation, N is
the data set size, xi is defined for each value, and µ is the mean of the data set.

σ =

√
∑(xi − µ)2

N
(16)

Table 7. SUS Results of GridAttackAnalyzer.

Framework Maximum
Value

Minimum
Value Mean Standard

Deviation

GridAttack-
Analyzer 90 60 72.2 10.2

The SUS mean score is 72.2 for GridAttackAnalyzer. These mean scores can be con-
sidered as good (SUS > 72) for the framework. The standard deviation is 10.2 for Gri-
dAttackAnalyzer. Furthermore, the minimum scores are above 60, which is acceptable.
Comparing these usability values, we can see that the users had satisfying experiences
with the framework’s usability, generally speaking. Although almost all the participants
agreed that most researchers would learn to use GridAttackAnalyzer very quickly, two out
of ten found GridAttackAnalyzer unnecessarily complex. Therefore, we should consider
this aspect carefully for future development.

6. Conclusions

In this paper, we introduced GridAttackAnalyzer, a framework for cyber attack analy-
sis on smart grids. Its user-friendly GUI was developed by using the Python Tkinter library.
A case study using the PNNL taxonomy feeders R4-12.47-2 and smart grid network model
with gateways was conducted to validate the utilized framework, thus demonstrating the
range of potential applications of the framework. In addition, the functionality and user
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evaluations of GridAttackAnalyzer were carried out, with our results showing that users
have a satisfying experience regarding the usability of GridAttackAnalyzer.

The architecture of GridAttackAnalyzer—Cyber Attack Analysis for Smart Grids is
designed based on the general smart grid cybersecurity training’s analytical modeling
approach. GridAttackAnalyzer takes the combination of the smart grid model, security
settings, and database as the input to prepare the analysis session’s environment and
calculates the security metrics via the employment of the preprocessing components to
enable the analysis of various attack types. GridAttackAnalyzer is enhanced by recording
all possible attack paths and computing the values of selected security metrics through-
out the vulnerability analysis process. Furthermore, the attack graph can be generated
automatically to capture attack paths.

The main contribution of our study is a framework that can effectively support realistic
cybersecurity experimentation for the smart grid, with a focus on attack analysis. This
framework was implemented in the form of GridAttackAnalyzer. Scientists can use the
framework to estimate the effects of various attack types, as well as build and test early de-
tection methods and mitigation strategies for anomalies even before they are implemented.
The tool can be used for training on smart grid security and how vulnerabilities in IoT
devices can affect smart grid security. It is also possible to use the framework for smart grid
technology deployment, for example, to identify the communication needs for efficient
device operation.

In addition, the system can be used for the cybersecurity training of IT experts and
cybersecurity professionals. For instance, on the basis of the evaluation of various security
metrics, IT professionals and cybersecurity experts can identify all possible pathways of
attack. The most vulnerable devices in the paths to be protected can be identified in advance
to prevent the most severe consequence. Besides, it is possible to compare the efficiency
of particular device-level techniques deployed for various devices. The efficiency of the
security strategies of the smart grid system can be calculated at the network level. Our
work can also assist infrastructure designers in estimating the damage cost of the smart
grid attack.

The source code of GridAttackAnalyzer was published and freely available for down-
load via our GitHub page [43]. For future work, we intend to extend GriAttackAnalyzer to
integrate more network models and power grid test feeders. For example, there are various
other test feeders, such as EPRI Representative Feeders [44], PG&E Prototypical Feeders,
Benchmark Models for Low-Voltage Distribution Feeders [45], Agent-Based Distribution
Test Feeder with Smart Grid Functionality [46], and Test Feeder for DG Protection Analy-
sis [47]. Additionally, we will undertake additional case studies utilizing a variety of smart
grid attack types and CVEs to validate our extended framework. We also hope to gain
more user feedback as we deploy this tool and invite a wider range of users.
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CVE Common Vulnerability Exposure
CVSS Common Vulnerability Score System
DHS U.S. Department of Homeland Security
DRP Demand Response
EMS Energy Management Systems
ENISA European Union Agency for Cybersecurity
FEP Front End Processor
GrSM Graphical Security Model
HAN Home Area Network
HARM Hierarchical Attack Representation Model
ICS-CERT U.S. Industrial Control Systems Cyber Emergency Response Team
IoT Internet of Things
NAN Neighbor Area Network
NVD National Vulnerability Database
PNNL Pacific Northwest National Laboratory
SCADA Supervisory Control and Data Acquisition
SUS System Usability Scale
WAN Wide Area Network
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