
Intent-Driven Secure System Design: Methodology and Implementation

Sian En Ooia, Razvan Beurana, Takayuki Kurodab, Takuya Kuwaharab, Ryosuke Hotchib, Norihito Fujitab, Yasuo
Tana

aJapan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1211, Ishikawa, Japan
bNEC Corporation, Shiba 5-7-1, Minato-ku, 108-8001, Tokyo, Japan

Abstract

Given the typical complexity of networked systems in terms of number of components and their interconnections,
manually designing their architecture is inherently difficult, and the design process requires expert knowledge and
skills. If we also consider the security requirements that networked systems must meet, the task becomes even more
demanding, since the manual audit and security mitigation of the architecture are time and labor intensive. This led to
research on automated system design, including ways to cover the related security aspects.

In this paper we present a methodology for secure system design that uses an intent-based representation of the
network service requirements as input, which is annotated with security requirements, and applies the Design Space
Exploration (DSE) approach to generate the system design. Security is handled via a MITRE ATT&CK-based security
knowledge base, and a set of security check functions, so that the resulting system design meets not only the functional
and quantitative requirements, but also the specified security requirements. We implemented this methodology as the
secure system designer SecureWeaver by extending the functionality of an existing intent-based system designer that
targeted IT/NW services, named Weaver. A case study of a typical corporate network scenario is used to illustrate
the feasibility of the methodology in producing a system design that mitigates the associated security threats. The
performance evaluation we conducted for this scenario demonstrates that the added security check overhead does not
have a significant impact on the overall performance characteristics of the framework.

Keywords: networked system, secure system design, automated design, design space exploration, MITRE ATT&CK

1. Introduction

Digital transformation efforts in recent years, some
of them related to the COVID-19 pandemic, have made
the network infrastructure a core element of our society
that enables virtual communication, e-commerce activ-
ities, telecommuting, and so on. The current model for
designing and deploying networked systems is that the
customers express their needs in service-level require-
ment descriptions, and system developers focus mainly
on resource-level requirements (Wu et al., 2021). How-
ever, there is no direct way to “translate” between these
two types of requirements, and expert knowledge must
be used to determine the system components to be de-
ployed and the manner in which they should be inte-
grated in order to meet customer needs.

In order to formalize the expression of network
service requirements, several classes of approaches
have been proposed, such as intent-based represen-
tations (Rafiq et al., 2020; Pham and Hoang, 2016;
Wu et al., 2021; Kim et al., 2020; Jacobs et al.,

2021), and template-based representations (El Hous-
saini et al., 2015; DesLauriers et al., 2021; Paladi et al.,
2018). Such declarative network operation models con-
trast with the traditional imperative networking model,
which requires network engineers to specify the se-
quence of actions needed on individual network ele-
ments and creates a significant potential for error.

Intent-based approaches such as Intent Based Net-
working (IBN) are gaining more attention in both re-
search and commercial communities as they effectively
resolve the challenges of conventional network design
with regard to flexibility, efficiency, and security (Wei
et al., 2020). IBN is generally employed to transform
the business intent of a user/customer from the user’s
personal requirements and performance targets into net-
work configuration, operation, and maintenance strate-
gies, such that it captures and translates the intent into
automatable network configurations that can be applied
consistently across the network. Typically, a business
intent can be either captured through a graphical user

Preprint submitted to Computers & Security October 17, 2022



interface (GUI) or manually by defining it using data
formats such as JavaScript Object Notation (JSON) and
Domain Specific Language (DSL).

In addition to system functionality, expressed via
qualitative and quantitative requirements, system secu-
rity must also be considered already at the design stage
in order to realize a “secure by design” system that has
been designed to be fundamentally secure. One ap-
proach in this area is extending the Design Space Explo-
ration (DSE) model to cover security aspects, as done in
(Kang, 2016; Pimentel, 2020). By integrating security
into DSE, the authors provided a solution for verifying
any potential system security issues at the design stage,
a significant improvement over the traditional approach
that involves manual security audits and mitigation once
the system has been already designed.

Our work too focuses on extending the DSE approach
to take into account system security, and for this pur-
pose we leveraged Weaver (Kuroda et al., 2019; Kuwa-
hara et al., 2021), which is an intent-based system de-
signer that targets IT/NW services. The main difference
to other research is that Weaver adds support in DSE
for specifying a service requirement as input that can be
used to bridge the gap between customers and system
designers mentioned above, thus making it possible for
Weaver to address system design in a flexible and effi-
cient manner. The approach of Weaver is generic, not
being limited to specific domains—such as system-on-
a-chip design, or inter-cloud service configuration de-
sign, as it happens with other systems—hence we se-
lected it as the basis of our implementation.

However, while Weaver can solve both qualitative
and quantitative constraints related to networked sys-
tem design, it lacks a way to ensure that the designed
system is secure. Consequently, the extension that we
implemented, named SecureWeaver, adds the necessary
functionality to makes it possible to automatically de-
sign generic networked systems that are secure, regard-
less of their specific domains (IT/NW, IoT, etc.). Se-
cureWeaver’s intended users are the application experts,
and SecureWeaver can help them to design a secure sys-
tem design for their target application without the direct
involvement of networking and security experts. Se-
cureWeaver transforms business requirements or busi-
ness needs regarding an organization’s network into a
system design that satisfies the qualitative, quantitative,
and security requirements about that network. A busi-
ness requirement is a high-level description of a busi-
ness goal or project objective. An example of a business
requirement for an IT organization can be simply to pro-
vide a cloud storage service to its users. Such business
requirements may also contain various non-functional

requirements, such as a concurrent number of users, net-
work speed, and many more.

This goal is achieved through the following main con-
tributions presented in this paper:

• Extended the functionality of Weaver to manage
internally security-related information, and added
security-specific system design rules

• Employed the MITRE ATT&CK taxonomy to
build a comprehensive knowledge base that in-
cludes both security threats and mitigations, which
is used by SecureWeaver to automatically verify
system design security characteristics

• Implemented a security check mechanism that
checks whether the threats that are present in the
service requirement input are mitigated in the sys-
tem design output

A preliminary version of SecureWeaver was pre-
sented in (Ooi et al., 2022). The present paper discusses
the following methodology and implementation exten-
sions: (i) the secure design rules and knowledge base
were revised to fully include the network domain of the
MITRE ATT&CK taxonomy (Section 4); (ii) the se-
curity check mechanism implementation was extended
to cover all the mitigations in the network domain of
MITRE ATT&CK (Section 5); (iii) we employed a re-
alistic evaluation scenario based on a typical corporate
network to validate the functionality and performance
of SecureWeaver thoroughly assessing all the security
check functions (Section 6).

The remainder of this paper is organized as follows.
Section 2 introduces related work to our research, such
as intent-based design and secure system design. Our
methodology for intent-driven secure system design, in-
cluding implementation requirements and an overview
of Weaver, is presented in Section 3. The secure design
database that we built based on the MITRE ATT&CK
taxonomy and the corresponding security check mecha-
nism are detailed in Sections 4 and 5, respectively. The
evaluation of SecureWeaver from functionality and per-
formance perspectives is presented in Section 6. The
paper ends with conclusions and references.

2. Related Work

In this section we discuss research related to Se-
cureWeaver and the differences with respect to it.

2



2.1. Intent-Based Design

The work in (Pham and Hoang, 2016) is an
intent-based Northbound Interface (NBI) framework
for Software-Defined Network (SDN) applications. It
translates an application’s objectives, requirements and
constraints without requiring network-specific language
in the intent or comprehension of the underlying net-
work that supports the application in an SDN environ-
ment. Although the framework is specific to the SDN
domain, the concept behind its intent-based “transla-
tion” is similar to SecureWeaver.

The work in (Davoli et al., 2019) is an intent-based
NBI framework as well, but for OpenFlow/IoT SDN
domains. By using a service chaining description as
intent, the framework is able to provision the network
path given constraints such as end-to-end Quality-of-
Service (QoS) for both the IT/NW and IoT domains.
The main difference to SecureWeaver is that it is in-
tended for managing network paths in existing SDN en-
vironments, while SecureWeaver is able to design a sys-
tem and its corresponding network from ground up.

The research presented in (Jacobs et al., 2021) is
an intent-based network management framework us-
ing natural language. It accepts a natural-language in-
tent from the user and extracts the required informa-
tion using machine learning algorithm. The required
information is then passed to an intent assembly mod-
ule that generates concrete network configuration com-
mands to meet the network management intent require-
ments. This work is an intent-based network manage-
ment tool for existing network infrastructure that does
not meet our goal of automatic secure system design.

Existing automatic system design tools (Wu et al.,
2021; Rafiq et al., 2020) that can be utilized to design
a system are generally either architecture or parameter-
level design platforms for their specific domains. Enti-
ties and requirements in a topology graph, such as com-
ponents, relationships and constraints, are specified in
an architecture-level design; in parameter-level design,
the parameters and fine tuning are specified according
to the given topology. Parameter-level design tools such
as (Wu et al., 2021) have high flexibility compared to
their architectural-level design counterparts. Neverthe-
less, they are incompatible with our intended use cases,
as we focus on architecture-level design for the IT/NW
and IoT domains.

2.2. Secure Intent-Based Design

The work in (Scheid et al., 2017) is an intent-based
designer for Network Function Virtualization (NFV)
that models and computes virtual network functions

(VNF) chains to meet the intent requirements, includ-
ing security. It requires definitions of abstract weights
for the non-functional requirements in order to perform
its quantitative computation. These quantitative scores
of VNF are clustered to their respective levels to find the
most suitable VNF that satisfies the given requirements.
This approach is not as flexible as SecureWeaver for ar-
chitecture design.

The work in (Amato et al., 2018) is a model-driven
design for orchestrated cloud services that includes a
security-level evaluation. A template-based matching
technique is used to satisfy the service requirements.
This research also uses numerical calculations to eval-
uate the security propagation in the topology, so as to
verify whether the output satisfies the required secu-
rity level. On the other hand, SecureWeaver specifically
maps the security threats to their respective mitigations
by consulting a threat mitigation knowledge base rely-
ing on MITRE ATT&CK data, which is more concrete
than an abstract quantitative assessment.

The work in (Kim et al., 2020) is an intent-based
security service automation for cloud environments,
named IBCS (Intent-Based Cloud Services for Security
Applications). IBCS interprets user’s network security
intent and translates it into concrete configurable secu-
rity policies. This is done by extracting the data via
the Deterministic Finite Automata (DFA) method be-
fore mapping it to a suitable Network Security Function
(NSF). The Context-Free Grammar (CFG) approach is
used to convert the extracted data into security poli-
cies, such that the output configuration can be applied
to the relevant network interfaces. The difference with
SecureWeaver is that IBCS only generates the security
policies to be applied to an existing cloud environment,
whereas SecureWeaver designs a secure system archi-
tecture from ground up that satisfies the given intent.

The work in (Gressl et al., 2021) is a DSE-based sys-
tem designer for IoT and cyber-physical systems (CPS)
applications, using DSE techniques to refine a secure
embedded system topology. The main difference to Se-
cureWeaver is that it is specifically used to design the
individual properties of IoT device hardware and soft-
ware, while SecureWeaver addresses networked sys-
tem architecture design issues. Furthermore, it derives
its attack types via Microsoft’s STRIDE threat model,
whereas SecureWeaver uses MITRE ATT&CK data to
define the threats and mitigations.

2.3. Security Knowledge Framework
The work in (Kwon et al., 2020) presents a method-

ology to map the ATT&CK Industrial Control Systems
(ICS) matrix into the Facility Cybersecurity Framework

3



(FCF) cybersecurity assessment tool, as a cyber threat
dictionary. The cyber threat dictionary provides map-
ping between threats and their mitigations that can be
used for both proactive and reactive measures. While
this work shares the similar concept of using a cy-
bersecurity attack and defense framework for mitigat-
ing a threat, SecureWeaver further introduces a security
check mechanism to enable the automatic checking of
the applied mitigations.

The work in (Hemberg et al., 2020) also presents
a methodology to bidirectionally map various third-
party security databases, such as MITRE ATT&CK,
NIST Common Weakness Enumerations (CWE), Com-
mon Vulnerabilities and Exposures (CVE), as well as
Common Attack Pattern Enumeration and Classifica-
tion (CAPEC). This work demonstrates the feasibility of
expanding the SecureWeaver threat mitigation knowl-
edge base beyond the scope of ATT&CK to include
other security databases in the future.

3. Methodology of Automated Secure System Design

This section introduces our methodology for auto-
mated secure system design, while the next sections
provide further details on the automatic generation of
a concrete and secure system design.

3.1. Methodology Overview

During the architecture design phase for a given sys-
tem, both functional and non-functional requirements,
which include the security, safety and privacy of the in-
tended system, must be captured. While safety and pri-
vacy are not covered explicitly in this paper, we empha-
size that having strong security is a prerequisite for both
safety and privacy.

Security in this context refers to the protection of a
system, and the requirements of a secure system ar-
chitecture are mainly related to how much uncertainty
and risk one is willing to tolerate (Køien, 2020). While
no system can be made perfectly secure, having an in-
adequately secured system has negative consequences.
Thus, an automated secure system designer should be
able to have a quantifiable security level target, and be
able to quantitatively discern whether a particular de-
sign is secure enough in terms of that target.

An automated secure system designer should be able
to apply proactive measures, which are measures that
are directly applicable in a system design, such as de-
ploying a firewall where needed to filter the incoming
traffic. Reactive measures include actions such as cyber
threat incident detection, response, and recovery efforts.

Service

Requirement Secure Design

Database

SECURE SYSTEM DESIGNER

Web
App

connTo

Security

Verification

Figure 1: Overview of the secure system designer SecureWeaver.

Such measures cannot be concretely specified at design
phase, hence they are to be applied in the form of as-
sumptions that must then be put into application during
the actual system deployment.

There are many methods to secure a system, such as
following best-practice guidelines or threat modeling.
When handling a security threat, there may be more than
one approach to address it, such as removing the threat
(prevention), reducing the impact of the threat (mitiga-
tion), or even transferring the risk via insurance or pass-
ing on the risk to the end-user (Køien, 2020).

3.2. Automated Secure System Design Requirements

In this work we propose an automated secure system
designer that is able to accept a service requirement as
an input, including security aspects, then process the in-
put and generate a system design that is both concrete
and secure. In order to achieve this goal, the system
needs to consult a database that contains both design
patterns and security knowledge. Hence, the key re-
quirements for such a system are the following:

1. Ability to design a system in an automatic manner
based on qualitative and quantitative input require-
ments (see Section 3.3)

2. Use of a secure design database with relevant de-
sign patterns and knowledge that make possible the
secure system design (see Section 4)

3. Use of a security check mechanism to automati-
cally check that the generated system design sat-
isfies appropriately the input security requirements
(see Section 5)

This methodology is illustrated in Fig. 1, which gives
an overview of our implementation, SecureWeaver.
Note how the service requirement and secure design
database are used by the secure system designer that
employs the security check mechanism to verify the sys-
tem design candidates.

4



A service requirement is the top-level description of
the intended design outcome (intent), which is inspired
by the concept of intent-based networking (IBN). The
service requirement can be either completely concep-
tual (equivalent to designing a system from scratch), or
it can be an incremental addition to an existing network
configuration. The creation of the service requirement
by an application expert is typically a two stage process:
(i) capturing the input requirement conceptually, and (ii)
composing the service requirement file according to the
SecureWeaver format. The service requirements must
first be captured from users of the networked system
that is to be designed, such as external customers plan-
ning to deploy a network from scratch, or an internal
department in an organization planning to deploy a new
service for their department on an existing network in-
frastructure. Hence, the application expert will then ex-
press these requirements to create the actual content in-
side the intent file in a format that is compatible with
SecureWeaver.

Components that conceptually or concretely describe
parts of the intent and the relationships that denote com-
munication or component relations are part of a typical
service requirement. However, a system designer is not
able to derive an appropriate system design when the
specified threats and relationships in a service require-
ment lack information and context.

Hence, a certain level of context is required in order
to accurately express the security requirements and de-
rive a suitable solution that: (i) meets all the functional
requirements; (ii) has no unmitigated security issues.
Hence, we can explicitly assign a security threat to any
of the components and relationships in the service re-
quirement which the automated secure system designer
must take into account from a security perspective dur-
ing the refinement process. In practice, application ex-
perts will assign such security threats to the relevant
components and relationships based on their general se-
curity knowledge. We are assuming that application ex-
perts have such knowledge about the threat(s) that are
relevant to their application, but do not necessarily know
how to fully mitigate them.

For the automated secure system designer to be able
to interpret the defined threat, it must refer to a database
to obtain the required information and act accordingly.
This is where the secure design database comes into
play. The secure design database should contain infor-
mation, such as secure design patterns, security threats
and their corresponding mitigations, and other related
data needed for informed decision making.

To realise our vision of such an automated secure sys-
tem designer, we built our prototype implementation

connTo

LAN

connTo

LAN

connTo

LAN

LAN HOST

LAN

LAN HOST

LAN HOST

LAN

(a) Intent Requirement

(d) System Design (c) Tree Search

Input

Output

R
e
f
i
n
e
m
e
n
t

connTo

LAN

(b) Rules

HOST

LAN

Web
App

Web
App

Web
App

Web
App

Web
App

Web
App

Web
App

Figure 2: Original Weaver system designer processing flow.

upon an existing automated system designer, named
Weaver. By integrating a security knowledge base into
Weaver with relevant modifications, we made it possible
for the system designer to consult the knowledge base
regarding entities in its topology for security issues and
mitigate them with appropriate mitigation techniques.
Moreover, we also had to extend Weaver to accommo-
date security capabilities, especially in the areas regard-
ing the components and their relationships.

3.3. Original Weaver System Designer

Our system design implementation is based on the
Weaver IT/NW system designer (Kuroda et al., 2019;
Kuwahara et al., 2021). An overview of Weaver’s pro-
cessing flow is presented in Fig. 2. Each rectangle in
the figure represents the state of the topology at a par-
ticular step, and the red arrows in the pyramid are the
rule-matching refinements performed by Weaver.

First, a service configuration which contains abstract
and/or concrete entities is input into Weaver. An entity
is said to be concrete if its type for both components
and relationships is definite (e.g., Red Hat Enterprise
Linux OS, or HTTPS connection). Otherwise, it is said
to be abstract (such as a generic OS or network connec-
tion). The abstract entities are then continually refined
using tree search with matching refinement rules until
the final topology state does not contain any abstract
entities. The final topology, which is said to be con-
crete, is then output by Weaver as a system design for
the given service requirement. Weaver’s data format,
rules and topology refinement and tree search approach
are briefly described in the following subsections.

5



3.3.1. Data Format Definitions
Weaver’s data format is structured closely to TOSCA

(Topology and Orchestration Specification for Cloud
Applications) (Rutkowski et al., 2020), a specification
that declaratively describes service configuration in a
topology to enable provisioning automation via the defi-
nition of components, relationships, and their attributes.

A component is defined as a pair “v : ctype”, where v
is the component identifier and ctype is its type. A com-
ponent type is defined as ctype = (name, abs, cap, req),
where name is the ctype name, abs is its abstractness,
cap is the component capability, and req is its associ-
ated requirement, describing one or more relationships
with other components.

An edge, e, is also known as a relationship between
two components in Weaver, where e = (vsrc, vdst, rtype)
is a triplet of the source component identifier, desti-
nation component identifier, and its relationship type.
A relationship type is defined as rtype = (name, abs),
where name is an rtype name and abs is its abstract-
ness. For example, a non-specific operating system (OS)
is an abstract component, while “Windows” is a con-
crete component that can be derived from an abstract
OS component via inheritance.

A topology can be formalised as the tuple t = (V, E),
where V = {vnid1, ..., vnidn} and E = {eeid1, ..., eeidn} are a
set of components and relationships.

3.3.2. Rules and Topology Refinement
To refine an abstract service requirement into a com-

pletely concrete system topology, the refinement pro-
cess is performed iteratively to transform a topology
from one state to another using matched refinement
rules. A refinement rule, r, is a one-step refinement pro-
cess that is denoted as a tuple r = (tlhs, trhs), where tlhs

is the left-hand side and trhs is the right-hand side of a
rule. An illustration of a rule, DEPLOY-APP, is shown in
Fig. 3. Generally, a match is a mapping from the com-
ponent placeholders, {1}, ..., {n} to component identifiers
nid{1}, ..., nid{n}, where m({i}) = nid{i}.

An action, r[m], is a function where r is provided
with a matching, m to load the rule component place-
holders with the relevant component identifiers found
in the topology. As an example, the web application wa
in topology t1 in Fig. 3 is transformed into t2 by the rule
DEPLOY-APP with the match pattern, m : {1} 7→ wa.
The arrow with dashed line represents an abstract re-
lationship, while an arrow with solid line represents
a concrete relationship. The base component App in
Fig. 3 has an inheritance relationship with the WebApp
component type. Hence, component {1} of type App is

{1}:App

{2}:Machine

HOST

{1}:App

DEPLOY-APP

connTo

usr:User

t
1
=

connTo

wa:WebApp

usr:User

t
2
=

t
lhs

t
rhs

host:Machine

HOST

wa:WebApp

Web
App

Web
App

Figure 3: Example of the application of the rule DEPLOY-APP as a
Weaver topology refinement step.

equivalent to wa of type WebApp, such that {1} in the

rule DEPLOY-APP can be replaced by {1}
HOS T
−→ {2}.

3.3.3. Tree Search-based Algorithm for DSE
Weaver finds refinement candidates through a deter-

ministic search process, by which it iteratively applies
relevant actions to obtain a completely concrete topol-
ogy. The search algorithm exits when all the entities in
the topology are fully concretized; for detailed informa-
tion on the tree search algorithm and the definition of
topology concreteness, see (Kuwahara et al., 2021).

4. Secure Design Database

In this section we introduce the secure design
database of SecureWeaver that includes: (i) security
threat information applicable to system design, and re-
finement rules that are compatible with our threat mit-
igation approach; (ii) security knowledge from third-
party security databases that pertains to secure design.

4.1. Secure Design Threats and Rules

We present here the first component of the Se-
cureWeaver database, the security threats used for se-
cure system design, including the concept of logical and
conceptual connections introduced to extend the exist-
ing Weaver capabilities, and the refinement rules that
we defined, illustrating with examples the various types
of rules and corresponding use-case scenarios.

6



usr:User wa:WebApp

connTo
Threat1

Web
App

Threat2

Figure 4: Service requirement that includes relationship-type and
component-type threats.

4.1.1. Security Threats
Security threats are of two types: (i) component-type

threats that are applicable to system components, such
as a physical host; (ii) relationship-type threats that per-
tain to relationships between such components, such as
the network connection between a device and an appli-
cation. In the first case the threat indicates the target
component requires protection, and in the second case
it is the attack path to a target that requires protection.

In Fig. 4 we show an example of a service require-
ment that includes an explicitly-defined relationship-
type threat, Threat1, applied to the connTo connection
between the user usr and the web application wa, and a
component-type threat, Threat2, applied to wa. The re-
lationship threat signifies in this case that the connection
is susceptible to sniffing or eavesdropping that would
affect the security and privacy of the two end compo-
nents while the component threat signifies that the com-
ponent is susceptible to a certain malicious activity. The
threat in this and future examples is represented by an
Anonymous mask icon placed on the affected relation-
ship/component.

Modeling component-type threats is relatively
straightforward, as this type of threat only affects
the target component and any sub-components de-
rived from it in the design process. However, a
relationship-type threat affects multiple components
and sub-components in a topology. Therefore, in order
to model relationship-type threats and their inheri-
tance for the affected branches in a topology, the root
relationship between two components (e.g., connTo

between usr and wa in Fig. 4) has to be preserved as the
topology is refined, so as to make it possible to verify
possible mitigations. For this purpose, the existing
Weaver functionality was extended to accommodate
such information, which we achieved by introducing
two new types of connections, logical and conceptual,
as explained next.

4.1.2. Logical and Conceptual Connections
Logical connections are defined as relationships with

an rtype property that corresponds to application and

HTTPS

IPLAN

Group 1

HOST

Group 2

LAN

Conceptual
connection

Web
App

Figure 5: Logical and conceptual connections between two system
component groups.

network layer protocols in the TCP/IP model. The val-
ues of logical connections rtype are concrete, such as
HTTP, HTTPS, RTP, SRTP, IPSEC and IP. Fig. 5 includes
two such concrete logical connections, HTTPS and IP,
which are represented by dash-dot lines. Note that the
TCP/IP model is well suited for describing the relation-
ship between two network components, and considering
only the application and network layers is currently suf-
ficient for our system design purposes.

A conceptual connection is defined as a pair of appli-
cation and network layer rtype objects that connects two
component groups in a topology. A component group
means a set of one or more components that were de-
rived via refinement rules from a given component in
the service requirement, and that corresponds logically
to a service specified in that requirement. Fig. 5 includes
two such groups, one made of the user, which forms a
group by itself, and another made of the web application
and the host it is deployed on, as the latter was added to
the topology via a refinement rule corresponding to the
web application.

The conceptual connection between these two groups
is the pair of the HTTPS and IP logical connections. Re-
taining such logical and conceptual connections in the
topology preserves the information needed by the sub-
sequent security check algorithm (see Section 5).

4.1.3. Refinement Rules
The refinement rules in the secure design database re-

fer to: (i) component refinement; (ii) relationship refine-
ment. These secure design rules are in addition to the
generic refinement rules for both components and rela-
tionships that are needed to design those aspects of the
system that are not security related.

A graphical representation of security-related refine-
ment rules is shown in Fig. 6. Refinement rules such
as DEPLOY-NIDS and DEPLOY-FIREWALL illustrate the
type of rules that add network security appliances into
a topology. There are also rules that refine an abstract
component into a concrete type for security purposes,

7



REFINE-VM

{1}:Machine

DEPLOY-FIREWALL

VM
{1}:VM

wire:
WAN

wire:
WAN

wire:
FW

{1}:WAN {2}:Router
{1}:WAN {2}:

Router

{3}:Firewall

DEPLOY-NIDS
{1}:L3SW

{2}:NIDS

NIDSL3

{1}:L3SW

L3

DEPLOY-VPN-EXTTHINGS-CONNTO-THINCLIENT

EXT
Things

OSmarked:
include

{1}:ThinClientSys

{2}:MWThinClient

wire:
OS

{3}:OS

wire:
HOST

{4}:

Machine

wire:
LAN

connTo

wire:LAN

wire:
WAN

{5}:

Switch
{6}:

Router

EXT
Things

OSmarked:
include

{1}:ThinClientSys

{2}:MWThinClient

wire:
OS

{3}:OS

wire:
HOST

{4}:

Machine

wire:
LAN

RDP

wire:
WAN

{5}:

Switch
{6}:

Router

wire:
WAN

{8}:

ExtThings

{7}:WAN

{8}:
ExtThings

{7}:WAN

{9}:
VPNServer

IPSEC

Figure 6: Graphical representation of security-related refinement
rules.

such as REFINE-VM that refines an abstract Machine
type component into a VirtualMachine instead of the
regular PhysicalMachine or PhysicalServer, so as
to provide isolation or a sandboxed environment.

Next we look at the refinement rules for the refine-
ment of the relationship type, rtype. Refinement rules
in Weaver transform one topology state to another by re-
moving or changing the abstract ctype or rtype entities
to achieve a concrete state. On the other hand, for the
concrete logical connections in SecureWeaver, the re-
finement rules have to be designed in a way that ensures
that logical connections are preserved in the topology.

Note that when it comes to security concerns in re-
finement rules, top-level threats are explicitly included
in the service requirement. However, protocol-related
threats and mitigations are implicitly included through
the inherent security properties of TCP/IP application
and network layer protocols when used as an rtype in
a topology; consequently, they are defined in the threat
mitigation knowledge base, and used for security check-
ing purposes.

Refinement Mechanism. During topology refinement,
there may be more than one solution to mitigate a threat.
Fig. 7 illustrates a service requirement for which at time

HTTP

connTo

T1040

HTTPS

t
i,1

t
i,2

rtype

=HTTP

rtype

=HTTPS

HTTPS

HOST
IP

t
i+m,2

t
i+n,1

t
0
=

t
i+n+1,1

t
i+n+2,1

t
i+m+1,2

HTTP

HOSTIPSEC

HTTP

HOSTconnTo

Web
App

Web
App

Web
App

Web
App

Web
App

Web
App

Figure 7: Example of possible topology refinements that mitigate the
security threat T1040 defined in service requirement via the use of
security protocols (mitigation M1041).

t0 a User and a WebApp application are connected by
the relationship connTo to which the threat T1040 is
applied. The relationship connTo can be concretized
by using either the HTTP or HTTPS application proto-
cols, where HTTP is insecure and HTTPS is secure. The
left and right-hand side diagrams in Fig. 7 show the se-
quential topology refinements for the HTTP and HTTPS

branches, respectively.
For the left-hand side topology, HTTP does not mit-

igate the threat T1040, and the associated implicit
threat on the affected relationship is denoted by a white
Anonymous mask icon. Following the refinement pro-
cedure of this topology, the implicit threat is inherited
by the connTo abstract rtype relationship as shown at
step ti+n+1,1. Inheritance in this context means that if
the application layer relationship has an implicit threat,
the same threat is also applied implicitly to the network
layer relationship. At time ti+n+2,1, the abstract connTo
relationship is replaced with a concrete IPSEC logical
connection. At this point, the T1040 threat is mitigated,
as IPSEC is defined as a valid mitigation for this threat
in the threat mitigation knowledge base. Note that we
denote mitigated threats by an Anonymous mask icon
marked with a red “X”.

For the right-hand side topology, HTTPS mitigates the
T1040 threat, as per the definition in the threat mitiga-

8



tion knowledge base. Hence, the remaining refinement
for concretizing this topology does not have any secu-
rity issues, and the insecure IP protocol can be used
at network level without affecting the overall security
characteristics of the solution.

The above discussion about the left-hand side topol-
ogy demonstrates that logical connections that do not
mitigate a threat should not be eliminated immediately,
as it could truncate potential solutions. Therefore, for
SecureWeaver we only perform the security check after
all the entities in the topology are fully concretized.

4.2. Threat Mitigation Knowledge Base

There are various methodologies for security as-
sessment, such as Lockheed Martin Cyber Kill Chain
(CKC) (Martin, 2014), MITRE ATT&CK (Strom et al.,
2018), and Microsoft STRIDE (Hernan et al., 2006).
CKC is a well-known intrusion-centric framework that
describes a well-defined sequence of attack steps.
ATT&CK, on the other hand, is a list of attack tech-
niques grouped by tactics that does not imply any spe-
cific order of operation. STRIDE is a high-level threat
model, commonly used during the security development
life-cycle, as it is focused on identifying overall cate-
gories of attacks.

Since for SecureWeaver threats are defined explicitly
in the service requirement, the kill chain and high-level
modelling techniques are not suitable, as they are in-
compatible with the Weaver refinement process, and do
not include sufficient security context. Therefore, for
our threat mitigation knowledge base, we selected the
ATT&CK framework as it provides a rich taxonomy of
adversarial tactics, techniques, and common knowledge
that can be readily used in various scenarios.

Note that other third-party security databases besides
ATT&CK should be compatible for use in tandem with
ATT&CK in the threat and mitigation knowledge base.
This is achievable via the usage of the common cyber
threat intelligence (CTI) sharing language, Structured
Threat Information Expression (STIX) (Barnum, 2012).

4.2.1. MITRE ATT&CK-based Mitigation
The ATT&CK knowledge base is organized as a col-

lection of matrices, such as Enterprise, Mobile and In-
dustrial Control Systems (ICS), with each matrix cov-
ering a different field of adversary tactics, techniques,
and procedures (TTP). The data in an ATT&CK ma-
trix is categorised into attack tactics, techniques, sub-
techniques, and mitigations. For our knowledge base,
the most relevant components are threats and mitiga-
tions. Therefore, we included the ATT&CK attack tech-

niques and mitigations as the security threats and miti-
gations in our knowledge base.

The ATT&CK version used in our threat mitigation
knowledge base is v10, which is the latest version at the
time of writing. Specifically, we focus on the ATT&CK
Enterprise matrix, which contains a total of 14 tactics,
185 techniques, 367 sub-techniques and 42 mitigations.

Since the total number of techniques and sub-
techniques in ATT&CK is large, we also leveraged
the concept of “domain” that is used to group relevant
techniques and sub-techniques based on their area of
relevance. There are currently seven domains in the
ATT&CK Enterprise matrix: (i) Preparatory; (ii) Win-
dows; (iii) macOS; (iv) Linux; (v) Cloud; (vi) Network;
and (vii) Containers.

The network domain in ATT&CK is the most rele-
vant to SecureWeaver, given our focus on networked
systems. The network domain includes 9 tactics, 15
techniques, 26 mitigations and 16 data sources, some
of them unique and some of them shared with other do-
mains. Table 1 shows the threats, mitigations and the
affected Weaver entity types for the network domain.
Threats are listed in the order displayed on the MITRE
ATT&CK Web page (https://attack.mitre.org).
Note that for some techniques (e.g., T1600, T1056) no
known mitigation exists in ATT&CK, and we denoted
this by “N/A” in the table. The affected Weaver en-
tity types were assigned after analyzing the attack sur-
face/vector for each threat. For the meaning of the mit-
igation IDs, see Table 2.

By analyzing the attack techniques and mitigations
in the ATT&CK network domain we obtained the nec-
essary information needed to implement SecureWeaver
functions that can verify whether a certain mitigation is
applied for a given system topology. Through this anal-
ysis we have identified seven types of verifiable charac-
teristics, as follows:

1. Application isolation and sandboxing
2. Firewall use
3. Network segmentation
4. Configuration settings
5. Traffic filtering via a network appliance
6. Secure protocol use
7. Intrusion prevention/detection system use

This information is also shown via notes in Table 1;
the actual security check functions, which provide full
coverage for the MITRE ATT&CK network domain,
will be presented in detail in Section 5.

9



Table 1: MITRE ATT&CK threats and mitigations for the network domain.
Threat Mitigations Type
T1190 (Exploit Public-Facing Application) M10481 M10502 M10303 M10264 M10514 M10164 Component
T1059 (Command and Scripting Interpreter) M10494 M10404 M10454 M10424 M10384 M10264

M10214
Component

T1556 (Modify Authentication Process) M10324 M10284 M10264 M10254 M10224 Component
T1542 (Pre-OS Boot) M10464 M10264 M10514 Component
T1205 (Traffic Signaling) M10424 M10375 Component
T1562 (Impair Defenses) M10224 M10244 M10184 Component
T1601 (Modify System Image) M10464 M10454 M10434 M10324 M10274 M10264 Component
T1599 (Network Boundary Bridging) M10434 M10375 M10324 M10274 M10264 Component
T1600 (Weaken Encryption) N/A Component
T1056 (Input Capture) N/A Component
T1040 (Network Sniffing) M10416 M10324 Relationship
T1602 (Data from Configuration Repository) M10416 M10375 M10317 M10303 M10544 M10514 Component
T1095 (Non-Application Layer Protocol) M10375 M10317 M10303 Component
T1090 (Proxy) M10375, M10317 M10204 Component
T1020 (Automated Exfiltration) N/A Component
1 Application isolation and sandboxing
2 Firewall use
3 Network segmentation
4 Configuration settings
5 Traffic filtering
6 Secure protocol use
7 Intrusion detection and prevention system use

4.2.2. Knowledge Base Data Structure
For the data structure of the threat mitigation knowl-

edge base, we implemented a JSON key-value pair rep-
resentation to store the relevant information, which is
organized in three main categories: (i) weight of the se-
curity mitigation; (ii) mitigation check function map-
ping; (iii) secure protocol corresponding to the threat
and mitigation pair (if any).

To illustrate the mitigation weight concept that we
introduced, we will use the ATT&CK Exploit Public-
Facing Application (T1190) threat as an example. As
shown in Table 1, T1190 has six possible mitigations,
which are sandboxing mitigation, firewall mitigation,
network segmentation, and three configuration related
mitigations. Each mitigation may help achieve a certain
security level against the target threat, and we assume
that if all the mitigations are applied, the threat is fully
neutralized. Hence, each mitigation may have a differ-
ent weight assigned to it, depending on its significance,
with the total sum of the weights for all the mitigations
corresponding to a threat being equal to 1.0. While these
weights can be given equal values as a default solution,
we envision that expert knowledge can be used to assign
more realistic values.

Each threat and mitigation pair is mapped to the cor-

responding security check function introduced in Sec-
tion 4.2.1, along with the relevant Weaver object type
(Component/Relationship) to which the mitigation is to
be applied. For the particular case of configuration set-
tings check, we use the knowledge base to assign True

or False values, depending on whether the correspond-
ing system settings are assumed to have been enacted
or not. If Weaver gains the functionality of checking
the actual settings in the future, then this aspect can be
verified dynamically as well.

Information about the logical connections introduced
in Section 4.1.2 is also included in the threat mitiga-
tion knowledge base. Thus, we define a set of secure
network protocols, such as HTTPS and IPSEC, and map
them to the corresponding threat and mitigation pair
in the knowledge base. Any logical connection types
that are not explicitly defined in the knowledge base are
deemed to be insecure.

5. Security Check Mechanism

In this section, we introduce the security check mech-
anism and functions in SecureWeaver. Details of the se-
curity check mechanism are presented first, followed by

10



Table 2: Mitigations applicable to network domain threats.
ID Name
M1048 Application Isolation and Sandboxing
M1040 Behavior Prevention on Endpoint
M1046 Boot Integrity
M1045 Code Signing
M1043 Credential Access Protection
M1042 Disable or Remove Feature or Program
M1041 Encrypt Sensitive Information
M1038 Execution Prevention
M1050 Exploit Protection
M1037 Filter Network Traffic
M1032 Multi-factor Authentication
M1031 Network Intrusion Prevention
M1030 Network Segmentation
M1028 Operating System Configuration
M1027 Password Policies
M1026 Privileged Account Management
M1025 Privileged Process Integrity
M1022 Restrict File and Directory Permissions
M1024 Restrict Registry Permissions
M1021 Restrict Web-Based Content
M1054 Software Configuration
M1020 SSL/TLS Inspection
M1051 Update Software
M1018 User Account Management
M1016 Vulnerability Scanning

the seven security check functions introduced in Sec-
tion 4.2.1 that provide full security check coverage of
the network domain in the ATT&CK framework.

5.1. Mechanism Overview

To address the issue of threat mitigation, we imple-
mented a security check algorithm that ensures every
threat specified in the service requirement is mitigated
before Weaver can finalize the system design. Currently,
only the threats that are explicitly defined in the ser-
vice requirement are considered, and a system design
is deemed secure only if all those threats are mitigated
according to the desired security level policy.

The security check takes place after SecureWeaver
checks that the system design contains no abstract en-
tities, and is divided into two stages: (i) retrieving the
threats from the service requirement, and (ii) calling the
appropriate security check functions. Next we explain
this process in detail, followed by a description of each
security check function in Sections 5.2 through 5.8.

5.1.1. Retrieving Threats from the Service Requirement
The first part of the security check process searches

for all the component and relationship type threats,
nthreat and ethreat, present in the service requirement in-
put, t0, and stores them into their respective threat ar-
rays. Each threat in those arrays is individually checked
from a mitigation perspective, unless the security check
process is explicitly marked to be omitted in t0. The
threats to be actually checked are passed to the second
part of the security check process.

For each threat in the service requirement input, how
to decide whether a threat is mitigated or not must also
be specified. This is because there may be more than
one mitigation for a particular threat, and the way to
check whether that threat was neutralized or not needs
to be determined. SecureWeaver implements three se-
curity check modes: (i) OR type; (ii) AND type; (iii)
based on a configurable security level.

To implement this concept, each threat-mitigation
pair is assigned a weight that it used to signify how
much of a threat a certain mitigation method mitigates.
The OR security check mode means that at least one
mitigation should be satisfied for the threat to be neu-
tralized, hence it is equivalent to a minimum security
level (this is implemented by checking against a thresh-
old equal to the minimum value of float numbers).
The AND security check mode means that all mitiga-
tions related to the target threat must be satisfied for that
threat to be neutralized, being equivalent to a maximum
security level (this is implemented by checking against
a threshold equal to 1.0, which is the maximum value).

The configurable security level check mode means
that a threat is considered to be neutralized if the to-
tal calculated security level weight for all the security
check functions associated to that threat is larger or
equal than the configured security level, which is be-
tween 0.0 and 1.0. Actually, to disable the security
check for a certain threat, its configurable security level
can be set to the value 0.0.

An example of a service requirement with a threat is
shown in Fig. 8, where the ATT&CK “Proxy” (T1090)
threat is defined with the maximum security level 1.0 for
the ThinClient type component under “properties”.

5.1.2. Calling Security Check Functions
The second part of the security check process first de-

termines the security check functions corresponding to
the specified threat, then executes them accordingly.

To determine the appropriate security check functions
that should be executed, the algorithm will retrieve from
the secure design database all the mitigations applicable

11



Figure 8: Service requirement example that includes the threat T1090.

to the given threat, and store all the relevant informa-
tion about the security check functions that correspond
to those mitigations in an array. It is also possible to
specify explicitly what mitigation to be considered, and
then SecureWeaver will retrieve only the security check
function that is linked to the provided threat and mitiga-
tion pair.

Once the security check function retrieval is com-
plete, the algorithm will check whether there is any ob-
ject in the array. If the array is empty, meaning that no
known security check function could be determined, the
algorithm will return False, thus rejecting the selected
topology state from a security check point of view.

If the array is not empty, each of the threat-mitigation
pairs will be first parsed, since component and relation-
ship type security check functions require different sets
of arguments. Once the type is determined, the algo-
rithm will dynamically call the target security check
function via its name, and pass it all the required ar-
guments.

If the security check function returns True, the algo-
rithm will retrieve the security level weight assigned to
that specific threat-mitigation pair, and sum it up to the
current total weight for the target threat. If the returned
value is False, then the sum is not updated. After pro-
cessing all the security check functions in the array, the
total weight is rounded off to two decimal places to pre-
vent numerical calculation errors for the AND security

check mode.
In the end, the algorithm checks whether the total

weight for the target threat is larger or equal to the
threshold mentioned in Section 5.1.1, depending on
the security check mode (OR, AND or security level-
based). If this condition is met, the second part of the
security check process will return True, and the corre-
sponding threat is considered mitigated. On the other
hand, if the security check fails, the selected topol-
ogy state will be discarded, and the security check pro-
cess is repeated for the next topology state produced by
Weaver.

5.2. Application Isolation and Sandboxing Check

The “Application Isolation and Sandboxing”
(M1048) mitigation in the ATT&CK framework aims
to restrict execution of code to a virtual environment on
or in transit to an endpoint system. In SecureWeaver,
we can verify application isolation and sandboxing by
checking the existence of a concrete component type
such as VirtualMachine in the design.

We implemented the isolation/sandboxing check
function by calling a more generic subroutine, named
verify type(), that checks whether a node of a given
type is found while traversing the topology from the
source node to which the threat is applied. In partic-
ular, this subroutine (see Algorithm 1) verifies whether
the node of the desired type, ntype, is a child of the input
source component, nsrc.

First, the subroutine retrieves all the relationships
from the input source component to other components,
and stores them into the array nconn[] as shown on line 2
of Algorithm 1. For each component relationship nconn

in nconn[] it then checks whether the component rela-
tionship type has the prefix “wire”, denoting an internal
Weaver connection. If the condition is satisfied, the des-
tination component of nconn is retrieved and assigned to
ndst. Then, the ndst type, ndst,type, is checked, and if it is
the same with ntype (Line 6), the subroutine will return
True, meaning that the searched component type is in-
deed a child of the input source component. Python “in”
syntax is used in this paper where it is used to verify if
a value is present in a sequence such as a list or string.

If the check fails, the type check subroutine is called
recursively with the component relationship destination,
nconn,dst, as the new input source component by follow-
ing all internal Weaver connections except “wire:lan”,
which is a particular case representing an external LAN
connection. In case the searched type is not found and
there are no connections left in the nconn[] array, the sub-
routine will return False.

12



Algorithm 1 Verify existence of a node type.
Input: Topology, t; Source node, nsrc; Node type, ntype

Output: True or False
1: function verify type(t, nsrc, ntype)
2: nconn[]← all connected edges to nsrc

3: for all nconn do
4: if “wire:” in nconn,type then
5: ndst ← node nconn,dst

6: if ndst,type in ntype then
7: return True
8: end if
9: if nconn,type! = “wire : lan” then

10: return verify type(t, nconn,dst, ntype)
11: end if
12: end if
13: end for
14: return False
15: end function

In the application isolation and sandboxing
check function, the subroutine verify type()

discussed above is called for each target node with
VirtualMachine as node type argument.

5.3. Firewall Use Check

The firewall use check function deals with mitiga-
tions such as “Exploit Protection” (M1050) for public-
facing application threat T1190 from the ATT&CK
framework. According to M1050, in order to protect
a system against exploits of a public-facing compo-
nent such as WebApp, a firewall or equivalent must be
present. The firewall use check algorithm is imple-
mented as two steps: (i) search for child-of target net-
work component, and (ii) network-specific mitigation
check.

The child-of target (for network) component search
function search nw node() shown in Algorithm 2 is
mostly similar to the type check introduced in Algo-
rithm 1. The main difference is that Algorithm 1 only
searches within a single physical machine before wire :
lan relationship type, while Algorithm 2 search beyond
the wire : lan until it finds a valid type of network com-
ponent. For each wire : lan that is found in Algorithm 2
line 8, the search algorithm will retrieve the destination
object of that relationship to check whether it is a valid
type of network component (e.g.: L3S W and L2S W).
If a valid component type is found, the selected rela-
tionship will be stored in an array (connected nw[]) as
shown in Algorithm 2 line 10. After that, the security
check function will search exhaustively for the remain-

ing network type relationships and append the selected
relationships into the array. If the component is not the
target component types, the algorithm will recurse with
the destination node of the relationship to find the next
child component. When all the relationships in nconn[]
have been processed, the algorithm will check array
connected nw[]. If the array is not empty, the algorithm
will return the array denoting a successful search. If the
array is empty, the algorithm will return False, which
signifies that the child-of target node is not connected to
any network.

Algorithm 2 Search and verify the child-of a target
component for network related check.
Input: Topology, t; Source node, nsrc

Output: True or False
1: function search nw node(t, nsrc)
2: nconn[]← all connected edges to nsrc

3: for all nconn do
4: if “wire:” in nconn,type then
5: if nconn,type! = “wire : lan” then
6: return verify nw node(t, nconn,dst)
7: end if
8: else
9: nNW ← node nconn,dst

10: if nNW,type is a valid switch type then
11: connected nw[]← nconn

12: else
13: return verify nw node(t, nconn,dst)
14: end if
15: end if
16: end for
17: if connected nw[]! = ∅ then
18: return connected nw[]
19: else
20: return False
21: end if
22: end function

After the first part of the search process is success-
ful, the result is passed into the security check func-
tion verify nw node type(), which verifies the mit-
igation based on the type of the network component
(see Algorithm 3). The function first iterates through
each network relationship, connected nw in the array
returned by Algorithm 2, where the all the relationship
of each network relationship destination, eNW are re-
trieved. Each of the relationships that are stored in eNW

are processed and the object of the relationship source
is retrieved as shown in Line 4 to 5. The type of eNW

is then checked whether it is in the ntype input as shown

13



Algorithm 3 Search and verify the type of mitigation
based on network component.
Input: Topology, t; Connected network,

connected nw[]; Node type, ntype
Output: True or False

1: function verify nw node type(t, connected nw[],
ntype)

2: for all connected nw[] do
3: eNW ← all connected edges to

connected nwdst

4: for all eNW do
5: nNW ← node eNW,src

6: if nNW,typ in ntype then
7: return True
8: else
9: connected NW1[] ← all connected

edges to eNW,src

10: if verify nw node type(t,
connected NW1[], ntype) then

11: return True
12: end if
13: end if
14: end for
15: end for
16: return False
17: end function

in Line 6. This allows the algorithm to verify it against
both single type or a list of types. If the condition is
satisfied, the algorithm will return True denoting that
the target type is a part of the affected component net-
work. If the condition is not satisfied, the algorithm will
retrieve all relationship related to the source of eNW and
store it into an array, connected NW1[]. Then, the al-
gorithm will recurse with connected NW1[] provided as
the new input array to be verified.

Hence to verify firewall type component, a wrap-
per function is implemented, which first calls the Al-
gorithm 2 subroutine to obtain the networks the target
component is connected to. Then, the wrapper func-
tion calls the Algorithm 3 subroutine with the result of
Algorithm 2 as input to verify whether a firewall type
component is a part of the target component network.

5.4. Network Segmentation check
Network segmentation is a technique used to sepa-

rate vulnerable services and resources from the rest of
the system components. For example, the “Network
Segmentation” (M1030) mitigation from the ATT&CK
framework which addresses threat T1190 recommends
segmenting external facing services and servers via

Example 1 Example 2

Example 3 Example 4

Figure 9: Examples of possible topology states for network segmen-
tation check.

methods such as Demilitarized Zone (DMZ) to isolate
them from the rest of the network.

The conditions we used to verify whether a compo-
nent is segmented or not from a network point of view
are shown in Fig. 9. Example 1 shows the case in which
a component with a threat associated to it is connected
to two LAN switches, and some other components are
connected to one of the LAN switches. In such a case
we decide that the component under threat is in a no net-
work segmentation scenario. Note that a component un-
der threat connected to only one network is also deemed
as having no network segmentation if the total number
of networks in the entire topology is one, as shown in
Example 2.

Example 3 in Fig. 9 illustrates a segmented network
topology state which has two LAN components with
other types of components connected to them, but no
component is connected to both LANs. In Example 4
we show one component that is connected to two LANs,
whereas the component under threat is connected to
only one LAN. This case is also considered to be net-
work segmented, since it is not possible to directly ac-
cess another LAN from the component under threat
without compromising the component that is connected
to both LANs.

To implement the network segmentation check algo-
rithm a wrapper function was implemented, which calls
first the Algorithm 2 subroutine to determine which net-
works the input source component is connected to. The
array of connected networks returned by this subroutine
is then processed by a second subroutine that checks the
existence of network segmentation for the input source
component.

This second subroutine will first check the net-
work type component relationships that are stored in

14



connected nw[], which are the network connections
from the initial input source component identified by
the first subroutine. If there is more than one net-
work type component relationship in connected nw[],
it means that the input source component is connected
to more than one network segments, and the subroutine
will return False. Otherwise the subroutine will return
True, except for the case when there is only one net-
work in total, when it returns False, as discussed for
Example 2 in Fig. 9.

5.5. Configuration Settings Check

Some of the threats in the ATT&CK framework
are mitigated via specific software or hardware-related
configuration settings and actions, such as “Privi-
leged Account Management” (M1026) or “Code Sign-
ing” (M1045). Since the current SecureWeaver
focuses on networked system architecture design,
such configuration-related mitigations are implemented
as user-definable assumptions in the secure design
database, as it was explained in Section 4.2.2. Users
may define whether a specific software or hardware-
related configuration can be assumed to be present or
not in the actual implementation of the designed sys-
tem. Note that the system administrators should ensure
the assumed configuration mitigation is actually imple-
mented when the designed system is deployed.

The configuration check function retrieves the config-
uration mitigation assumptions from the secure design
database based on the provided threat-mitigation pair
and checks whether the setting is defined as True. If
this is the case, the value is appended to a dictionary of
configuration mitigation assumptions for the component
under threat (creating this dictionary if it doesn’t exist
yet). When SecureWeaver verifies that a given topology
state is secure, it will take into account the configuration
mitigation status for that state.

5.6. Traffic Filtering Check

Some network-related threats such as Man-in-the-
Middle (MITM), Denial of Service (DoS), unsanctioned
proxy, and many more can be mitigated via traffic filter-
ing. This typically requires the use of a software fire-
wall or/and specialized network appliances to filter the
ingress/egress traffic. The type or combination of net-
work traffic filters that is required to mitigate a threat is
determined by the mitigation description for that partic-
ular threat, interpreted by an expert who will input the
corresponding notation in the secure design database.

To verify for hardware based network-filtering mit-
igation, the check function must check that there is

a valid type of network appliance for network filter-
ing such as a Firewall component. On the other
hand, to verify for software firewall and its configura-
tion settings, the security check function must check
the assumed configuration settings in the secure design
database. Hence, this requires the security check func-
tion to choose or combine the network type check in-
troduced in Section 5.3, and the configuration settings
check discussed in 5.5 to determine whether a mitiga-
tion is suitable for a particular threat.

We implemented the corresponding security check
function as a wrapper function that calls both the afore-
mentioned security check functions. The wrapper func-
tion first checks the secure design database for the type
of method: (i) hardware; (ii) software; (iii) require ei-
ther one (OR); and (iv) require both (AND). Then the
wrapper function calls the related check function ac-
cording to the required method to mitigate the selected
threat. The hardware based component type to be ver-
ified in the selected topology state by the network type
check is the Firewall component type, while the con-
figuration settings function will verify whether the soft-
ware firewall configuration assumption is set to True

in the secure design database. If the function calls are
successful according to the required mitigation method,
then the traffic filtering check function will return True.

5.7. Secure Protocol Use Check
While most threats in the ATT&CK framework apply

to components, there are also instances of threats that
refer to relationships between components. For exam-
ple, the network communication between two endpoints
may be susceptible to sniffing, as an adversary may be
able to capture valuable information if the connection is
not secured sufficiently. In order to model such a sce-
nario, we introduced the logical and conceptual connec-
tions in Section 4.1.2, and the corresponding refinement
rules in Section 4.1.3 to ensure that the designed system
is secure even for in-transit data.

To verify whether a conceptual connection (repre-
sented by a group of logical connections combination)
is secure, we implemented a secure protocol check func-
tion that checks the security of the application layer and
network layer protocols in a given topology state. The
security check function, shown in Algorithm 4, takes the
component source and destination of the relationship
(edge), esrc and edst, and the relationship threat, ethreat,
information as the input. The algorithm determines all
the relationships connected to the relationship source
component, esrc, and stores them in the array econn[],
then each array element, econn, is processed. If the type
of econn has the prefix “wire:” but is not “wire:lan”, it

15



means that the particular econn is not a logical connec-
tion; then the algorithm will call itself recursively with
the destination of econn replacing the initial esrc, so as
to verify the child of the source component in esrc as
shown on Lines 4–5. If the result of the recursion is
True, the entire algorithm will return True, denoting
that a valid mitigation has been verified.

Algorithm 4 Search and verify the mitigation of threats
in conceptual connections
Input: Edge source, esrc; Edge destination, edst; Edge

threat, ethreat
Output: True or False

1: function verify CC(esrc, edst, ethreat)
2: econn[]← all connected edges to esrc

3: for all econn do
4: if econn,type prefix == “wire:” and econn,type

! = “wire:lan” then
5: if verify CC(econn,dst,edst, ethreat) then
6: return True
7: end if
8: else
9: if econn,dst == edst then

10: CCmitigation ← econn mitigation info
11: if CCmitigation,threat == ethreat and

CCmitigation! = ∅ then
12: return True
13: end if
14: else
15: CCmitigation ← econn mitigation info
16: if CCmitigation,threat == ethreat and

CCmitigation! = ∅ then
17: return True
18: end if
19: end if
20: end if
21: end for
22: return False
23: end function

If the condition on Line 4 is not met, this means that
the selected relationship is a logical connection. Then
the algorithm checks whether the destination of the se-
lected relationship is equal to the input edst, as shown on
line 9. If this is the case, it means that the logical con-
nection is an application layer protocol in the TCP/IP
model. If the condition on line 9 is not met, it means
that the logical connection is a network layer protocol.
The actual protocol for the logical connection is then
verified with reference to the secure design knowledge
base, as shown on lines 10 and 15. If the protocol for the

logical connection is found in the secure design knowl-
edge base, the secure protocol check function will re-
turn True, since only secure protocols are recorded in
the knowledge base.

5.8. Intrusion Detection and Prevention System (IDPS)
Use Check

While firewalls may limit the inbound or outbound
access between networks, firewall filtering rules must
configured in advance for this purpose. For inbound
traffic, in particular, a “hole” must be opened to allow
the traffic pass through the firewall. A Network Intru-
sion Detection System (NIDS) or an Intrusion Detection
and Prevention System (IDPS) is often deployed in con-
junction with a firewall, and its functions is to analyze
the traffic based on an internal database that contains
intrusion detection signatures of attacks on specific ap-
plications. When a suspicious activity is detected, an
NIDS will typically send an alert to the management
terminal for the system administrator to take further ac-
tion, whereas an IDPS will log the attempt and actively
try to prevent the attack.

In order to verify whether an NIDS or IDPS are
present in a given topology state, we implemented a
wrapper function that is used to search for NIDS or IDPS
type components. This function calls the two subrou-
tines shown in Algorithm 2 and Algorithm 3, providing
the list of target components as the target type input.
If either an NIDS or IDPS type component is found on
the path traversing between two networks, the IDPS use
check function will return True.

6. System Evaluation

In this section we present the evaluation of the Se-
cureWeaver system. The evaluation is first done from a
functionality perspective. Thus, we use SecureWeaver
to generate a secure system design based on a service
requirement input that includes several security threats,
and verify that those threats are mitigated in the con-
crete system topologies that SecureWeaver outputs. For
the same scenario we also conduct a performance eval-
uation to determine the overhead with respect to the
Weaver baseline introduced by the additional security
check mechanism in SecureWeaver. Finally, we com-
pare the features of SecureWeaver to those of several re-
lated systems, highlighting their respective advantages
and disadvantages.

SecureWeaver was implemented in Python 3 and is
based on Weaver v0.1.3. All the experiments presented
in this paper were performed using an Amazon Web

16



Services (AWS) Elastic Compute Cloud (EC2) VM in-
stance. The EC2 instance utilized is “p2.xlarge,” which
features 4 virtual Intel Xeon E5-2686 v4 CPUs with
a frequency of up to 3.0 GHz, 64 GB of RAM, an
NVIDIA Tesla K80 GPU, and 60 GB of available stor-
age.

6.1. Functionality Evaluation

For the functionality evaluation we use service re-
quirement input that is based on a realistic corporate
network scenario. After introducing the input scenar-
ios, we then validate the system design output from a
security perspective to demonstrate that SecureWeaver
is able to generate secure system designs.

6.1.1. Service Requirement Input
The service requirement input in our experiments is

built using a subset of Weaver components and rela-
tionships that are available in the SecureWeaver system
model database, as shown in Fig. 10. The light-grey
background signifies a group of abstract and concrete
components that are related to each other; for example,
System is an abstract component, while BackUpSys,
WebSys, and ThinClientSys are the concrete repre-
sentations of that system. The other included groups
are WebApp, related to web applications, MiddleWare,
consisting of various middleware software applications
for backup, thin client and web application server, and
Storage, which has a Storage Area Network (SAN)
system as a concrete component.

Fig. 10 depicts several other groups of system com-
ponents, such as Machine that consists of a hard-
ware or a virtualized host, ExtThings that consists
of external entities, such as users (User) and external
API (ExtAPI), LAN that is related to Ethernet network
switches, and the OS group, which consists of operating
system-related components.

Several independent components that are used in
the evaluation are also shown in Fig. 10, such as the
Internet or Wide Area Network (WAN), a thin client
(ThinClient), a network router (Router), an NIDS
appliance (NIDS), a VPN server instance (VPNServer),
and a firewall appliance (Firewall). As for the
Requirement component shown in the same figure, it is
used to represent functional or non-functional require-
ments that are part of components related to System.

Using all these components, one can design a typical
corporate network that includes various network sys-
tems, such as thin clients, remote access, and web ap-
plication hosting. Three basic scenarios are first intro-
duced, where each scenario has one ATT&CK threat.

WebStorage

MWThinClient

Machine

MWAppServer

abs: False

req: OS(1)

cap: APP(1)

abs: False

req: STGE(1)

cap: -

abs: False

req: OS(1)

cap: -

abs: True

req: LAN(inf)

cap: HOST(1)

abs: True

req: -

cap: LAN(inf)

Router

Firewall

Switch

VPNServer

User

OS

ExtAPI

abs: True

req: HOST(1)

cap: OS(inf)

WAN

RHEL

OS

VM

VM

SANMWBackUp

ThinClient

BackUpSys WebSys ThinClientSys

Requirement

NIDS

NIDS

LAN

abs: False

req: -

cap: extWAN(1)

L3

L3SW

abs: False

req: LAN(inf)

cap: WAN(inf)

FW(1)

abs: True

req: -

cap: -

abs: False

req: -

cap: LAN(inf)

NIDS(1)

abs: False

req: -

cap: extWAN(1)

EXT
Things

abs: True

req: -

cap: -

abs: False

req: WAN(inf)

cap: extWAN(inf)

MW
abs: True

req: OS(1)

cap: -

abs: False

req: HOST(1)

cap: OS(inf)

abs: False

req: FW(1)

cap: WAN(inf)

LAN(inf)

abs: False

req: LAN(1)

cap: -

SYS

MW

abs: False

req: APP(1)

cap: -

Web
App

abs: True

req: -

cap: -

abs: False

req: REQ(inf)

cap: -

abs: False

req: REQ(inf)

cap: -

abs: False

req: REQ(inf)

cap: -

abs: False

req: -

cap: REQ(inf)

abs: False

req: SAN(inf)

LAN(inf)

cap: -

Storage

abs: True

req: LAN(inf)

cap: STGE(inf)

abs: False

req: NIDS(1)

LAN(1)

cap: -

PhysicalServer

abs: False

req: LANinf)

cap: HOST(1)

SAN(inf)

abs: False

req: LANinf)

cap: HOST(1)

SAN(inf)

abs: False

req: WAN(1)

cap: -

System

MiddleWare

WebApp

ExtThings

abs: False

req: OS(1)

cap: -

Figure 10: Properties and relationships of the components used in the
system evaluation experiments.

17



The threats were selected as being sufficient for demon-
strating the use and validate all the seven security check
functions in SecureWeaver. Furthermore, each of these
scenarios can be integrated with others to create com-
plex scenarios.

The scenarios below are introduced in the order of
their complexity to design them in SecureWeaver. To
evaluate SecureWeaver capability to design secure sys-
tem for real world application, the complete service re-
quirement built up from the three scenarios are shown
in Fig. 11. Each of the building block scenarios are
grouped using different shades of grey background and
are numbered according to the description below.

Scenario #1. A service requirement with a thin client
system is illustrated in Fig. 11 as Scenario #1. A thin
client system and thin client components are defined,
their component IDs being TCSys and TC, respectively.
The connection between them is an abstract relation-
ship, connTo, which is shown as a dashed line, and
denotes that TC should have a path that connects it to
TCSys in the output system design. The belongTo ab-
stract relationship denotes that TC and TCSys belong
to bizLAN LAN network, where both TC and TCSys

component or child component will be connected to
bizLAN in the resulting system design. In this scenario
the “Proxy” (T1090) threat is defined for the thin client
component TC to model the case in which an adver-
sary has control over TC and utilizes an external connec-
tion proxy as an intermediary to avoid suspicion over its
command and control (C&C) communication traffic.

Scenario #2. Often employees need to remotely con-
nect to a thin client environment on-premise to access
software that are network licensed. This would require
a user to connect to the company’s thin client system
via the public Internet, as illustrated in Scenario #2 in
Fig. 11, where the User component is designated as Usr
connected to WAN and TCSys by the connTo relation-
ship. In this scenario the “Network Sniffing” (T1040)
threat is defined for the connTo relationship, to model
the case when the remote connection between Usr and
TCSys is vulnerable to eavesdropping. The rest of the
company thin client system in the service requirement
is the same with the Scenario #1 service requirement.

Scenario #3. A service requirement with a public-
facing web application is illustrated in Scenario #3 in
Fig. 11. In this scenario we assume a company has a
private-cloud storage system on-premise with the cloud
storage accessible via public Internet, and uses some ex-
ternal API for single sign-on (SSO) purposes. These are

illustrated in Fig. 11 as the connTo relationship between
the WebStorage type component and both external API
(API) and external user (Usr). Both Usr and API are
connected to the WAN.

Moreover, we also introduce a backup system as
the functional requirement supporting the private-cloud
storage web system (WSSys). The web storage appli-
cation WS is a part of WSSys as connected via the ab-
stract include relationship. Both WS and the backup
system component BKSys are part of the dmzLAN as
connected with the abstract belongTo relationship. In
this scenario the “Exploit Public-Facing Application”
(T1190) threat is defined for the WebStorage compo-
nent, to model the fact that WS services are at risk of
public-facing exploitation of zero-day vulnerabilities.

Scenario #4. This scenario is a combination of the Sce-
nario #1 and #3 service requirements, where both the
thin client system and the private cloud storage system
are assumed to exist together in the corporate network.
Two threats are defined for this scenario, with threat
T1090 affecting the thin client system, and threat T1190
affecting the web storage application.

Scenario #5. This scenario combines all the three ba-
sic scenarios, with the service requirement describing
a real-life corporate environment that includes a thin
client system, remote access, and a private-cloud stor-
age system. This is illustrated in Fig. 11, with the thin
client system being affected by threat T1090, the remote
access between the user and the thin client system being
affected by threat T1040, and the web storage applica-
tion being affected by threat T1190.

6.1.2. Security Validation of System Design Output
With the service requirement from the evaluation sce-

narios, SecureWeaver can generate a concrete and se-
cure system design that corresponds to the selected ser-
vice requirement. A set of refinement rules that is made
of 33 rules was defined and used throughout the eval-
uation, including the rules illustrated in Fig. 6. In this
evaluation we assume that every available mitigations
for a threat is of equal effectiveness in mitigating the
threat. Thus, the security weights for each mitigation
for a threat are evenly divided, with their sum being 1.0.

There are two modes of operation in SecureWeaver:
automatic and interactive. In automatic mode, Se-
cureWeaver will by default match the first refinement
rule that meets both quantitative and qualitative require-
ments, and heuristically apply them to generate the next
possible topology states. This process is deterministic

18



WS:
WebStorage

WSSys:

WebSys

dmzLAN:

LAN

b
e
l
o
n
g
T
o

belongTo

BKSys:
BackUpSys

Req:

Requirement

Usr:User API:ExtAPI

WAN:WAN

wire:REQsupport

include

wire:extWAN

T1190

co
nn
To

c
o
n
n
T
o

T1040

c
o
n
n
T
o

TC:
ThinClient

TCSys:
ThinClientSys

bizLAN:

LAN
b
e
l
o
n
g
T
o

b
e
l
o
n
g
T
o

connTo

wir
e:

ext
WAN

T1090

#1

#2 #3

Figure 11: Input service requirement: thin client system with threats T1090 and T1040, and web system with threat T1190.

and SecureWeaver will only return the first system de-
sign that satisfies the quantitative, qualitative and secu-
rity requirements. In interactive mode, SecureWeaver
presents all the valid refinement rules that can be applied
to the current topology state, and the user can manually
select the refinement rule to be applied at each step.

The security level requirement for each scenario is
set to the strictest standard, which is equivalent to 1.0,
ensuring that the resulting system design passes every
security check function for the type of threat that is
declared in the service requirement. Each scenario is
individually evaluated with SecureWeaver in automatic
mode and the resulting system design for the full sce-
nario (Scenario #5) is shown in Fig. 12. As mentioned
previously, the full scenario is a combination of Scenar-
ios #1, #2 and #3, which are emphasized using different
shades of grey background.

The refined Scenario #1 part in Fig. 12 shows the
thin client system (TCSys) that includes a thin client
middleware (TCS), Red Hat Enterprise Linux (RHEL)
operating system (OS1), and a physical server (HOST1)
to host TCS. The thin client (TC) is logically connected
to TCSys via RDP relationship and both thin client re-
lated components are physically connected to the same
Layer 3 switch (bizLAN), which is denoted by the L3SW
component type. Since TC is assumed to be affected
by the threat T1090, it can be mitigated via M1037,
M1031, and M1020, as referenced from the secure de-
sign database. Hence, security checks such as traffic fil-
tering check (M1037), IDPS check (M1031), and con-

figuration settings check (M1020) were performed by
SecureWeaver.

The traffic filtering check requires that the TC has ei-
ther software firewall or hardware firewall or both in the
system design for ingress/egress networking filtering
depending on the method specified in the threat mitiga-
tion knowledge base. The mitigation M1037 for threat
T1090 specifies that traffic to known malicious network
or infrastructure are to be blocked via the use of net-
work allow and block list, which can be achieved via a
software or a hardware-based firewall (“OR” method).
Thus, TC security can be verified via the hardware fire-
wall shown in Fig. 12. The IDPS check for mitigation
M1031 requires the affected component local network
to have an NIDS or IDPS component to monitor the
network for suspicious traffics. The NIDS component
(NIDS) highlighted in red is connected to the bizLAN

Layer 3 network switch, thus satisfying the requirement.
A NIDS is generally not an effective security mech-

anism in the case of encrypted traffic. Nevertheless,
in our particular scenario the traffic from the Thin
Client (TC) is not encrypted, hence the NIDS mitiga-
tion (M1031) in MITRE ATT&CK is functional. Note,
however, that MITRE ATT&CK does not explicitly dif-
ferentiate between encrypted and unencrypted traffic for
the use of NIDS, and even if the traffic would be en-
crypted it would not create a conflict with the MITRE
framework that we are following. In addition, MITRE
ATT&CK includes several mitigations for the threat
Proxy T1090, and all of them will be applied when

19



WSSys

dmzLAN

BKSysReq

Usr API

WAN

wire:REQ

marked
:

suppor
t

marked:
include

wire:extWAN

T1190

wire:extWAN

VM

MW

L3

wi
re
:L
AN

wire:LAN

wir
e:W

AN

wire:FW

WS

T1

WS

FW:Firewall

VM:VM

RTR:
Router

OS3

MWAPS:
MWAppServer

SAN:
SAN

wi
re
:S
AN

wire:STGE

OS2

HOST2

BK:
MWBackUp

TC

TCSys

bizLAN:

L3SW

w
i
r
e
:
L
A
N

NIDS

wir
e:L

AN

L3

wire:LAN

I
P
S
E
C

VPN:

VPNServer

w
i
r
e
:
L
A
N

NIDS:NIDS

RDP

T1090T109T1

w
i
r
e
:
L
A
N

wire:LAN

R
D
PT1040

R
D

0

OS1:
RHEL

HOST1:
PhysicalServer

TCS:
MWThin
Client

w
i
r
e
:

W
A
N

#1

#2 #3

wire:HOST

wire:OS

Figure 12: SecureWeaver output system design: refined thin client and web systems with mitigated threats.

the security level is maximum. Specifically, in addi-
tion to the NIDS mitigation, software/configuration mit-
igations such as Filter Network Traffic (M1037) and
SSL/TLS Inspection (M1020) are also applied to mit-
igate the threat. In particular, SSL/TLS Inspection
(M1020) is the mitigation that explicitly handles en-
crypted traffic; for such a configuration mitigation, the
configuration settings check examines the component
TC, for which it is assumed that the mitigation M1020 is
correctly implemented.

For the refined Scenario #2 part in Fig. 12, Se-
cureWeaver mitigates the threat T1040 on the remote
access connection between the user and the thin client
system. The secure protocol check function is used in
this case to check the conceptual connection between
Usr and TCSys. Since the remote desktop protocol
(RDP) is not considered as a secure protocol in the
threat mitigation knowledge base, the secure protocol
check inspects the remote desktop connection security
via the IPSEC connection from the Usr to the VPN

server (VPN) that is connected to RTR.

The refined Scenario #3 part in Fig. 12 includes the
private cloud storage system and its supporting require-
ment (BKSys), and they are connected to the dmzLAN

layer 3 network switch, which is of the L3SW com-
ponent type. The web storage application (WS) is af-
fected by threat T1190, which is mitigated via M1048,
M1050, M1030, and the configuration settings mitiga-
tions M1026, M1051, and M1016. For the applica-
tion isolation and sandboxing check (M1048), a vir-
tual machine is required as a host, which is the VM

in Fig. 12. Moreover, the firewall (FW) that is placed
between WAN and RTR satisfies the firewall use check
(M1050). The network segmentation check is also suc-
cessful as there are two LAN networks (bizLAN and
dmzLAN) in Fig. 12, where the host of the WS affected
by T1190, VM, is only connected to one of the LAN seg-
ments. The remaining mitigations M1026, M1051, and
M1016 for WS are validated via the configuration set-
tings check.

20



We conclude that all the security threats in Fig. 12
are fully mitigated according to the security check con-
ducted automatically by means of the seven check func-
tions in SecureWeaver.

6.2. Performance Evaluation

In this subsection we evaluate the performance char-
acteristics of SecureWeaver, and the overhead of the
security check mechanism introduced in this paper.
The first type of performance evaluation subjects Se-
cureWeaver to increasingly complex input service re-
quirements. The evaluation is conducted using the five
scenarios introduced in Section 6.1.1. The evaluation
focuses on metrics such as the number of topology
checks (iterations), and the time taken by various as-
pects of SecureWeaver (concretizing system design, se-
curity check) needed to return a concrete and secure sys-
tem design.

For the second type of performance evaluation we
compare the results obtained with SecureWeaver when
varying the number of security threats and the required
security level for an in-depth analysis of complex sys-
tem design feasibility and scalability. Five sets of exper-
iments are performed for each scenario to obtain the nu-
merical results presented in the following subsections.

6.2.1. security check Performance
The performance evaluation results of Scenario #1 to

#5 are presented in Table 3, where S is the designa-
tion of the scenario number, nthreat is the number of ser-
vice requirement threats, ntopo is the number of topology
concreteness and quantitative checks, nsec is the number
of security check iterations, nsec,F is the ntopo value for
which the first security check is performed, ttotal is the
total time in seconds to design and verify the system de-
sign, RS Dttotal is the relative standard deviation of ttotal,
tsec is the time in seconds for security check, RS Dtsec is
the relative standard deviation of tsec, and tsec/ttotal is the
percentage of tsec with respect to ttotal. Each of the five
scenarios is evaluated both with a service requirement
without any threat, and with a service requirement with
threats with the maximum security level being defined
(AND security check mode).

Beside the performance evaluation results in Table 3,
we include supplementary data in Table 4 with statistics
on the number of components and relationships, and the
temporary database used by SecureWeaver to store data
during the refinement and security check process. Thus,
ncomp is the number of components in the system design,
nrel is the number of relationships in the system design,
nall is the total number of components and relationships

in the system design, sizeaction is the total size of the
refinement action/step database, and sizestate is the total
size of the topology state database.

When looking at the ntopo result for the service re-
quirement without threat in Table 3, there is an increase
with scenario complexity, and increase that is also re-
flected by the increasing number of nall and size of
sizestate in Table 4; actually, the sizestate is a more accu-
rate indicator of the complexity of a scenario than nall,
as the database stores all the possible topology states
in the search tree. An difference of 30.6% is observed
between Scenario #1 and #2 for ntopo in Table 3, while
there is a 19.1 times difference between Scenario #2 and
#3. The combined Scenarios #4 and #5 show a drastic
increase regarding ntopo, which illustrates the complex-
ity of service requirements in real-world applications.

As for the additional number of ntopo iterations when
using the full security level mode, the increase in per-
centage for Scenarios #1 to #5 is of 14.3%, 87.5%,
182%, 10.7%, and 7.2%, respectively. The increase in
ntopo for the increasing scenario complexity is given by
how Weaver heuristically refines for concrete topology
states before security check. The total ntopo is ultimately
determined by the order of the possible topology states
refined, where a topology state candidate that is both
concrete and secure is first refined.

Nonetheless, the relative time taken by the security
check process when computed as the ratio tsec/ttotal

sharply decreases as the scenario becomes larger and
more complex, given the intrinsic time needed for the
basic design of such large scenarios. This shows that Se-
cureWeaver security check mechanism only introduces
a small overhead; for example, tsec/ttotal for the full sce-
nario in Fig. 12 is just 0.00032%, with an increase of
7.2% for ntopo due to the processing related to creating
265 concrete topology states that are discarded because
they do not meet the security requirements.

For large and complex fully-abstract service require-
ments, SecureWeaver is technically limited to the avail-
able storage space for storing temporary data (applied
actions and computed topology states). As shown in
Table 4, sizeaction and sizestate increase with the com-
plexity of the input service requirement, and in Scenario
#5 the size of temporary data reached a total of 28.4
GiB when using security (note that the available stor-
age on the experiment machine was 60 GB). However,
in practice, networked systems are rarely designed from
scratch. Hence, we also performed an evaluation of Se-
cureWeaver in which an incremental addition of new
services is done to an existing corporate network design.
The resulting partially-concrete service requirement in
this case included the abstract requirements in Scenario

21



Table 3: SecureWeaver evaluation results: security check statistics and time measurements.

S nthreat
ntopo nsec nsec,F

ttotal [s] RS Dttotal [%]
tsec [s] RS Dtsec [%] tsec/ttotal [%]w/o sec. sec. w/o sec. sec. w/o sec. sec.

1 1 49 56 5 49 0.204 0.278 0.26 0.39 0.00162 9.5 0.58
2 1 64 120 14 64 0.271 0.717 0.52 0.49 0.00405 8.5 0.56
3 1 1286 3626 18 3408 9.32 37.2 0.48 0.28 0.0103 3.6 0.028
4 2 47656 52754 122 47656 849 1123 0.19 1.7 0.0817 3.8 0.0073
5 3 199838 214152 266 199838 4622 5463 0.38 0.22 0.177 2.0 0.00032

Table 4: SecureWeaver evaluation results: topology statistics and disk data sizes.

S
ncomp nrel nall sizeaction sizestate

w/o sec. sec. w/o sec. sec. w/o sec. sec. w/o sec. sec. w/o sec. sec.
1 6 7 6 8 12 19 192 KiB 232 KiB 872 KiB 1.2 MiB
2 9 10 11 12 20 22 284 KiB 648 KiB 1.4 MiB 3.6 MiB
3 14 17 16 19 30 36 10 MiB 27 MiB 55 MiB 194 MiB
4 22 24 24 27 46 51 426 MiB 504 MiB 4.1 GiB 5.0 GiB
5 22 25 27 31 49 56 2.4 GiB 2.6 GiB 23.1 GiB 25.8 GiB

#1 and a concrete network topology of 205 entities (105
components and 100 relationships), and the output sys-
tem design consisted of 110 components and 107 rela-
tionships, satisfying the imposed qualitative, quantita-
tive and security requirements. In this way, the scale
of the experiment was increased by about 4 times com-
pared to the results reported in Table 4.

6.2.2. Effect of Security Level on Performance
In real life networked system design, cost and other

considerations may require the need for alternative sys-
tem designs, so as to make possible trade-off analysis.
When using SecureWeaver, one can generate multiple
system designs that fulfill the functional requirements
but have a different level of risk associated to them by
adjusting the security level property of the threat in the
service requirement (note that it is also possible to gen-
erate alternative solutions for the same level of risk).

In what follows we evaluate the effect on perfor-
mance when varying the security level in Scenario #5
with a number of threats between one and three. In par-
ticular, the required security level is assigned the fol-
lowing values for all the included threats: no security
(No Sec.), minimal security (OR), 25%, 50%, 75%, and
full security (AND). The results for the second set of
experiments are shown in Fig. 13, where both ttotal and
the ratio tsec/ttotal are plotted as function of the required
security level shown on the horizontal axis.

The total elapsed time in general increases as the re-
quired security level is higher, although there are in-
stances (e.g., the one threat scenario) when both security
level 50% and 75% have similar ttotal, since the topology

No Sec. OR 25% 50% 75% AND
Security level requirement

4600

4700

4800

4900

5000

5100

5200

5300

5400

5500

T
o

ta
l 
e

la
p

s
e

d
 t
im

e
, 
t to

ta
l 
[s

]

0

0.5

1

1.5

2

2.5

3

3.5

R
a

ti
o

 o
f 
t s

e
c 

to
 t

to
ta

l 
[%

]

10 -3

1 threat (time)
2 threats (time)
3 threats (time)
1 threat (ratio)
2 threats (ratio)
3 threats (ratio)

Figure 13: Effect of the security level requirement setting on Se-
cureWeaver performance.

state verified at the same number of ntopo is sufficiently
secure, with the security level of the selected system de-
sign being larger than 75%.

As expected, the security check overhead for mini-
mum security level (OR) increases with the number of
threats in the service requirement. Thus, for one threat
mitigated at OR security level, an increase of 0.30% is
recorded in ttotal when compared with no security check.
For both two and three threats at OR security level, an
increase of 8.3% and 9.3% is observed. Our results for

22



ntopo at OR security level (data not shown in the paper)
show an increase of 0.0015% for one threat, and a 4.6%
increase for both two and three threats when compared
to the no security case.

The increase of ttotal and tsec/ttotal observed in Fig. 13
as the security level requirements become higher is
clear. For example, in the case of the maximum security
level (AND), an increase of 4.0%, 12.6%, and 18.9%
in ttotal are recorded for a service requirement with one
to three threats compared to the minimum security case
(OR). Consequently, although a secure system design
can be output by SecureWeaver in the shortest time by
using a minimum security level requirement, a maxi-
mum security level solution can also be obtained in our
experiments for a relatively small increase in time.

6.3. Feature Comparison

In this subsection we compare SecureWeaver to the
related works that cover secure design aspects discussed
in Section 2. The comparison first looks at each frame-
work’s capabilities, whether it is able to design or/and
verify the security level of its output. We also look into
the method that is used to design or create the output,
as well as the type of output as its target domain. Fur-
thermore, the method of how each framework creates or
verifies its security policies/mitigations, whether quali-
tatively or quantitatively, and lastly, the type of security
knowledge base that the framework refers to in order to
refine its output are considered.

The comparison is shown in Table 5. For frame-
work capabilities, both SecureWeaver and (Gressl et al.,
2021) are able to perform both system design from ab-
stract input and verify the security of the output, while
(Scheid et al., 2017) and (Amato et al., 2018) are only
capable of verifying a concretized input. As for (Kim
et al., 2020), the framework is only capable of design-
ing the security policy from an abstract input.

For the design method, both SecureWeaver and
(Gressl et al., 2021) use DSE refine a concrete system,
while (Scheid et al., 2017) uses clustering and external
tools to manage its dependency process. The framework
in (Amato et al., 2018) uses template matching to create
the flow chain for verification, and (Kim et al., 2020)
uses DFA and CFG to create concrete configurable se-
curity policies. Template-based approaches are gener-
ally more rigid than search-based design.

For the framework target domain, SecureWeaver cov-
ers both IT/NW and IoT aspects, as demonstrated in
this paper and in (Ooi et al., 2022). However, the other
frameworks target specific domains such as NW, IT/NW
or IoT (the difference between NW and IT/NW is that

NW only considers traffic routing in an SDN cloud en-
vironment, whereas IT/NW represents a more generic
IT environment). Moreover, all the framework secu-
rity threat mitigation approaches are quantitative-based
except the framework in (Kim et al., 2020). For the
quantitative-based approach, a numerical result is typ-
ically used to satisfy the quantitative security require-
ments, while a qualitative-based approach such as (Kim
et al., 2020) only creates its output with reference to a
pattern database as a matching problem, which is not an
optimization problem.

All platforms use some form of database which stores
the ruleset/template/attack chain and their correspond-
ing numerical values for security computations. While
(Scheid et al., 2017) and (Amato et al., 2018) are based
on abstract numerical values, (Gressl et al., 2021) de-
signed their attack chain based on the STRIDE model.
The SecureWeaver database is based on the ATT&CK
matrix, which provides a more concrete and comprehen-
sive coverage. The SecureWeaver database also allows
users to assign numerical weights for each mitigation.

This comparison demonstrates that SecureWeaver is
well suited for addressing secure architecture-level sys-
tem design in the IT/NW and IoT domains, and is favor-
ably positioned compared to other related works.

6.4. Discussion
Automated versus human design. The security check
process in SecureWeaver was implemented according
to the best practices included in the MITRE ATT&CK
matrix and we have validated that these best practices
are reflected in the output design. In addition, security
professionals from NEC Corporation have assessed the
SecureWeaver output design for several scenarios and
they found it satisfactory from a security perspective.
However, judging only the validity of the SecureWeaver
output does not prove its effectiveness. Human design-
ers often utilize checklists, such as the Functional Spec-
ification Document (FSD) and Technical Specification
Document (TSD), to validate the functional and security
requirements during design and implementation. In our
method, instead of a checklist, the design is conducted
based on security rules, and it is fundamentally equiv-
alent to checklist-based design in term of its security
characteristics. Moreover, SecureWeaver is not affected
by the possible mistakes or omissions that human de-
signers could make, and at the same time is able to ver-
ify significantly larger sets of conditions compared to
human designers. On the other hand, a human designer
can deal with various implicit requirements, whereas
SecureWeaver can only handle the sets of explicit re-
quirements that it is able to recognize (this aspect can

23



Table 5: Feature comparison of SecureWeaver with related works.
Name Capability Method Target Threat Mitigation Security Knowledge
SecureWeaver Design &

verification
DSE IT/NW,

IoT
Quantitative (done via se-
curity verification & secu-
rity level assessment)

ATT&CK database, se-
curity level & function
database

INSpIRE
(Scheid et al.,
2017)

Verification Clustering NW Quantitative (done via se-
curity score computation)

Virtual Network Function
(VNF) & security score
database

(Amato et al.,
2018)

Verification Template IT/NW Quantitative (done via se-
curity level assessment)

Pattern & security level
database

IBCS (Kim
et al., 2020)

Design DFA &
CFG

NW Qualitative (done via pol-
icy generation)

Network Security Function
(NSF) database

(Gressl et al.,
2021)

Design &
verification

DSE IoT Quantitative (done via
probabilistic attack chain)

STRIDE based attack chain,
security function database

be improved on by extending the set of refinement rules
and the knowledge base).

Beyond the network domain. In the current implemen-
tation of SecureWeaver, the output design is generated
from a network domain perspective, which may not ex-
plicitly consider OS-dependent details, such as a certain
security patches or vulnerabilities. Therefore, due dili-
gence is required to ensure that the actual implementa-
tion of the system design is sound and follows the best
security practices. To extend SecureWeaver beyond the
network domain, security details at the OS level, such
as security vulnerabilities and their mitigations can be
included into the framework via additional refinement
rules that include the relevant details. For instance, for
network servers running Linux-based OSs, the Linux
domain in the ATT&CK Enterprise matrix is relevant
to ensure their security.

Internet versus intranet. A corporate network typically
includes public web service accessible through the In-
ternet, and internal services accessible from within the
intranet. For example, an HTTPS gateway can be
placed between a user and a web application, where an
HTTPS tunnel between the user and the web applica-
tion is terminated at the gateway, and the web appli-
cation traffic between the gateway may be unencrypted
within the organization intranet (e.g., HTTP). Such re-
finement rules can be designed by network and security
experts and added into the existing set of refinement
rules in SecureWeaver. While the current refinement
rules in SecureWeaver do distinguish between intranet
and the Internet (e.g., wire:LAN versus wire:extWAN),
SecureWeaver itself does not distinguish between them
from a security perspective, since we consider that the
only way to have a fully-secure system is to have the

traffic protected at all points, but such a distinction could
be implemented as a system optimization mechanism.
Do note, however, that there is no explicit distinction
between intranet and Internet in the MITRE ATT&CK
Enterprise matrix network domain, hence such a mech-
anism would need to be added based on another knowl-
edge base.

Threat tagging and consistency. For scenarios that in-
volve tagging related components and relationships
with threats (e.g., threats involving the compromise of
private data, such as T1040 for relationships and T1602
for components), SecureWeaver does not enforce any
limitations nor perform consistency checks. Conse-
quently, if there are any relevant MITRE ATT&CK
threats both for components and relationships, they can
be used to tag those components. Currently, if a user
incorrectly tagged related entities with incompatible
threats, SecureWeaver may not be able to find a valid so-
lution, and the user needs to revise the input file from the
point of view of threat placement. The solution that we
are considering for this issue is to automatically place
the threat(s) based on security best practices, a mecha-
nism that we are planning to implement in the future.

Handling user devices. There may be scenarios in
which the security of a user device can be compromised
(in our scenario the user device is represented by the
concrete component Usr:User shown in Fig. 11). In
this paper we have assumed that the user device (as a
concrete component) is not managed by the company,
so SecureWeaver has no control over that user device,
an illustration of the Bring-Your-Own-Device (BYOD)
policy in a typical organization. However, if the user
device is to be managed by the company, it should be
added into the SecureWeaver service requirement as an

24



abstract component, and in that case, rules can be used
for SecureWeaver to refine it as part of the overall sys-
tem design and ensure its security.

Zero trust. The concept of “zero trust” has been gaining
momentum in the security communities, and it means
that components in a network are not trusted by de-
fault, and their interactions are always verified. Thus,
the principle of least privilege recommends per-request
access controls to achieve micro-segmentation, which
requires enhanced identity management features. To ap-
ply the concept of zero trust to SecureWeaver would re-
quire a new meta-level verification function for access
control regarding the relevant components, as well as
additional refinement rules and an Access Control List
(ACL) in the secure design database.

Feature comparison. Like any system, SecureWeaver
has its advantages and disadvantages, as summarised in
Table 6. Regarding its advantages, SecureWeaver is able
to automatically transform an abstract intent into a con-
crete system design that satisfies the input requirements,
handling both the design-from-scratch and incremental-
design cases. While SecureWeaver currently has built-
in support for the IT/NW and IoT domains, it can also
support any other type of networked system, as long
as the corresponding components, relationships, and
their refinement rules can be expressed in SecureWeaver
format. SecureWeaver includes the MITRE ATT&CK
based security check functions that incorporate best
practices for mitigating attacks against specific system
components. Furthermore, SecureWeaver is not prone
to mistakes and omissions as it can happen for human
designers, and can verify significantly larger sets of con-
ditions compared to a human designer.

As for disadvantages, SecureWeaver requires a tech-
nical user to define the service requirement, compo-
nents, relationships and refinement rules for any sys-
tem that is to be designed (if these elements are not al-
ready defined in its library). The current SecureWeaver
only implements security check and rules related to the
network domain in MITRE ATT&CK, which limits the
range of practical use scenarios. For example, threats
such as Data Encrypted for Impact (T1486) that re-
late to ransomware attacks against database and backup
servers are part of the Infrastructure-as-a-Service (IaaS),
Linux, Windows, and macOS domains of MITRE
ATT&CK; as they are outside the network domain cur-
rently implemented in SecureWeaver, such threats are
not covered at this moment. In addition, SecureWeaver
does not support automatic threat assignment or identifi-
cation of cascading threat(s) from the included threat(s).

Currently, when an application expert considers a com-
ponent/relationship to be susceptible to a certain secu-
rity threat, that component/relationship needs be tagged
explicitly with the corresponding threat id in the MITRE
ATT&CK Enterprise matrix (network domain), and no
higher-level labelling features exist (such as indicating
that a component/relationship is involved with the stor-
age or communication of sensitive information).

Lastly, SecureWeaver can only handle a limited sets
of requirements when compared to human designers, as
the extent of the support depends on the amount of im-
plemented refinement rules.

7. Conclusion

In this paper we presented an intent-based secure sys-
tem designer, named SecureWeaver, that based on a net-
work service requirements input, which includes secu-
rity requirements, is able to generate a system design
that meets the specified functional, quantitative and se-
curity service requirements. SecureWeaver was imple-
mented by leveraging the functionality of an existing
intent-based system designer that targeted IT/NW ser-
vices, named Weaver.

The core elements of the methodology that handle
secure design aspects are the following. A security
knowledge base that was implemented based on the
MITRE ATT&CK framework makes it possible to es-
tablish the bidirectional relationship between security
threats (attack techniques) and mitigation techniques in
a comprehensive manner. Furthermore, a set of security
check functions that are also implemented following the
information provided in the MITRE ATT&CK frame-
work make it possibly to automatically verify whether a
certain system design mitigates the associated security
threats or not.

The feasibility of our approach was illustrated via a
typical corporate network scenario that included thin
client systems, web systems and remote user access.
Thus, SecureWeaver was able to generate a system de-
sign that mitigates the security threats included in the
input requirements via the automatic placement of a net-
work intrusion detection system, a VPN server, and a
firewall at the appropriate locations, as well as by de-
ploying a potentially-vulnerable web server application
in a virtual machine environment.

We also evaluated the performance characteristics of
the implementation, and demonstrated that the security
check overhead compared to the total system design
time is largest for simple scenarios, for which the actual
design is very fast, still being just 0.58% in such a case.
However, for complex realistic scenarios with multiple

25



Table 6: Pros and cons of SecureWeaver.

Pros

Automatically transform an intent file into a concrete system design that satisfies the included qualitative,
quantitative, and security requirements
Can accept fully abstract or partially concrete intent files so that either full or incremental designs are
possible
Supports any type of networked system provided that the corresponding components, relationships, and
their refinement rules can be expressed
MITRE ATT&CK based security check mechanism, which incorporates best practices for mitigating attacks
against specific system components
A smaller number of independent security check functions and related rules compared to the number of
threats, making their definition manageable
Includes components, relationships and refinement rule definitions for the IT/NW and IoT domains
Does not suffer common disadvantage of human designer and is able to verify significantly larger conditions

Cons

Requires the definitions of intent file, components, relationships and refinement rules for any system that is
to be designed (if not already defined)
Only the MITRE ATT&CK network domain security check and related rules are currently implemented
Requires the explicit inclusion of the security threat(s) of concern in the intent file; no automatic threat
assignment or identification of cascading threat(s) from the included threat(s) is supported
Only can handle limited sets of requirement when compared to human designers

threats the overhead decreases sharply, reaching levels
as low as 0.30% in our experiments. The paper also
included a feature comparison with respect to research
other works, emphasising the overall advantages of Se-
cureWeaver.

As future work, we are considering to improve the us-
ability of SecureWeaver by introducing a more generic
method of labelling the entities with security-related
information, such as “use of private data,” which can
then be employed by the system to automatically place
the relevant MITRE ATT&CK threat(s) in a consistent
manner, based on security best practices. We are also
considering possible ways to optimize software perfor-
mance by early elimination of those system designs that
cannot be made secure by any means. Moreover, we
consider extending the security knowledge base and se-
curity check functions to cover other areas than the net-
work domain of the MITRE ATT&CK framework that
we have addressed so far.

References

Amato, F., Mazzocca, N., Moscato, F., 2018. Model driven design and
evaluation of security level in orchestrated cloud services. Journal
of Network and Computer Applications 106, 78–89.

Barnum, S., 2012. Standardizing cyber threat intelligence information
with the structured threat information expression (STIX). Mitre
Corporation 11, 1–22.

Davoli, G., Cerroni, W., Tomovic, S., Buratti, C., Contoli, C., Calle-
gati, F., 2019. Intent-based service management for heterogeneous
software-defined infrastructure domains. International Journal of
Network Management 29, e2051.

DesLauriers, J., Kiss, T., Pierantoni, G., Gesmier, G., Terstyanszky,
G., 2021. Enabling modular design of an application-level auto-
scaling and orchestration framework using TOSCA-based applica-
tion description templates, in: 11th International Workshop on Sci-
ence Gateways, IWSG 2019, CEUR Workshop Proceedings. pp.
1–7.

El Houssaini, C., Nassar, M., Kriouile, A., 2015. A cloud service tem-
plate for enabling accurate cloud adoption and migration, in: 2015
International Conference on Cloud Technologies and Applications
(CloudTech), IEEE. pp. 1–6.

Gressl, L., Steger, C., Neffe, U., 2021. Design space exploration for
secure IoT devices and cyber-physical systems. ACM Transactions
on Embedded Computing Systems (TECS) 20, 1–24.

Hemberg, E., Kelly, J., Shlapentokh-Rothman, M., Reinstadler, B.,
Xu, K., Rutar, N., O’Reilly, U.M., 2020. BRON–linking attack
tactics, techniques, and patterns with defensive weaknesses, vul-
nerabilities and affected platform configurations. arXiv e-prints ,
arXiv–2010.

Hernan, S., Lambert, S., Ostwald, T., Shostack, A., 2006. Uncover
security design flaws using the STRIDE approach.

Jacobs, A.S., Pfitscher, R.J., Ribeiro, R.H., Ferreira, R.A., Granville,
L.Z., Willinger, W., Rao, S.G., 2021. Hey, Lumi! Using natural
language for intent-based network management, in: 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pp. 625–639.

Kang, E., 2016. Design space exploration for security, in: 2016 IEEE
Cybersecurity Development (SecDev), IEEE. pp. 30–36.

Kim, J., Kim, E., Yang, J., Jeong, J., Kim, H., Hyun, S., Yang, H., Oh,
J., Kim, Y., Hares, S., et al., 2020. IBCS: Intent-based cloud ser-
vices for security applications. IEEE Communications Magazine
58, 45–51.

Køien, G.M., 2020. A philosophy of security architecture design.
Wireless Personal Communications 113, 1615–1639.

Kuroda, T., Kuwahara, T., Maruyama, T., Satoda, K., Shimonishi,
H., Osaki, T., Matsuda, K., 2019. Weaver: A novel configuration
designer for IT/NW services in heterogeneous environments, in:
2019 IEEE Global Communications Conference (GLOBECOM),
IEEE. pp. 1–6.

Kuwahara, T., Kuroda, T., Osaki, T., Satoda, K., 2021. An intent-

26



based system configuration design for IT/NW services with func-
tional and quantitative constraints. IEICE Transactions on Com-
munications E104.B, 791–804.

Kwon, R., Ashley, T., Castleberry, J., Mckenzie, P., Gourisetti,
S.N.G., 2020. Cyber threat dictionary using MITRE ATT&CK
matrix and NIST cybersecurity framework mapping, in: 2020 Re-
silience Week (RWS), IEEE. pp. 106–112.

Martin, L., 2014. Cyber kill chain. URL:
http://cyber.lockheedmartin.com/hubfs/
GainingtheAdvantageCyberKillChain.pdf.

Ooi, S.E., Beuran, R., Tan, Y., Kuroda, T., Kuwahara, T., Fujita, N.,
2022. SecureWeaver: Intent-driven secure system designer, in:
Proceedings of the 2022 ACM Workshop on Secure and Trustwor-
thy Cyber-Physical Systems, pp. 107–116.

Paladi, N., Michalas, A., Dang, H.V., 2018. Towards secure cloud
orchestration for multi-cloud deployments, in: Proceedings of the
5th Workshop on CrossCloud Infrastructures & Platforms, pp. 1–6.

Pham, M., Hoang, D.B., 2016. SDN applications–The intent-based
northbound interface realisation for extended applications, in:
2016 IEEE NetSoft Conference and Workshops (NetSoft), IEEE.
pp. 372–377.

Pimentel, A.D., 2020. A case for security-aware design-space explo-
ration of embedded systems. Journal of Low Power Electronics
and Applications 10, 22.

Rafiq, A., Mehmood, A., Ahmed Khan, T., Abbas, K., Afaq, M.,
Song, W.C., 2020. Intent-based end-to-end network service or-
chestration system for multi-platforms. Sustainability 12, 2782.

Rutkowski, M., Chris Lauwers, C., Curescu, C., 2020. TOSCA
simple profile in YAML version 1.3. URL: https:

//docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf.

Scheid, E.J., Machado, C.C., Franco, M.F., dos Santos, R.L.,
Pfitscher, R.P., Schaeffer-Filho, A.E., Granville, L.Z., 2017. IN-
SpIRE: Integrated NFV-based intent refinement environment, in:
2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), IEEE. pp. 186–194.

Strom, B., Applebaum, A., Miller, D., Nickels, K., Pennington, A.,
Thomas, C., 2018. MITRE ATT&CK: Design and Philosophy.
The Mitre Corporation, McLean. Technical Report. VA, Technical
report.

Wei, Y., Peng, M., Liu, Y., 2020. Intent-based networks for 6g: In-
sights and challenges. Digital Communications and Networks 6,
270–280.

Wu, C., Horiuchi, S., Murase, K., Kikushima, H., Tayama, K., 2021.
Intent-driven cloud resource design framework to meet cloud per-
formance requirements and its application to a cloud-sensor sys-
tem. Journal of Cloud Computing 10, 1–22.

27

http://cyber.lockheedmartin.com/hubfs/Gaining the Advantage Cyber Kill Chain.pdf
http://cyber.lockheedmartin.com/hubfs/Gaining the Advantage Cyber Kill Chain.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf

	Introduction
	Related Work
	Intent-Based Design
	Secure Intent-Based Design
	Security Knowledge Framework

	Methodology of Automated Secure System Design
	Methodology Overview
	Automated Secure System Design Requirements
	Original Weaver System Designer
	Data Format Definitions
	Rules and Topology Refinement
	Tree Search-based Algorithm for DSE


	Secure Design Database
	Secure Design Threats and Rules
	Security Threats
	Logical and Conceptual Connections
	Refinement Rules

	Threat Mitigation Knowledge Base
	MITRE ATT&CK-based Mitigation
	Knowledge Base Data Structure


	Security Check Mechanism
	Mechanism Overview
	Retrieving Threats from the Service Requirement
	Calling Security Check Functions

	Application Isolation and Sandboxing Check
	Firewall Use Check
	Network Segmentation check
	Configuration Settings Check
	Traffic Filtering Check
	Secure Protocol Use Check
	Intrusion Detection and Prevention System (IDPS) Use Check

	System Evaluation
	Functionality Evaluation
	Service Requirement Input
	Security Validation of System Design Output

	Performance Evaluation
	security check Performance
	Effect of Security Level on Performance

	Feature Comparison
	Discussion

	Conclusion

