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Abstract. With the increasing role of Machine Learning (ML) and Deep Learning (DL) in various
domains, their application in enhancing Network Intrusion Detection Systems (NIDS) has gained sig-
nificant attention. Traditional NIDS approaches often rely on correlation-based detection, which may
lead to misleading or fake correlations, failing to align with real-world use cases. Addressing this issue
requires additional features, new datasets, and the development of new solutions. However, the rapid
advancements in ML and DL pose challenges for timely deployment, as training, testing, and evaluat-
ing new models against existing solutions can be time-consuming. The large size of real-world datasets
also contributes to high computational costs and extended training times, limiting the practical use of
ML-based NIDS in dynamic environments.
To tackle these challenges, this paper contributes to the field of NIDS in three key aspects: employing
Reinforcement Learning (RL) to accelerate and optimize the model tuning process; introducing an
efficient data preprocessing pipeline specifically designed for NIDS, which enhances data quality and
feature representation; and proposing a novel sampling strategy that determines an optimal dataset size
both in terms of total records and class-level balance. By integrating model tuning with the proposed
method on dataset sampling, this research uses a smaller sampling size of 3,898 records and achieves
a higher F1 score of 93.20, compared to the state-of-the-art statistical sampling method on the same
NIDS dataset.

Keywords: Sampling · Real World · Optimization · Network Intrusion Detection System · Reinforce-
ment Learning

1 Introduction

Network Intrusion Detection Systems (NIDS) have a significant role in cybersecurity. They monitor network
traffic to detect malicious packets. These systems analyze network packets in real-time, identifying anomalies
and patterns associated with cyber threats. Halimaa [1] used Support Vector Machine and Naïve Bayes, and
Roshan [20] used Deep Learning (DL) to assist in developing a NIDS. Effective NIDS must maintain high
accuracy while minimizing false positives to ensure reliable security. However, given the complexity and
volume of network traffic, optimizing NIDS remains a challenging task. Existing research often focuses on
training NIDS models using full-size datasets, which is time-consuming, especially with real-world data that
is both large in size and high in dimensionality. We have explored the use of RL in NIDS through various
studies, as detailed by Dang and Vo [5], Han et al. [8], Yang et al. [26], Li et al. [11], Ren et al. [19], Benaddi
et al. [3], Lopez-Martin et al. [12], Dong et al. [6], Sethi et al. [21], Hsu and Matsuoka [9], Sethi et al. [22],
Mouyart et al. [14], and Ren et al. [18]. While these works provide valuable perspectives on enhancing RL
techniques, they often overlook the practical challenges of applying RL in real-world settings—particularly
the impact of large dataset sizes on training time and computational demands. Although comprehensive
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learning improves detection capability, the associated resource costs make real-time deployment difficult in
operational environments.

To improve the practicality of deploying ML and DL models in NIDS, making them more adaptable to
real-world constraints, we propose the three key contributions to NIDS:

Leveraging RL to accelerate hyperparameter optimization and reduce training time Wang et al. [25] and Pow-
ell et al. [16] contributed on optimization of the large scale problems. The iterative search process tends to
be extremely time-consuming, making it impractical for real-time applications. In contrast, RL has demon-
strated superior performance in solving optimization problems. Given the real-time requirements and the
large volume of data involved in Network Intrusion Detection, RL is particularly well-suited for our case.
RL has been effectively applied to optimize NIDS across three main areas: feature selection, hyperparameter
tuning, and algorithmic improvements. For feature selection, Robinson et al. [17] utilized correlation-based
and information gain-based methods to reduce dimensionality and enhance detection of minority attacks,
achieving better accuracy and lower false positives on datasets like CIC-IDS2017 and NSL-KDD. In terms of
hyperparameter tuning, Masum et al. [13] employed Bayesian optimization to automate parameter selection,
significantly boosting model performance on the NSL-KDD dataset. At the algorithmic level, Vembu and
Dhanapal [24] proposed using the Whale Optimization Algorithm to fine-tune CNNs, outperforming conven-
tional models such as DNN, RF, and DT in both detection accuracy and efficiency, especially in Wireless
Sensor Network environments. Building on these findings, our work begins by applying RL specifically for
hyperparameter optimization to accelerate model training while maintaining high performance, laying the
groundwork for further enhancements in NIDS.

Tailored data preprocessing pipeline to enhance data quality for NIDS taks Our propose data preprocessing
approach stands out from previous work by applying well-known techniques in a way that is specifically
adapted to the security context of NIDS, an area where such methods are rarely utilized. For example, we use
hashing mechanisms to identify and track duplicate or equivalent network events. This is particularly valuable
in security settings where identical patterns may occur across different sessions but must be recognized as
the same attack signature. We handling port numbers that are numerically close but semantically distinct.
Potentially grouping ports like 22 and 53 together due to their proximity. However, in a security context,
these represent entirely different services and threat profiles.

Designing an efficient sampling strategy to determine optimal dataset sizes—both in overall volume and per
class distribution to balance training efficiency and model performance Sampling strategy differs from existing
approaches in several important ways. While sampling techniques are generally well known, their application
within the context of NIDS remains limited. Most existing NIDS research still relies on full datasets, which
are often very large and high-dimensional, making model training time-consuming and resource-intensive.

Although there is extensive research on sampling methods in general, studies specifically focusing on
NIDS are relatively limited. We highlight related work with an emphasis on practical and real-world ap-
plications. Previous work on sampling for NIDS by Alikhanov [2] studied the effect of traffic sampling on
machine learning-based NIDS approaches, focusing on sampling at the flow level, which occurs before feature
extraction. However, we perform sampling at the feature level, allowing better control and avoiding the need
to reprocess raw traffic data. Sampling at the flow level presents challenges: it is difficult to determine the
optimal sampling ratio beforehand, and since full feature extraction is required regardless, this effectively
doubles the preprocessing effort.

Another study of sampling on NIDS by Kabir et al. [10] applied sampling on the KDD 99 dataset, which
is another widely used dataset for NIDS. They used a statistical approach to determine the sample size, then
clustered the data based on similarity and selected samples only from dense clusters, excluding data points
that were distant from these clusters even if they were not true outliers.

Another relevant study by Han et al. [8] focused on accelerating hyperparameter tuning on the CIC-
IDS2017 dataset using Proximal Policy Optimization (PPO). While their work successfully addressed the
time-consuming nature of tuning, they did not report the actual tuning time, which limits direct compara-
bility. Moreover, their tuning process was performed entirely on the full dataset, making it computationally
expensive.

In this work, we introduce a novel sampling strategy that addresses these limitations. Unlike Kabir et
al. [10]’s approach, which trained both the tuned and final models solely on sampled subsets, our method
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preserves the class distribution and overall data representation in the sampled subsets. Importantly, the
optimized hyperparameters obtained from these representative samples are subsequently applied to train
the final model on the full dataset, ensuring both computational efficiency during tuning and comprehensive
learning in the final model. This dual-phase approach enables us to achieve substantially higher performance
with significantly reduced sampling sizes, while also avoiding the heavy computational cost of full-size tuning
thereby balancing tuning efficiency, data representativeness, and predictive accuracy.

Moreover, common sampling methods do not address the class imbalance often seen in NIDS, resulting
in rare attack types being underrepresented or entirely missing. Our method overcomes these limitations by
preserving class distributions during sampling and ensuring sufficient representation of minority classes.

Another key distinction is in the timing and purpose of sampling. We apply sampling only during the
hyperparameter tuning phase, not during the final training. This means our model is ultimately trained on
the full dataset, ensuring maximum performance and reliability. In contrast, other works that sample before
feature extraction or model tuning cannot guarantee that the tuned parameters will perform well on the full
data. Finally, our approach avoids the practical drawbacks of low-level sampling, which may require access
to network equipment or flow generators.

We propose a method for training NIDS that leverages three key techniques: RL for efficient hyperpa-
rameter optimization, tailored data preprocessing specifically designed for NIDS, and a sampling technique
for NIDS datasets. Together, these contributions enable fast model training that keeps pace with emerging
attacks and effectively handles the vast volume of network data.

2 Proposed Method

LITNET-2020

Dataset

Find the Optimized

Hyperparameter on

selected model by

train and evaluate

XGBClassifier model

on sampled dataset
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model with 5 folds
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Full-size dataset

Fig. 1: Reinforcement Learning Method on Different Sampling Sizes

The rapid advancements in ML and DL pose challenges for timely deployment, as training, testing,
and evaluating new models against existing solutions can be time-consuming. The large size of real-world
datasets further contributes to high computational costs and extended training times, limiting the practical
use of ML-based NIDS in dynamic environments. To address these challenges, Fig. 1 shows the proposed
method consisting of two key strategies to improve model training efficiency for NIDS. First, we employ RL
techniques for hyperparameter optimization to accelerate model training. Second, we introduce a structured
sampling strategy to effectively manage large datasets, selecting an optimal dataset size that balances training
efficiency and model performance.

By integrating RL-based hyperparameter tuning and an optimized dataset sampling approach, this de-
velop the more practical ML/DL models for NIDS. These improvements enhance timely deployment and
better handling of real-world data.
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2.1 Dataset Preparation

We propose a specific method for preparing NIDS datasets to align with the real-world characteristics we
aim to represent. This method consists of 9 steps that must be completed before utilizing the dataset.

– Removing Redundant Features Using Correlation Matrix: We analyze the correlation matrix to
examine the relationships between features and remove one feature from each pair with a high positive or
negative correlation. For example, features such as start time and end time often exhibit high correlation.
This dimensionality reduction aligns with our objective of handling large-scale real-world data. However,
reducing dimensions does not always lead to a decrease in model training time, as in the case of Decision
Trees, where the conditions in tree nodes remain unchanged.

– Add Duration Feature, Then Remove Start And End Time: Several NIDS datasets, such as
LITNET-2020 [4], specify the start and end times of traffic flows. However, in the context of security,
the exact start and end times are often not relevant. Therefore, these features can be removed. Instead,
duration is a crucial factor that helps distinguish between different attack classes. We compute the
duration feature as follows:

Duration = End Time − Start Time (1)

This newly added feature provides meaningful information while reducing redundant data.
– Adding Source File Label: In the case that dataset files are separated per class. A new column,

‘source_file’, is introduced to retain the original file information for each data point. This enables us to
trace back the source of each record and analyze its relationships with it’s neighbors.

– Removing Attack Identification Features: Certain features specifically related to attack identifi-
cation are removed to prevent data leakage. This ensures that the model generalizes well rather than
relying on predefined attack characteristics.

– Convert Non-Numeric Data to Numeric Data: Many features in NIDS datasets are not in numeric
form, such as protocol names (e.g., TCP, HTTP, DNS), IP addresses in both IPv4 format (xxx.xxx.xxx.xxx)
and IPv6 format, TCP flags represented as strings, MAC addresses, and other non-numeric values. These
values are first hashed into strings. Then, we use the int function to convert the string into a base-10
number and finally into a decimal number. The result is that if the original string value is the same, the
hash value will also be the same, and a consistent numeric float value will be obtained. The conversion
from non-numeric to numeric does not apply to the class label.

– Removing Features with Identical Values: Features where all values are identical across all records
are removed. These features do not contribute to the model’s learning process and cannot help in distin-
guishing between class labels.

– Normalization with MinMaxScaler: To standardize feature values, MinMaxScaler is applied to all
features except for the source port, destination port, and class label. The normalization process is defined
by equation (4):

v′ =
v − min(v)

max(v)− min(v)
(2)

Where:
• v is the value of the feature before normalize.
• min(v) is the minimum value of target feature.
• max(v) is the maximum value of target feature.
• v′ is the value after normalized in a range [0, 1]

This scaling process transforms all numeric features to a range between 0 and 1. Standardization helps
prevent any single feature from dominating due to differing magnitudes and allows models to converge
more efficiently.

– Handling Port Features as Categorical Data: The source port and destination port are already
numerical. If we apply MinMaxScaler normalization, the values of well-known ports (0-1024) will be
very similar after normalization, making it difficult for the model to differentiate between ports. In the
context of NIDS, these well-known ports have significant differences. For example, port 22 is well-known
for SSH, and port 53 is well-known for DNS. Therefore, we handle port numbers as categorical data
using the One-hot encoder. However, since the port number range is from [0, 65535], using a One-hot
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encoder would result in 65,536 new features. Knowing that the port number is represented in 16 bits,
we instead apply a Binary One-hot encoder, which converts the port number into 16 new features. After
the conversion, the original source port and destination port features are removed. This method enables
the model to better distinguish between well-known ports during the training process. This distinction
is important because port numbers represent discrete categories rather than continuous values.

– Convert labels to numbers: NIDS datasets often have class or label values as strings. For example,
LITNET-2020 [4] has the class value in attack_t as ‘none’ for benign and ‘icmp_smf’ or ‘udp_f’ for
the names of Attack classes. We will convert the benign class value to 0 and convert the values of other
malicious classes to numbers 1, 2, . . . , n, where n is the total number of classes. During this conversion
step, we map the class numbers to the class names and store this mapping in a file, so that the class
name can be identified from the converted class number later.

2.2 Sampling Strategy

Instead of using the full-size dataset, which can be computationally expensive and time-consuming, the
study introduces a sampling strategy to determine an optimal dataset size that can provide sufficiently
good hyperparameters within a limited time. This approach balances the trade-off between time efficiency
and model performance in hyperparameter tuning. The obtained hyperparameters are then used to train
the model on the full-size dataset. This makes the development and training of ML and DL models more
practical for real-world applications.

Table 1: Comparison of Sampling Methods with Key Characteristics
Sampling Method Unbiased Easy to Implement Subgroup Representation Cost-Effective Generalizable
Systematic Sampling ✗ ✓ ✗ ✓ ✓

Cluster Sampling ✗ ✓ ✗ ✓ ✗

Convenience Sampling ✗ ✓ ✗ ✓ ✗

Quota Sampling ✗ ✓ ✓ ✓ ✗

Snowball Sampling ✗ ✓ ✗ ✓ ✗

Simple Random Sampling ✓ ✓ ✗ ✗ ✓

Stratified Sampling ✓ ✗ ✓ ✗ ✓

Statistical & Selected Cluster [10] ✗ ✗ ✓ ✗ ✗

Random & Preserved Min per Class ✓ ✓ ✓ ✓ ✓

We have compared various sampling methods as summarized in Table 1 The first five rows present common
sampling techniques with their distinct advantages and drawbacks. Systematic sampling is easy to implement
and cost-effective but may introduce bias if the population contains a hidden pattern. Cluster sampling
is efficient for large or geographically spread populations but tends to be biased and less generalizable.
Convenience sampling is the simplest and cheapest method but suffers from high sampling bias and poor
representativeness. Quota sampling improves subgroup representation compared to convenience sampling,
yet it is still subjective and not fully generalizable. Snowball sampling works well for accessing hidden or
hard-to-reach populations but lacks unbiasedness and generalizability.

The last four methods in Table 1 provide more rigorous and balanced sampling approaches. Simple ran-
dom sampling ensures unbiasedness and generalizability but can be costly and may not guarantee balanced
subgroup representation. Stratified sampling enhances subgroup representation and generalizability by di-
viding the population into strata, although it is more complex and expensive. Statistical & selected cluster
sampling by Kabir et al. [10] attempts to control bias through selective cluster choice but remains difficult to
implement, costly, and not fully generalizable. Our proposed method, Random & Preserved Minimum Sam-
pling per Class, effectively combines true randomness with guaranteed minimum subgroup representation,
making it easy to implement, cost-effective, unbiased, and generalizable. This method also resolves the issues
of class imbalance by ensuring a minimum sample from each class, addressing both data fairness and the
bias caused by unequal class distributions. It is particularly beneficial in situations like Network Intrusion
Detection (NID), where certain classes (e.g., attacks) are underrepresented.

Random sampling results in a reduction in the number of records for each class according to the sampling
fraction. In NIDS, it is common for the number of Benign records to be significantly higher than Malicious
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records. Thus, applying fraction-based sampling does not significantly impact the number of Benign records
but greatly affects the number of Malicious records, which are already scarce.

To address this issue, we propose a method to preserve the number of attack records per class. First, we
determine the desired sampling size as:

Sampling size = Full-size dataset length × Fraction (3)

Next, we distribute this sampling size among all classes by computing the expected number of records
per class (Ec):

Ec =
Sampling size

Number of classes
(4)

If any class has an initial count lower than this expected value, we preserve the number of attack records
per class to ensure that Malicious records remain sufficient for the RL process to optimize hyperparameters.
Meanwhile, the remaining records are filled with Benign records to match the desired sampling size. If a class
has an initial count exceeding the expected sampling size per class, we apply random sampling to obtain the
required number of records.

Nc = min (Oc, Ec) (5)

where Nc is the final number of records selected for class c, Oc represents the number of records in class
c in the original dataset, and Ec is the expected number of records per class after sampling.

2.3 Fine-Tuning Hyperparameters with RL Optimization on Sampled Datasets

The next step is to determine the optimal sampling size of the sampled dataset that achieves the best
F1 score when training the model using RL Optimization. The obtained hyperparameters will then be
used for further applications. In this stage, we start by selecting an appropriate model, which should align
with the characteristics of the NIDS dataset, which consists of multiclass labels and categorical features.
These characteristics influence model selection, as certain algorithms handle categorical data and multiclass
classification more effectively.

After selecting the model, in this stage, we choose the hyperparameters to be tuned, identifying whether
they are of type float, integer, or categorical, as well as defining their possible value ranges. We then apply
a RL optimization technique to fine-tune the selected hyperparameters, aiming to maximize the F1-score.
For RL optimization, as illustrated in Fig. 2, we employ a Markov Decision Process (MDP), in which the
environment, decision process, reward function, and initial state are defined as follows.

Markov Decision Process: A Markov Decision Process is used to aid decision-making. An MDP consists
of states, actions, transitions, and rewards. Then finding a policy that maximizes the expected cumulative
reward, which, in this case, is the F1 score, by selecting actions that lead to the best long-term outcomes.
The agent aims to choose a policy π : S → A that maximizes the expected return J(π).

J(π) = Eπ

[ ∞∑
t=0

γtR(St, At)

]
(6)

where:

– J(π) : Expected return (cumulative expected reward under policy π).
– Eπ[·] : Expectation over the trajectories generated by policy π.
–

∑∞
t=0 γ

tR(St, At) : Sum of discounted rewards over time.
– γ ∈ [0, 1] : Discount factor, determining the importance of future rewards.
– R(St, At) : Reward function as defined in equation (2), representing the expected immediate reward

when taking action At in state St.
– St : State at time step t.
– At : Action taken at time step t following policy π.
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Fig. 2: Reinforcement Learning Technique Optimization Process

The Decision Process: At each time step t, the agent is in a state st ∈ S. The agent then takes an action
at ∈ A, which leads to a new state st+1 ∈ S according to the transition probability P (st+1|st, at). The agent
receives a reward rt = R(st, at, st+1) for the transition.

Reward function We define reward function after taking action in each state as follow.

R(s, a) = E [rt | St = s,At = a] (7)

– R(s, a) : The reward function, which gives the expected reward when in state s and taking action a.
– E : Expected value from action to reward.
– rt : The reward received at time step t. The reward is calculated from F1 score of model and hyperpa-

rameter on test dataset from action taken in s state
– St : The state of the system at time step t. This is current model and hyperparameter’s value.
– At : The action taken at time step t. The action either change the model or modify hyperparameter

value.

Initial State and Hyperparameter Range: Define the initial state and the range of each hyperparameter, then
start RL Optimization. If the agent takes an action that would cause a hyperparameter value to exceed its
defined range, the value remains unchanged. This ensures that all hyperparameters stay within their specified
limits throughout the optimization process.

Reinforcement Learning Process for Hyperparameter Tuning: At each time step t, the agent is in state
st. The agent then selects an action at, which involves adjusting one or many of the hyperparameters by
neighbor_step (initially set to 1). The environment, represented by the intrusion detection system, processes
the action, updates the state to st+1, and calculates the reward rt, which reflects the F1 score achieved by
the model after training with the new hyperparameter values. The agent receives this feedback and updates
its knowledge, continuing the process to optimize the hyperparameters over time.

3 Experimental Setup

3.1 Dataset Selection and Preparation

We selected LITNET-2020 [4] as the main dataset for our experiment because it is the very recent NIDS
dataset, created in 2020, compared to popular datasets like CIC-IDS2017 [23] (created in 2017) and KDD-
99 [15] (created in 1999). Additionally, LITNET-2020 has the largest number of records, with a total of
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35,196,460 records, consisting of 1 benign and 12 malicious classes, for a total of 13 classes. It was collected
over a period of 9 months, which aligns with the approach we propose for training models with large datasets
that represent real-world scenarios.

LITNET-2020 does not include headers by default, so we had to manually add the headers, which were
sourced from GitHub-Grigaliunas [7], where the LITNET-2020 dataset is published. We then preprocessed
the dataset according to the steps outlined in Section 2.3, Dataset Preparation.

In addition to LITNET-2020, we also conducted experiments on CIC-IDS2017, which is a popular NIDS
dataset, and on KDD-99 to compare the results with the state-of-the-art sampling approach for NIDS by
Kabir [10], which was tested on KDD-99. We preprocessed both datasets in the same way, following the
procedures outlined in Section 2.3. In CIC-IDS2017, there are occurrences of positive and negative infinite
values, so we replaced positive infinity with the maximum value of the respective feature and negative infinity
with the minimum value of the respective feature.

LITNET-2020, CIC-IDS2017, and KDD-99 datasets have been preprocessed such that all feature values
are in float format and the labels are numerical, making them ready for model training.

Fake Correlation Consideration As previously mentioned in the Introduction, the issue of fake correlation
and its mitigation must be addressed during the dataset acquisition stage. In traditional network intrusion
detection—whether volume-based or signature-based approaches—before the adoption of AI techniques,
detection was carried out by defining and identifying specific characteristics unique to each type of attack.

Upon examining the LITNET-2020 dataset, along with other widely used intrusion detection datasets
such as CIC-IDS 2017 and KDD-99, we observed that many of the attack classes defined within these datasets
lack sufficient features or details to conclusively identify the nature of the attacks. Although this work does
not delve into the specifics of these limitations, our observations are grounded in well-known methodologies
and practical experience in the field of network intrusion detection.

Training machine learning models to classify attack types based on such incomplete features essentially
results in learning correlations between features and labels. However, if the features are not sufficient to
accurately define the classes, any such correlation—regardless of its statistical significance—can be considered
a fake correlation.

Therefore, this study does not aim to improve classification accuracy by refining class-feature definitions
or by modifying the dataset. Instead, acknowledging the practical constraints of real-world applications, we
adopt existing, widely accepted NIDS datasets, LITNET-2020, CIC-IDS 2017 and KDD-99 [4,15,23], treating
them as sufficiently usable in their current form. The focus of this work is to explore sampling strategies that
enhance model training efficiency, rather than to address dataset accuracy or redefine the ground truth.

3.2 Experimental Method

There are two steps in the experimental method. First, we use RL to find the optimal hyperparameter for
each sampling rate. Then, we use only the selected hyperparameter to train and evaluate a new model from
scratch using cross-validation on the full-size dataset.

Step 1: Reinforcement learning for optimal hyperparameter from each sampling rate

Sampling: After completing the preprocessing of the full-size dataset, we perform sampling based on a fixed
number of records per class, as determined by Equation 5. The sampling fractions used are as follows:
0.1, 0.01, 0.001, 0.0001, 0.00009, 0.00008, 0.00007, 0.00006, 0.00005, 0.00004, 0.00003, 0.00002, and 0.00001,
respectively. Each fraction differs by a factor of 10, except in the range of 0.0001 to 0.00001, where additional
finer-grained samplings were performed at 0.0001, 0.00009,..., 0.00002 and 0.00001. The reason for this finer
subdivision is that we observed a significant change in the F1-score between the fractions 0.0001 and 0.00001.
Thus, we introduced more granular fractions in this range to analyze the variations in greater detail. The
sampling method used was random sampling with random_state set to 42 to ensure consistent experimental
results across different runs.

The number of records for each sampling size, except for the finer-grained range between 0.0001 and
0.00001, as well as the distribution of different classes, can be observed in Table 2.
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Table 2: Sampling Data Distribution (Number of records) of LITNET-2020
Full-size
dataset

Fraction
0.1

Fraction
0.01

Fraction
0.001

Fraction
0.0001

Fraction
0.00001

Sampling Size 35196460 3519646 351964 35196 3519 351
Number of Classes 13 13 13 13 13 13
Records in Class 0 32087753 2785414 149882 8428 270 27
Records in Class 1 59479 59479 27874 2787 270 27
Records in Class 2 11628 11628 11628 2787 270 27
Records in Class 3 93583 93583 27874 2707 270 27
Records in Class 4 1580016 278742 27874 2787 270 27
Records in Class 5 22959 22959 22959 2787 270 27
Records in Class 6 52417 52417 27874 2787 270 27
Records in Class 7 24291 24291 24291 2787 270 27
Records in Class 8 1255702 278742 27874 2787 270 27
Records in Class 9 747 747 747 747 270 27
Records in Class 10 1176 1176 1176 1176 270 27
Records in Class 11 6232 6232 6232 2787 270 27
Records in Class 12 477 477 477 477 270 27

Train-Test Splitting: The next step involves performing a stratified random split of each sample into 70%
for training and 30% for testing, ensuring the class distribution remains consistent with the original dataset
in both subsets.

Model Selection: XGBClassifier was chosen because it balanced a high F1 score of 99.81 with an efficient
training time of just 11 minutes, outperforming other models. SVM, despite achieving a high F1 score of 90.12,
required an impractical 49 hours for training. Logistic Regression struggled with multiclass classification,
while CatBoost, though accurate, had significantly longer training times. K-Nearest Neighbor (KNN) was
inefficient on large datasets, and LightGBM underperformed compared to XGBClassifier. Given these factors,
XGBClassifier proved to be the most suitable model for our experiment.

State

Current Hyperparameters value

in XGBClassifier

Environment

Train XGBClassifier using

adjustable hyperparameters,

num_boost_round and

max_depth on train_dataset

Reward

Value function = F1 score on

test_dataset using current

hyperparameters value

Action

Increase or decrease value of

hyperparameters in XGBClassifier

Fig. 3: Reinforcement Learning Technique Optimization Process for XGBClassifier
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Fine-Tuning Hyperparameters with RL Optimization on Sampled Datasets: RL Technique Optimization is
used to fine-tune the XGBClassifier model as illustrated in Fig. 3. The process begins by defining an initial
state, and in each iteration, an action is performed to adjust various parameters, leading to the next state.
The RL process can be constrained using different limitations, such as a time limit, a fixed number of
iterations, or a restriction on the number of visited states. In this case, the training limit is set based on
time. We define the Environment, State, Action, and Reward function for the RL optimization technique as
shown in Table 3.

At this point, we have obtained the hyperparameters num_boost_round and max_depth for each sam-
pling size. In the next step, we will evaluate these values on the full-size dataset.

Table 3: Details of Reinforcement Learning Setup
Environment Use the XGBClassifier model to train on the training dataset, then

evaluate the value function on the test dataset.
State Definition Each state consists of different values for the hyperparameters:

num_boost_round, ranging from 2 to 5000, and max_depth, ranging from
1 to 100. The total number of possible states is:

(5000− 2 + 1)× (100− 1 + 1) = 4999× 100 = 499,900 possible states

The initial state is: num_boost_round = 10 and max_depth = 2.
Agent Actions The agent can perform four possible actions:

– Increase num_boost_round by neighbor_add_step.
– Decrease num_boost_round by neighbor_add_step.
– Increase max_depth by neighbor_add_step.
– Decrease max_depth by neighbor_add_step.

For example, if the current state is [10, 2], the neighboring states are:
[11, 2], [9, 2], [10, 3], and [10, 1]. The value function is evaluated for
each of these. If the current neighbor_add_step does not lead to a new
state, we increase it by 1 to allow reaching further states.

Reward Function The reward is the F1 score obtained by training the XGBClassifier with
the given num_boost_round and max_depth on the training dataset and
evaluating on the test dataset.

Step 2: Performance evaluation on model trained by different hyperparameter from different
sampling size in step 1 This step performs Stratified K-Fold cross-validation, which ensures balanced class
distributions across folds, on the full-size dataset using the values of num_boost_round and max_depth
obtained through Reinforcement Learning on each sampling size in the previous step as hyperparameter
values for the XGBClassifier model. In this process, we set K = 5. The procedure is outlined in Algorithm 1.

The evaluation strategy using both the macro F1 score and per-class recall ensures that the model is
robust and performs well across all classes, including those that are underrepresented. This comprehensive
evaluation is particularly essential for real-world cybersecurity, where the volume of attacks is often much
lower than that of benign instances. It is crucial to accurately measure the model’s ability to detect each
attack class, ensuring that even rare or less frequent attack types are properly identified and not overlooked.
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Algorithm 1 K-Fold validation on full-size dataset
1: Input: Preprocessed datasets from CSV files
2: Output: Average F1 score (weight=macro) and recall per class on full-size dataset
3:
4: procedure LOAD AND PREPARE DATA
5: Load CSV files into dataframes
6: Concatenate all dataframes into a single dataset
7: Split dataset into features (X) and labels (y)
8: end procedure
9:

10: procedure TRAIN AND TEST WITH CROSS-VALIDATION
11: for each fold in 5-fold cross-validation do
12: Use 4 folds as training set and 1 fold as testing set
13: Train XGBClassifier model using hyperparameter value of num_boost_round and max_depth from RL Tech-

nique Optimization
14: Predict on testing set
15: Compute F1 score (Weight=macro) and recall for each class
16: end for
17: Calculate mean F1 score and recall per class across folds
18: end procedure
19:
20: procedure OUTPUT RESULTS
21: Print average F1 score and recall values
22: Print mean recall per class
23: Report evaluation time
24: end procedure

4 Experiment Results

4.1 Evaluation Metrics:

Macro F1 score: The average F1 score across all classes, with equal weight for each class, regardless of
the number of records in each class. This helps address situations where the benign class is much larger than
the others.

Mean Recall per Class: Recall values were computed for each class over all folds and averaged to measure
the model’s detection capability for each class.

4.2 Optimized Hyperparameters and Their Evaluation on Both the Sampling Datasets and
the Full-size Dataset

To evaluate model performance, 5-fold cross-validation was conducted on the full-size dataset, using hyper-
parameter from the RL on sampling dataset. The results is shown in Table 4 with a sampling fraction of
0.1, or 3,519,646 records, the values obtained were num_cat_boost = 38 and max_depth = 12. The F1 score
obtained from the sampling and the full-size dataset, after performing cross-validation, were similar.

With a sampling fraction of 0.01, or 351,964 records, the values obtained were num_cat_boost = 50 and
max_depth = 11. The higher num_cat_boost value compared to the previous case was due to the smaller
sampling size, which reduced the training time per iteration, allowing for more improvement within the same
amount of time. Even though the F1 score did not show statistically significant differences, it was considered
better than with a sampling fraction of 0.1.

With a sampling fraction of 0.001, or 35,196 records, the values obtained were num_cat_boost = 310 and
max_depth = 4. It can be observed that as the sampling size decreases, more iterations can be performed,
allowing for higher values of num_cat_boost and max_depth. The F1 score also improved.
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Table 4: Optimized hyperparameters value and F1 score on Sampling Size and Full-Size Dataset
Sampling S1 S2 S3 F1 F2 SD

0.1 38 12 0.9992 0.9970 15 0.0007
0.01 50 11 0.9997 0.9986 22 0.0008
0.001 310 4 0.9999 0.9998 139 0.0002
0.0001 310 4 0.9999 0.9998 139 0.0002
0.00001 110 4 0.9403 0.9979 50 0.0005

Column Descriptions:

Sampling = Sampling Fraction, S1 = Sampling num_boost_round, S2 = Sampling max_depth, S3 = Sampling
F1 score, F1 = Full-Size Dataset Cross-Validation F1 score, F2 = Full-Size Dataset Cross-Validation Time

(Minutes).

With a sampling fraction of 0.0001, or 3,519 records, the values obtained were num_cat_boost = 310 and
max_depth = 4. It can be observed that a smaller sampling size allowed for faster training. However, with
such a limited number of samples, it was not possible to train a model with a higher F1 score than before.

With a sampling fraction of 0.00001, or 351 records, the values obtained were num_cat_boost = 110 and
max_depth = 4. As the dataset size became very small, the F1 score began to decline.

In Table 4, we can also observe that the Standard Deviation (SD) of the F1 score across each fold is
similar, as the SD values are low.
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Fig. 4: Comparison of F1 score on Cross Validation Between Sampling (blue circle) vs Full-Size (red rectangle)
of Different Datasets and Initial State

4.3 Optimized Sampling Size

From Table 4, the sampling size that achieved the highest F1 score, both in the sample and during 5-
fold cross-validation on the full-size dataset, was 35,196 records and 3,519 records, respectively. It can be
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Fig. 5: Comparison of True Positive (blue circle) and False Negative (red rectangle) of Malicious Classes on
Different Datasets and Initial State

seen that a dataset size of approximately 30,000 records is sufficient for training a high-performing model.
Moreover, with a smaller dataset, the model training process can be completed more quickly. For the dataset
with approximately 3,000 records, since the LITNET-2020 dataset is generated, the data is relatively clean.
Generally, datasets larger than 10,000 records are preferred. Therefore, using a dataset size of approximately
30,000 records is highly recommended.

4.4 F1 score on LITNET-2020 Compared to CIC-IDS2017 and KDD-99

From Fig. 4, where the Default Initial state is num_boost_round = 1000 and max_depth = 5, we can
observe that the F1 score of the full-size dataset (red box plot) shows a similar trend across all three datasets:
LITNET-2020, CIC-IDS2017, and KDD-99. The F1 score approaches 1 at its best. When examining the F1
score from sampling at different Fraction sizes, we find that the F1 score increases significantly between
Fraction = 0.00001 and 0.0001. After that, the F1 score remains mostly unchanged even as the Fraction
increases.

Additionally, we tested a case where the Initial State is very low, with num_boost_round = 10 and
max_depth = 2, to observe the progression of using RL to adjust hyperparameters in each iteration. We
found that the F1 score for Sampling on LITNET-2020 is consistently good across all Fractions. For CIC-
IDS2017 and KDD-99, the F1 score improves between Fractions of 0.00001 and 0.0001. The F1 score for the
full-Size dataset, using hyperparameters trained with different Fraction sizes, fluctuates between Fraction
= 0.00001 and 0.0001 on LITNET-2020, and remains below 0.9 between Fraction = 0.00001 and 0.0001 on
CIC-IDS2017 and KDD-99. In other words, we achieve a good F1 score on the full-size dataset for Fraction
values starting from 0.0001 upwards in all three datasets.
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4.5 True Positive and False Negative on LITNET-2020 Compared to CIC-IDS2017 and
KDD-99

From Fig. 5, where the Default Initial state is num_boost_round = 1000 and max_depth = 5, we can
observe that the True Positive values for the full-size dataset (blue circle graph) show a consistent trend
across all three datasets: LITNET-2020, CIC-IDS2017, and KDD-99. The True Positive values are high and
remain steady across all Fraction ranges, except for CIC-IDS2017, where the True Positive value is lower than
the others at Fraction = 0.00001. As for the False Negative values of the full-size dataset (red square graph),
they are consistently low across all Fraction ranges, except for CIC-IDS2017, where the False Negative value
is higher than the others at Fraction = 0.00001.

Additionally, we tested a case with a very low Initial State (num_boost_round = 10 and max_depth
= 2) to observe the development of using RL to adjust hyperparameters. It shows that the True Positive
and False Negative values for Sampling on LITNET-2020 fluctuate between Fraction = 0.00001 and 0.0001
before achieving high True Positive and low False Negative values at Fraction = 0.0001 and beyond. For
CIC-IDS2017, the True Positive and False Negative values improve at Fractions greater than 0.00001. For
KDD-99, the True Positive and False Negative values are consistently good across all Fractions.

4.6 Discussion on the performance of the sampling strategies for NIDS

Although no prior work has directly addressed the specific issue explored in this study, the most closely
related work is by Kabir et al. [10], who applied a statistical sampling approach to the KDD-99 dataset and
evaluated the results for each class individually (single-class evaluation). However, their method imposed
strict constraints on sample selection, which resulted in reduced diversity of the training and testing samples.
To enable a fair comparison, we recompiled the experimental results of [10] by selecting five classes (four
malicious and one benign) and recomputing the average F1 score across these classes. Their statistical
sampling approach achieved an optimal training set size of 494,021 records, resulting in an F1 score of 0.8159
on the test set. In contrast, under the same conditions, our proposed sampling method achieved F1 scores
of 0.9356 and 0.9196 using 48,980 and 4,895 records, respectively. Unlike previous method, which applies
strict constraints on sample selection, our approach does not impose such constraints and can train models
that achieve higher F1 scores on the test set using the NIDS model trained from smaller sample sizes,
demonstrating its potential as a more competitive sampling strategy.

However, the overall performance of the proposed method still falls short of state-of-the-art RL based
NIDS methods, such as Han et al. [8], which achieved an F1 score of 0.9655 on the CIC-IDS2017 dataset,
while our method achieved an F1 score of 0.8935. While the NIDS method can benefit from the sampling
strategy proposed in this paper, this suggests that further improvements on the performance are needed to
meet the standard requirements.

5 Conclusion

On the LITNET-2020 dataset, we achieved the best F1 score of 0.9998 by tuning the hyperparameters
using a sampling size of 0.1%, which corresponds to 35,196 records. Even with a smaller sampling size of
0.01% (3,519 records), we were still able to tune the same hyperparameters. However, with an even smaller
sampling size of 0.001% (351 records), the tuned hyperparameters resulted in an F1 score of 0.9979, where
the performance started to drop compared to the first two sampling sizes.

The results from testing on two other well-known network intrusion datasets revealed a consistent pattern:
both the F1 score and the true positive rate increased as the sampling size grew. This pattern was observed
consistently across all three datasets. For CIC-IDS2017, we achieved the best F1 score of 0.8935 by tuning
the hyperparameters using a sampling size of 0.1%, which corresponds to 2,820 records. For KDD-99, we
achieved the best F1 score of 0.9356 by tuning the hyperparameters using a sampling size of 1%, or 48,980
records

Our proposed dual-phase approach leverages reinforcement learning optimization for hyperparameter
tuning on efficiently sampled subsets, followed by cross-validation and final training on the full dataset. This
strategy preserves class distribution and overall data representation in the sampled subsets while enabling
optimized hyperparameters to be applied to the full dataset, thus avoiding the substantial computational
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overhead of full-size tuning. The XGBClassifier, a robust and efficient gradient boosting algorithm well-suited
for large-scale network environments, is employed, alongside tailored preprocessing techniques specifically
designed for NIDS datasets. As a result, our method achieves markedly higher performance with significantly
reduced sampling sizes, providing a practical and scalable solution for intrusion detection model optimization.

In future work, we plan to train the final model on sampled datasets of varying sizes to further explore
the trade-off between training time and model performance. Additionally, we intend to conduct experiments
on high-dimensional datasets that closely resemble real-world scenarios involving vast and complex data.
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