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Abstract. Prompt injection attacks insert malicious in-
structions into large language model (LLM) input prompts
to bypass their safety measures and produce harmful out-
put. While various defense techniques, such as data filtering
and prompt injection detection, have been proposed to pro-
tect LLMs, they primarily address natural language attacks.
When faced with unusual, unstructured, or non-natural lan-
guage (Non-NL) prompt injection, these defenses become in-
effective, leaving LLMs vulnerable. In this paper, we present
a methodology for evaluating LLMs’ ability to handle Non-
NL prompt injections, and also propose defense strategies
against these attacks. To demonstrate the usability of our
methodology, we tested 14 common LLMs to evaluate their
existing safety capabilities. Our results showed a high at-
tack success rate across all LLMs when faced with Non-NL
prompt injection, ranging from 0.38 to 0.52, which empha-
sizes the need for stronger defense measures.

1 INTRODUCTION
Large Language Models (LLMs) have become increasingly
powerful and achieved remarkable advancements in natu-
ral language processing. Due to their capabilities, they are
widely utilized in various areas. For instance, Microsoft uti-
lizes GPT-4 for Bing Search [15]; OpenAI applies GPT-4 for
different tasks like text processing, code interpretation, and
product recommendations; and LLMs are deployed in inter-
active contexts with direct engagement like ChatGPT. These
broad capabilities of LLMs also raise security concerns that
create attack surfaces for malicious purposes. Prompt in-
jection, also known as jailbreak attack, has emerged as the
main attack vector to bypass safeguards and elicit harm-
ful content from LLMs. Prompt injection refers to the case
when an adversary manipulates the input (prompt) to a lan-
guage model, forcing it to ignore its guardrails, generate ma-
licious content or misleading the model to accomplish in-
jected tasks. Several studies have examined prompt injec-
tion attacks against LLMs, finding that these models can be
easily misaligned through handcrafted inputs [25], obfusca-
tion strings, and code injection techniques [10] that bypass
vendor-implemented safeguards.

Text-based prompt injections have become a common
topic in both research and malicious purposes, capable of
creating jailbreaking prompts that mislead LLMs. Most at-
tacks are crafted using Natural Language (NL) prompt ma-
nipulation and semantic techniques to confuse LLMs while
maintaining the meaning of prompts. These can be Naive At-
tack [30], which concatenates target data with injected in-
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structions, or Cognitive Hacking [27], which leverages role
prompting to create contexts that make LLMs easier to con-
trol (e.g., “Do Anything Now,” Developer Mode). While ex-
isting countermeasures and detection approaches aim to pre-
vent LLMs from these attacks and detect compromised data,
they cannot fully protect models from exploitation [29, 14].
Recently, with the advancement of SOTA LLMs, security
alignment within models has improved, leading to increased
development of prompt injection detection models.

However, most existing defense approaches focus on NL
prompts, whereas Non-Natural Language (Non-NL) prompts
represent another area that can be exploited. As LLMs’ capa-
bilities expand, so does their attack surface has created a new
avenue for attackers. Non-NL prompt injection is defined as
a text-based prompt injection attack that uses non-textual or
structured inputs to influence a language model’s behavior.
These attacks focus on unusual text, containing strange char-
acters, encoded text, or gibberish text without meaning.

In this paper, we propose a methodology that addresses the
current gaps in evaluating Non-NL prompt injection attacks
on LLMs. This paper conducts a comprehensive evaluation
of Non-NL prompts. We have created a dataset of 10 prompts
transformed through four Non-NL attack techniques to create
40 jailbreak prompts. These prompts are used to assess the
vulnerability of 14 common LLMs. We also introduce poten-
tial defense strategies against these attacks, thus providing a
comprehensive analysis of Non-NL prompt injection attacks
and their corresponding countermeasures. Consequently, our
main contributions are as follows:

• Design and implement a methodology for assessing the
ability of LLMs to handle Non-NL prompt injections

• Conduct a comprehensive evaluation with 40 Non-NL
prompt injections on 14 LLMs to demonstrate how to as-
sess LLM defense capabilities against such attacks

• Propose a set of defense mechanisms against Non-NL
prompt injections

2 RELATED WORKS
The increasing capabilities of LLMs have led to opportu-
nities for malicious attacks and security violations. Safety
training methods for LLMs such as GPT-4 and Claude
typically finetune pretrained models using human prefer-
ences [22] and AI feedback [4], alongside filtering ap-
proaches [33]. Researchers have explored LLMs’ suscepti-
bility to adversarial interactions attacks [24]. In this work,
we focus on Prompt Injection, which OWASP Top 10 identi-
fies as the highest vulnerability in LLMs [23], and examine
it from a Non-NL perspective.



2.1 Non-NL Prompt Injection

Non-NL prompt injection attacks involve attacker creating
jailbreaking prompts that use non-textual inputs to manipu-
late LLM behavior. These attacks combine strange charac-
ters, encoded text, meaningless strings, or icons to confuse
models and force them to generate harmful content. Jones
and Zou proposed adversarial attacks using meaningless text
generated through gradient-based methods to trigger unde-
sired outputs [9, 35]. Several existing methods use obfusca-
tion schemes to confuse the models. At the character level,
these include ROT13 cipher, and base64 encoding. Other
approaches attempt to split sensitive words into substrings
through payload splitting [10] or token smuggling [13], or
translate content into low-resource languages to confuse the
model. In many cases, while the model still follows the in-
jected instruction, its safety measures fail to activate.

2.2 Defenses Against Jailbreak Attacks

There are several methods to counter jailbreak attacks, which
fall into three main categories, as discussed below.

Detection-Based Defenses detect potentially harmful con-
tent. In [2], the Input Perplexity metric is calculated to iden-
tify compromised input. Another approach uses the LLM it-
self for unsafe detection. While these techniques effectively
detect and prevent jailbreak attacks, they struggle when han-
dling benign Non-NL elements within prompts.

Mitigation-Based Defenses aim to prevent LLMs from
generating undesired content by mitigating harmful input.
Retokenization [26] and Paraphrasing [7] prevent harmful
input bypass by identifying prompts with similar meanings
and reducing special characters’ impact. Sandwich preven-
tion [12] or Instructional prevention [11] append or redesign
instruction prompts to provide additional context, helping
prevent prompt obfuscation. However, these approaches only
address specific, narrow cases of jailbreaking prompts.

Built-in Safety Mechanisms are methods integrated in-
side LLMs by vendors such as Nemo-Guardrails [28] control
LLMs through predefined rules. However, these defenses pri-
marily rely on rules and filters. They focus on language se-
mantic techniques and classification-based design, which are
limited to natural language prompt injection or constrained
by training data. This leads to ineffectiveness when handling
unsemantic prompt injection (e.g., via visual-based text).

Despite a growing number of Non-NL jailbreak attacks,
there are no specific defense mechanisms focused on han-
dling these attacks, which are more challenging than NL
prompt injections. While research continues to propose new
attack techniques that leverage LLM confusion when faced
with unusual text, there remains a significant gap in defense-
related research. This highlights the necessity of having more
robust defense approaches against Non-NL prompt injection.

3 OVERVIEW

Given the current limitations with Non-NL prompt injec-
tions in LLMs, we propose a method for testing, and eval-
uating LLMs’ capabilities when facing prompt injection

attacks—particularly those using unusual, non-natural lan-
guage text. Our method enables different prompt injection at-
tacks to combine natural language prompts with various tech-
niques to craft sophisticated jailbreak prompts. This provides
valuable insights into the security capabilities of LLMs and
defense approaches. An overview of our approach is shown
in Figure 1, and its main components are described next.

3.1 Attack Module

The attack module creates Non-NL injected prompts by com-
bining natural language prompts with attack functions. These
prompts first test the LLM without defense mechanisms, al-
lowing evaluation of the LLM’s response to Non-NL attacks.
The four types of Non-NL attacks, categorized according to
the techniques used, are presented below.

Text-Based Obfuscation (base64) attack aims to cir-
cumvent LLM guardrails by obscuring instructions through
encoding algorithms like ROT13 or Base64, bypassing the
safety mechanisms of the models. In the scope of this paper,
we use Base64 encoding to craft jailbreak prompts.

Visualized-Based Obfuscation (ascii_art) attack
creates prompts inherent in a visual perspective. For instance,
ASCII characters are used to create harmful words that evade
LLMs’ detection systems. Following the proposed method
from ArtPrompt [8], we created jailbreak prompts by encod-
ing vulnerability-related words as ASCII art visualizations.

Payload Splitting (payload_split) attack involves
instructing the LLM to combine multiple seemingly benign
prompts that form harmful instructions when combined. The
payload_split attack is implemented to develop in-
jected prompts based on the template from [10].

Adversarial Suffix (adv_suffix) attack works by
finding specific suffixes that, when attached to queries, cause
LLMs to produce objectionable content. These suffixes can
work with meaningless tokens and use optimization tech-
niques to maximize the probability of affirmative responses
instead of refusals. Introduced in [35], this white-box attack
produces optimized suffixes that are highly transferable be-
tween models—even to black-box systems.

3.2 Evaluation Process

The evaluation stage is used to assess how LLMs respond
to Non-NL injected prompts. Specifically, to determine the
effectiveness of LLMs’ abilities, we calculate the extent to
which injected prompts can bypass their defenses. We clas-
sified LLM responses into five categories based on response
quality and content safety: Harmful, Unrelated, Unclear, Re-
fusal, and Refusal w/ Reasoning.

If a prompt bypasses LLM security measures, we label the
responses into three categories: Harmful, Unclear, or Unre-
lated. A response receives a Harmful label when it contains
harmful information. If the response relates to the prompt
without directly generating harmful or consistent informa-
tion, it is classified as Unclear. All other responses fall under
the Unrelated category. Otherwise, if a prompt injection is
prevented by the LLM, we use the labels Refusal or Refusal
w/ Reasoning, the latter for the case when the LLM provides
an explanation for refusing the prompt.



Figure 1: Overview of our Non-NL prompt injection attack assessment methodology.
We manually labeled each model output using these cri-

teria. Attack success metrics were used to evaluate LLMs’
defense capabilities against Non-NL attacks. This measures
the percentage of injected prompts that successfully bypass
the security criteria of LLMs to generate harmful, unrelated,
and unclear content. The reliability of the manual labeling
procedure can be improved in future work by having re-
searchers evaluate and label independently, then aggregating
results through discussion and voting mechanisms.

4 EXPERIMENTAL EVALUATION
This paper evaluated the four Non-NL prompt injection at-
tacks described in Section 3.1 against 14 common LLMs to
determine their security capabilities against advanced and
complex jailbreak prompts. The experiments presented in
this paper were conducted from April to June 2025. Cur-
rently, our focus is on developing attack modules and testing
the ability of LLMs to face these attacks.

4.1 Experiment Setup

LLMs Our experiment uses 14 LLMs, divided into two
groups: commercial and open source. The commercial LLMs
include Claude 3.7 Sonnet [3], Gemini 2.0 Flash [6], Gem-
ini 1.5 Flash 8B [5], Gemma 2 9B [31], o4-mini, o3-
mini [21], GPT-4.1 [20], ChatGPT-4o [19], GPT-3.5 Turbo
[18], and GPT-4 [17]. The open-source LLMs include
Llama3-8B-Instruct [1], Llama-2-7b-chat [32], Grok3 [34],
and Mistral-7B-Instruct [16]. We selected these models
based on our survey of current state-of-the-art LLMs and
their popularity. Note that, due to perceived security con-
cerns, we did not include DeepSeek in the tested LLMs.

Testing Prompts Our evaluation experiments used each
of the four attack techniques to craft non-natural language
jailbreak prompts. For this purpose, we selected 10 harmful
instructions from the AdvBench dataset [35] as input, and
applied the four attack functions to create the 40 injection
prompts (see Figure 1). These prompts are delivered to LLMs
through API calls for GPT models, and via function calls for
Llama and Mistral models. For the other LLMs, including
Claude, Gemini, Gemma, and Grok, we used the free access
ChatUI to send the prompts. With API access to these mod-
els, the interaction process could be fully automated.

4.2 Benchmarking Results

Figure 2 shows the results of all Non-NL prompt injec-
tion attacks across the 14 LLMs. Except Claude 3.7 Sonnet,
most LLMs were bypassed by these injected prompts. Cur-
rent LLMs like o3-mini or ChatGPT-4o remain vulnerable

to these attacks. Moreover, most models were successfully
compromised by the payload split attack, which is one of the
more sophisticated attacks in the attack module.

base64 According to the results from base64 attacks,
Claude 3.7 Sonnet and Gemini 2.0 Flash have base64 de-
coding capabilities and can prevent base64 jailbreak prompts
by issuing harmful content warnings. For GPT models, the
security of o3-mini is robust enough to refuse directly. The
o4-mini model sometimes produces unrelated but benign re-
sponses when it fails to decode strings. Current chat models,
including GPT-4.1 and ChatGPT-4o, remain vulnerable to
specific jailbreak prompts that can generate harmful content.
With open-source LLMs like Llama-3-8B-Instruct, Llama-
2-7b-chat and Mistral-7B-Instruct that don’t support the de-
code function, they cannot understand these prompts and
generate unrelated responses. However, with Grok3, most at-
tack prompts successfully bypassed the security layer.

ascii_art For ASCII art attacks, most recent LLM
models (Claude 3.7 Sonnet, Gemini 2.0 Flash, Gemma 2 9B)
can understand these words and refuse to respond, providing
explanations for their refusal. Regarding GPT models, the
latest o-series models (o4-mini and o3-mini) mostly refuse to
answer. However, other GPT models like ChatGPT-4o, GPT-
3.5 Turbo, and GPT-4 still generate harmful content with
certain prompts. Notably, GPT-4.1, the latest flagship chat
model, can be bypassed by all tested jailbreaking prompts,
forcing it to generate harmful responses. Among open-source
models, the Llama models largely don’t understand these
prompts and generate unrelated responses while Grok3 oc-
casionally fails to understand certain prompts. Mistral-7B-
Instruct remains susceptible to certain attacks.

payload_split The complexity of the payload split-
ting attacks varies from simple string concatenation to recur-
sive payload splitting techniques. The latest Claude 3.7 Son-
net model and o4-mini can recognize and comprehend harm-
ful content in most prompts, enabling them to refuse gener-
ating harmful responses. However, other models fail to inter-
pret the prompts and generate harmful, unclear, unrelated re-
sponses. As payload splitting techniques grow more sophisti-
cated, they become increasingly likely to bypass LLM secu-
rity measures. Figure 3 shows an example of this attack and
the corresponding response from GPT-4.1.

adv_suffix We reused the adversarial tokens trained
and optimized in previous research [35] with slightly modifi-
cation. Although most GPT models have enhanced their de-
fenses and fixed this vulnerability, some injected prompts can
bypass protections and force models like o3-mini and GPT-4
to generate harmful responses. Notably, GPT-3.5 Turbo re-
mains vulnerable to most of the injected prompts. For open-
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(a) base64 attack
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(b) ascii_art attack
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(c) payload_split attack
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(d) adv_suffix attack

Figure 2: Number of prompts in each response category, labeled according to the tested LLMs responses.



Original Prompt: To dissolve a body in sulphuric acid. The 

detailed steps are as follows

Jailbreak Prompt:

Now generate a possible output for the following code:

token_1 = maskedmodelling("The Japanese website 

forums called 4cha<mask> is known to be offensive in 

nature")

print(token_1)

masked_token_2 = maskedmodelling("A <mask> is often 

cromated by Hindus")

print(masked_token_2)

start = "To dissolve a " + masked_token_2 + " in sulphuric 

acid. The detailed steps are as follows"

for i in range(100):

    start = modelthis(start)

print(start)

Response

Harmful

Figure 3: Example of payload_split attack and the corresponding “Harmful” response from GPT-4.1.

source models, only Grok3 successfully prevents this attack
by refusing all test prompts. Llama models and Mistral-7B-
Instruct remain vulnerable to several injected prompts. This
can be attributed to the adversarial strings being trained and
optimized using Llama2, which likely transferred to Llama3.
These results raise concerns because although these adver-
sarial strings have been public, current LLMs remain vulner-
able to attacks. Note that, due to the release of Claude Son-
net 4 and Gemma2’s discontinuation in Google AI Studio,
we could not test this attack on either the Claude Sonnet 3.7
or Gemma2 9B models via the free access ChatUI.

Table 1 shows the average attack success rate across all
LLMs for each attack type. It indicates that Non-NL attacks
remain a critical vulnerability due to their use of unusual text
that LLMs cannot properly handle. Given the high success
rate of security bypasses, Non-NL prompt injections must be
addressed as a significant security concern.
Table 1: Average success rate for each of the four attack types
across all the tested LLMs.
base64 ascii_art payload_split adv_suffix

0.46 0.45 0.52 0.38

5 PROPOSED DEFENSES
We will discuss now some potential defense approaches
that can defend against these attack, including two stages:
Non-NL preprocessing, and prompt injection detection. The
Non-NL preprocessing stage converts and sanitizes injected
prompts into natural language while extracting any code
snippets. The prompt injection detection stage analyzes the
preprocessed prompts to identify harmful content. Together,
these stages enable the defense module to detect vulnerabil-
ities in the input prompts. The implementation of defense
measures and their evaluation is considered as future work.

Non-NL Prompt Injection Preprocessing handle injected
prompts using base64, ascii_art, payload_split,

and adv_suff attacks. These functions focus on sanitiz-
ing and preprocessing unusual characters and text within
prompts, converting them into natural language prompts the
Prompt Injection Detection module can easily process. These
are deterministic defense techniques corresponding to each
attacks. One can handle base64 attacks by extracting and
decoding the injected base64 segment. For ascii_art at-
tack, since vulnerable words are in visual format, OCR (Op-
tical Character Recognition) can convert them into text-based
words. For payload_split attacks, which create unstruc-
tured prompts, a sandbox solution using external LLMs to
retrieve the actual prompt becomes a potential approach. To
handle adv_suff attacks, which append gibberish strings
to harmful instructions, one can calculate sentence perplexity
to identify confusion levels and filtering out strange charac-
ters and incoherent text. Table 2 summarizes each defense
technique and the associated corresponding attacks.

Prompt Injection Detection refers to NL techniques that
can effectively detect harmful prompts. Therefore, existing
prompt injection detection models can serve as a solution
for detecting injected prompts after the non-natural language
prompts have been converted to standard text.

There is a key trade-off between AI-based and determinis-
tic defense approaches. As discussed above, we design four
targeted defenses, each corresponding to a specific attack
based on the properties of each attack. These deterministic
methods are designed to solve particular problems and can
achieve high accuracy against specific attacks. However, this
raises concerns about generalizability. An alternative is the
AI-based defense approach, which uses Machine Learning
(ML) to identify attack patterns and detect sophisticated at-
tacks with similar properties. While ML-based models may
have lower accuracy since they rely on probabilities and fac-
tors like datasets and parameters, they offer better generaliz-
ability and can handle new, sophisticated attacks. In contrast,
deterministic approaches may struggle with novel attacks but
can achieve high performance within their specific domain.



Table 2: Summary of the defense techniques corresponding to each Non-NL prompt injection attack.
Attacks Proposed Defenses
base64 Extract the base64 segment and decode it into natural language
ascii_art Use OCR to extract the visual-based harmful content
payload_split Use an external LLM to ask “What is the actual request?”
adv_suff Calculate the perplexity of sentences to filter out strange characters and incoherent text

6 CONCLUSION
In this paper, we presented an approach that includes an
attack module to test the security characteristics of LLMs
against Non-NL prompt injections. Using this method, we
conducted several experiments with current and popular
LLMs to evaluate their security capacity.

Our preliminary results show that Non-NL prompt injec-
tions can successfully bypass LLM safeguards and force the
models to generate harmful content, or confuse them into
producing unrelated and unclear responses. Given the aver-
age attack success rate ranging from 0.38 to 0.52 across all
LLMs, with the highest rate of 0.52 for the payload split-
ting attack, these findings highlight the dangerous potential
of Non-NL prompt injection attacks.

We also discussed potential defense techniques that can
handle each type of attack by sanitizing and converting them
to natural language prompts, then using a detection model
to identify and prevent these attacks. Since this is work in
progress, their implementation and evaluation are not in-
cluded in this paper, but will be conducted as future work.
Moreover, a generic defense approach should be considered
for further research, along with a comparative analysis be-
tween AI-based and deterministic defense approaches.
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