
Realistic Cybersecurity Training via Scenario
Progression Management

Razvan Beuran, Takuya Inoue, Yasuo Tan, Yoichi Shinoda
Japan Advanced Institute of Science and Technology

Nomi, Ishikawa, Japan

Abstract—Cybersecurity training activities are being con-
ducted worldwide in order to address the increase in security
threats that is plaguing our network-centric society. However,
most of these activities take place in restricted environments,
such as military organizations, or require paying high training
fees. In this paper we present an open-source architecture that
makes it possible to easily conduct cybersecurity training, thus
lowering the barrier to entry for a large number of students and
IT professionals to benefit from such activities.

The core element of our architecture is a set of mechanisms for
automating the scenario progression management, thus enabling
activities that combine attack, forensic and defense training in
realistic scenarios. We present the design and implementation of
the progression management module, and its interactions with
the overall training framework into which it was integrated.
Our evaluation of the architecture from both functionality
and performance perspectives demonstrates that it meets the
requirements for realistic training activities, and that progression
management introduces only a low execution overhead.

Index Terms—cybersecurity training, hands-on training, sce-
nario progression management, cyber range

I. INTRODUCTION

Given that cybersecurity attacks are becoming an increas-

ingly severe threat in the modern always-connected society,

and that there is a widely-recognized lack of professionals with

adequate skills for fighting this menace, cybersecurity training

programs have proliferated significantly in recent years.

Cybersecurity training activities were initiated and are still

mainly conducted by military and government organizations,

taking place in environments called cyber ranges—a phrase

modeled on the term “shooting range”—which are network

environments created specifically for cyberspace security train-

ing purposes. Over the years, the span of available programs

has, however, increased significantly. Thus, training activi-

ties now range from free-to-attend competitions—often in

the form of Capture The Flag (CTF) events, such as the

DEFCON convention [1]—to thorough education and training

paid programs that cover a wide range of topics and include

various certifications, e.g., the SANS NetWars training courses

organized by the SANS Institute in the US [2].

Such public programs have to use different approaches to

training, as they address target groups with different age,

experience and motivation characteristics. On the one hand,

CTF events are mainly intended for young participants, and try

to attract and motivate them through gamification techniques.

This work was supported by JSPS KAKENHI Grant Number 17K0047.

Paid training courses like SANS NetWars are, on the other

hand, targeting professionals that need to acquire new skills

and improve existing ones in order to be able to deal with the

evolving security challenges at their workplace.
What existing training programs have in common is that the

barriers to entry are relatively high, either in terms of prereq-

uisite skills for CTF competitions—for which candidates need

to go through a series of qualifying events—or in monetary

terms, since training costs for paid programs are in the order

of thousands of US dollars per participant/course.
Various online training programs and web sites have

emerged as an attempt to lower the entry barrier to cyber-

security training, but due to logistic issues the realism of

such programs is relatively low, as cyber range management

is a difficult and resource-consuming task. Realism is also

an issue for many of the easier-to-access training programs

mentioned already. CTFs, for instance, can only address skills

limited to particular security issues (such as binary analysis,

cryptography, web exploits, etc.); thus, they cannot cover the

end-to-end procedures that need to be mastered in order to

successfully handle real-world security incidents.
Our research focuses on an architecture that makes possible

security training activities that combine attack, forensic and

defense training following realistic scenarios. The architecture

is built on top of an open-source cybersecurity training frame-

work, thus ensuring that the provided functionality is readily

available to interested parties at no cost. The novel element

of our architecture is represented by a set of mechanisms

for automating the progression management of the training

session, which enables the system to carry out various actions

in the cyber range depending on each trainee’s activity.
The main contributions of this paper are:

• Discuss general requirements for realistic cybersecurity

hands-on training activities.

• Introduce an architecture designed to meet these require-

ments via scenario progression management mechanisms.

• Present the implementation of the automated progression

management component, and its integration into the over-

all architecture.

The remainder of the paper is structured as follows. In

Section II we provide an overview of cybersecurity training,

and define requirements for realistic training activities. Then,

in Section III, we discuss the framework on top of which

our architecture is built, and the proposed architecture itself.

This is followed by a detailed presentation of the scenario

67

2019 IEEE European Symposium on Security and Privacy Workshops

© 2019, Razvan Beuran. Under license to IEEE.
DOI 10.1109/EuroSPW.2019.00014



progression management module that is the novel element of

this architecture (Section IV), and of the manner in which

the module is integrated with the framework (Section V). Our

system is evaluated from several perspectives in Section VI,

and a discussion of related work is given in Section VII. The

paper ends with conclusions and a list of references.

II. CYBERSECURITY TRAINING

In this section we discuss the overall characteristics of

cybersecurity training, and map these characteristics into re-

quirements for realistic training activities.

A. Training Activity Characteristics

As mentioned in [3], cybersecurity training activities have

three main components:

• Attack training: Let trainees experience vulnerability ex-

ploitation techniques, including activities that make use

of the same tools and methodologies employed by real

attackers, such as penetration testing.

• Forensic training: Provide a deeper understanding of the

mechanisms and effects of cybersecurity attacks through

various analysis techniques for system logs, network

traffic, and so on.

• Defense training: Focus on the design and implemen-

tation of vulnerability protection mechanisms aimed at

strengthening computer system security.

Most of the training programs available for the general

public focus only on one or at most two of these components.

We illustrate this issue below with some relevant examples

from the Japanese cybersecurity ecosystem:

a) SECCON (SECurity CONtest) [4]: CTF competition

held in Japan that serves as qualifying stage for the DEFCON

CTF. Given the use of the CTF format, SECCON exercises

can be categorized into either attack or forensic training, and

in most cases deal with a single issue, such as a certain

type of web vulnerability (e.g., SQL injection, path traversal,

and so on), a binary analysis technique (e.g., disassembly),

etc. Rankings and other gamification techniques are used to

motivate participants when competing with each other.

b) CYDER (CYber Defense Exercise with Recurrence)
[5]: Training program initiated in 2013 by the Ministry of

Internal Affairs and Communications in Japan, and currently

managed by the National Institute of Information and Commu-

nication Technologies. The program aims to improve the com-

petence in dealing with cyberattacks of IT and security-related

personnel of central and local government offices, independent

administrative agencies, as well as large companies. As such,

CYDER focuses mainly on forensic techniques, by tasking

participants to analyze log files, disk images, processes, etc.

CYDER also addresses necessary abilities related to incident

reporting and investigation outsourcing.

c) Hardening Project [6]: Two-day training contest orga-

nized by the Web Application Security (WAS) Forum in Japan

starting from 2012. Participants are divided by organizers into

teams before the competition, based on their self-declared

skills. The teams compete in terms of the security hardening

they can provide to a virtual e-commerce web site created for

the purpose of the event. The winning team is decided based

on the amount of virtual sales their web site generated during

the duration of the competition, used as an objective measure

of the overall effectiveness of the hardening. The focus of the

event is on maximizing the strength of the defensive cyberse-

curity techniques of the participants in realistic settings, with

attacks being conducted live by security experts who monitor

each team’s progress, including via cameras at the venue.

The fact that publicly-available training programs only focus

on limited roles for the participants, and have a reduced

realism—a situation that is not at all specific to Japan—is

caused by the following factors:

• Attack training requires actual environments to be pre-

pared in advance, which is a challenging task. Moreover,

even if such environments are made available, most often

there is no active defense of the target system, which

reduces the training to static situations (e.g., CTFs). We

note that active defense is sometimes “organized” by

pitting trainees against each other, as for blue-team vs.

red-team or king-of-the-hill type of contests.

• Forensic activities are the easiest to organize because, at

a minimum, one only has to supply participants with the

relevant files (e.g., for cryptography or binary analysis

exercises). For more complex tasks, such as log analysis,

actual environments could be created, but this kind of

training too is mainly limited to static situations.

• Defense training is the most difficult to organize, since

it requires active attack mechanisms the trainees must

defend their systems from. Typically, this is achieved

by employing king-of-the-hill scenarios, although real-

ism in this case is debatable, since the attackers are

themselves trainees, hence have potentially limited skills.

Only occasionally, as in the case of the Hardening Project

mentioned above, security experts are entrusted with this

task—an approach that doesn’t scale well.

B. Realistic Training Requirements

Given the above considerations, we propose the following

requirements that should be met in order to conduct training

activities that prepare participants for real-world situations:

1) The training activity should combine all three aspects of

cybersecurity training: attack, forensics, and defense.

2) The system should actively “respond” to trainees’ ac-

tions, e.g., via appropriate attacks for defense training,

and via suitable defense tactics for attack training.

3) Training instructors should be able to fully control the

hands-on activities, both in terms of training content and

scenario reproducibility.

4) There should be a low entry barrier for participating to

training, so as to improve its effectiveness and reach.

Requirement #1 is derived from the fact that the three

aspects of security training are interdependent, as shown

in Figure 1. Understanding attack techniques helps trainees

learn how to conduct forensics, and both of these help them

68



prepare better defense mechanisms, which in its turn leads

participants to develop improved attack techniques, and so

on. Consequently, only by mastering all the three security

aspects will participants be able to gain the necessary readiness

for handling in a pro-active, efficient and timely manner the

security incidents they will be confronted with in real life.

Fig. 1. Interdependence of the three cybersecurity training aspects.

Requirement #2 is justified by the fact that real systems are

never static, and one can never assume that a system under

attack is not defended, nor make assumptions about how a

defended system will be attacked. Forensic investigations too

may need to deal with systems in which logs change and

network traffic is flowing in real time, as would happen in

a regular production environment.

Requirement #3 is mainly related to the educational aspect

of the training, as instructors need to be able to control

the training content in order to oversee the learning process

and evaluate the effectiveness of the training. In addition,

scenario reproducibility is important for making sure that the

training is both repeatable and fair for all trainees—which also

contributes to its effectiveness.

Requirement #4 addresses the urgent need to increase the

number of security specialists. Although it can be considered

optional in a certain sense, our belief is that without giving

all those interested a chance to undertake training, it will be

difficult to compensate the lack of security professionals in

a reasonable time span, thus risking more and more serious

cyber attack consequences.

III. ARCHITECTURE OVERVIEW

In this section we provide an overview of the open-source

framework on top of which our architecture is built, and

introduce the proposed architecture for realistic cybersecurity

training that meets the requirements discussed above.

A. CyTrONE Training Framework

CyTrONE is an integrated cybersecurity training framework

developed by Japan Advanced Institute of Science and Tech-

nology (JAIST), and was publicly released as open source

in 2017 [7]. We consider that this framework provides all

the basic functionality needed for security training, therefore

we decided to build our architecture on top of it. The most

important features of CyTrONE are (cf. Figure 2):

• Use text-based descriptions for the training content, so

that it can be easily updated and improved by instructors;

the content descriptions are stored in a training database

together with other necessary resources for creating the

training environment.

• Manage the entire training activity, including in terms of

displaying training content to trainees and creating the

corresponding cyber range; for this purpose, the frame-

work employs two support tools, CyLMS and CyRIS.

• Make training content available to participants through

the integration with a Learning Management System

(LMS), mediated via the module called CyLMS (Cyber-

security Training Support for LMS).

• Create the training environment associated with the above

content using the resources stored in the database by

employing the module called CyRIS (Cyber Range In-

stantiation System).

• Trainees can then log in to the LMS for retrieving details

about the training activity, and access the corresponding

cyber range to address the questions provided.

The above functionality is sufficient for basic training activi-

ties, such as forensics or simple attack training. However, since

no security-related component of CyTrONE is active during

the actual hands-on session, more complex attack/defense

training is only possible through role playing by the various

participants. As we have discussed already, this approach is not

ideal in terms of the quality of the training, nor reproducible

in terms of action sequence and timing.

To address these limitations, we propose to extend the

CyTrONE architecture by using an additional module that

actively manages the progression of the training activity by

interacting with the existing framework components.

B. Proposed Architecture

The architecture that we propose as an extension of the

CyTrONE framework is shown in Figure 2. The novel element

is the scenario progression management module, nicknamed

CyPROM, which integrates with CyTrONE and the other

framework elements in order to manage the manner in which

the training scenario advances depending on the actions and

progress of the participants.

Fig. 2. Proposed architecture for realistic cybersecurity training via scenario
progress management mechanisms.

The interactions between CyPROM and the other elements

of the training environment can be summarized as follows:

a) CyTrONE: As overall manager of the training activity,

the CyTrONE framework is in charge of starting CyPROM

once the training session preparation is finished, more specifi-

69



cally after the training content is registered into the LMS, and

the corresponding cyber range is created.

b) Cyber Range: Trainees access the cyber range during

the hands-on activity, and the main function of CyPROM is to

put into practice the training scenario by conducting various

actions within the cyber range, while adjusting the scenario

progression according to the effects of trainees’ actions.

c) LMS: CyPROM is aware of the scenario progression

for each participant, hence, it can provide additional informa-

tion to them by employing the LMS as a user interface, e.g.,

to dynamically display messages regarding the scenario state,

result of actions, etc. CyPROM can also get feedback from

participants via the LMS, for instance by means of buttons,

so as to allow for interactive training sessions.

IV. CYPROM DESIGN & IMPLEMENTATION

In this section we discuss the overall design of CyPROM,

and provide implementation details for each of its modules.

Please refer to Figure 3 for an architecture overview. Note

that a defense training prototype of CyPROM was presented

in [8] (in Japanese) under the name DeTMan; the present paper

introduces the generalized version of the tool and its internal

modules, as well as the integration with CyTrONE.

Fig. 3. Design of the CyPROM scenario progression management module.

A. Management Module

The management module is in charge of the basic function-

ality of CyPROM, such as reading and validating the input

files, initializing the database, etc. Its most important function

is to start, in parallel, one instance of the scenario driver mod-

ule for each participant in the training. The parallel execution

of the driver processes ensures that scenario progression takes

place independently, according to the actions of each trainee

and the state of their environment.

B. Training Scenario

The main input of the CyPROM management module is the

actual training scenario. We conceived the training scenario as

a set of steps; each step contains information about the action

to be executed at that step, as well as various options regarding

that action: what is the target machine, action-specific param-

eters, potential triggers for the action (e.g., timers), and so

on. Each scenario step also includes information regarding

execution branching, so that the scenario driver can decide

what step should be executed next.

The training scenario description is provided as a YAML

file, similar to how CyTrONE handles the training content

description for the content to be displayed to trainees via the

LMS, and the cyber range description needed to create the

cyber range. YAML is a text-based representation that is both

human and machine readable [9], therefore we consider it very

suitable for our purposes, as it allows instructors to easily

specify training scenarios via a regular text editor.

The structure of a training scenario file starts with the

keyword scenario, followed by a list of step blocks. Each

step uses specific keywords to denote its properties, such as

name for the step label, target for the id of the machine

that is to be the targeted by the action included in the current

step, an optional trigger block for defining details about the

action trigger, an action block to define the action details,

and two branching elements, success and failure, for

defining the labels of the steps that are to be taken in case

action execution is successful or fails, respectively.

Due to space limitations we cannot provide here the full

details on the scenario file syntax, but we will illustrate its use

with an example. In Figure 4 we show the flowchart for a basic

scenario that includes two attacks on a web site: (i) a command

injection based exploit followed by an SSH dictionary attack

and remote command execution; (ii) an exploit of a PHP

authentication bypass vulnerability in WordPress v4.7.0 that is

used for remote command execution. If the first attack steps are

successful, that attack continues, otherwise the second attack

is employed. The attacks are repeated until both of them fail—

meaning that the trainee’s defense tactic was valid, which is

the condition for the training to finish.

Fig. 4. Execution flowchart of a training scenario example.

70



The corresponding scenario description that needs to be

created in order to represent this scenario for use in CyPROM

is shown in Figure 5. Note how the target and trigger are set for

the first step, labeled “OS command injection”, followed by

the configuration of the cmd_injection action. On failure,

the step “WordPress v4.7.0 attack” will be executed, otherwise

the scenario continues automatically to the next step, “SSH

dictionary attack”, and so on.

scenario:
- step: OS command injection

target: web-server1
trigger:

module: timer
delay: 5

action:
module: cmd_injection
path: /injection.php?cmd=<command>
command: cat /etc/passwd

failure: WordPress v4.7.0 attack
- step: SSH dictionary attack

target: web-server1
action:

module: ssh_dict_attack
passwd: True

failure: WordPress v4.7.0 attack
- step: Command execution

target: web-server1
action:

module: ssh_cmd_exec
shell:

- touch /var/www/html/wordpress/
index.html

- echo "Hacked by CyPROM" > /var/www/
html/wordpress/index.html

success: REPEAT
- step: WordPress v4.7.0 attack

target: web-server1
action:

module: php_auth_bypass
content: Hacked by CyPROM

success: REPEAT
failure: FINISH

Fig. 5. CyPROM scenario description corresponding to the example flowchart.

C. Target Information

In order for it to be a generic representation, training

scenario description doesn’t contain network details about the

action targets, which are represented by labels. Thus, network

information must be provided each time CyPROM is executed,

depending on the properties of the actual environment.

For this purpose, we use a separate training session depen-

dent file that contains a section for each trainee or team by

using the typical square bracket syntax of configuration files.

Each participant section includes a sequence of target machine

labels and the actual IP address those machines have in the

training environment associated to that trainee. In Figure 6

we show an example of such a target information file. The

sample file contains actual network details for an activity with

three participants; two targets are defined per participant, in

this case two web servers.

[Trainee #1]
web-server1 = 10.1.1.1
web-server2 = 10.1.1.2

[Trainee #2]
web-server1 = 10.2.1.1
web-server2 = 10.2.1.2

[Trainee #3]
web-server1 = 10.3.1.1
web-server2 = 10.3.1.2

Fig. 6. Sample target information file.

After the management module verifies both the training

scenario and target information files, it creates a number of

scenario driver instances equal to the number of participants

specified in the latter. Each scenario driver then receives the

name of the training scenario file, and network details about

targets that apply to that particular instance.

We note that CyPROM also supports the CyRIS environ-

ment details output format to define the target information,

as it will be explained in Section V-B. However, in order to

ensure that CyPROM is not overly dependent on CyRIS, we

have also introduced the specific format presented here.

D. Scenario Driver

The core functionality of CyPROM is provided via the sce-

nario driver module, which uses the trigger-action-branching

mechanism illustrated in Figure 7. This mechanism is applied

repeatedly to decide when an action is to be executed, and what

scenario step should be executed next. The scenario driver

can also check the state of some of the services running on

the target machines, and only run triggers and actions when

those services are available. This is done to avoid undesired

situations in which, for instance, an attack is performed while

the service is not yet running because the machine has just

been rebooted. In case the service is found not to be running,

execution is paused and the check is repeated periodically.

Fig. 7. The scenario progression mechanism at the core of CyPROM.

The workflow of the scenario driver is as follows. Initially,

the step that is located top-most in the scenario description

file is executed. If the step includes a trigger, such as a timer,

71



then the module waits for it to complete before executing the

action specified in that step. Then, depending on the outcome

of the action, the next step to be performed is selected from the

other steps in the scenario via the branching mechanism, and

the processing flow continues. Details about the three main

elements of the workflow follow.

1) Triggers: CyPROM makes use of triggers to allow

scenario progression to be delayed or interrupted, based on the

needs and specificities for each type of training. Consequently,

the two trigger modules made available so far are:

• timer: Delay action execution by a predefined amount

of time—for example, to allow trainees to get their de-

fense mechanisms ready—before carrying out an attack.

• signal: Prevent action execution until a notification is

received; for this purpose, an HTTP socket is opened by

the scenario driver, which listens on it until an appropriate

message is received.

Timers allow actions to be executed at certain moments,

in what we call time-driven training. On the other hand,

signals make possible a more generic type of training that we

name event-driven training. These two types of triggers make

possible realistic activities in a wide range of conditions.

We note that the signal trigger is currently used to allow

trainees to control scenario execution via buttons in a UI, but it

is generic enough to make it possible to even employ external

tools to unblock scenario progression.

2) Actions: Each scenario step contains an action, and

creators need to specify the module to be executed for that

action. We consider that these modules form collectively an

“action library” that can be used as base for various scenarios.

We have already implemented several such modules, and more

actions are planned for the near future. Below are some

examples of already-available modules:

• message, hint, question: UI-related modules that

can be used to send messages or hints to trainees, and

even ask for their input.

• metasploit: Interface for employing the Metasploit

[10] penetration testing framework to conduct attacks on

the target of the current step.

• cmd_injection: Perform command injection tasks on

a given target web server.

• ssh_dict_attack: Conduct a simple dictionary at-

tack on the SSH service running on a given target.

• ssh_cmd_exec: Remotely execute a command on a

target machine via the SSH service.

• php_auth_bypass: Perform an attack that exploits

a PHP authentication bypass vulnerability specific to

WordPress v4.7.0 to alter the home page of a web site.

For each action, the user can specify some arguments

specific to that action, such as the text to be sent by the module

message. Moreover, in addition to returning the exit status

of the underlying command, modules can also return specific

data that becomes available to the next command. For instance,

ssh_dict_attack will return a list of user names and

passwords for which the login to a given target was successful,

which could be used by the ssh_cmd_exec module to log

in and execute a command on that target machine.

Actions executed by the scenario drivers target remotely the

machines in the cyber range environment associated to each

trainee, according to the network details provided in the target

information file. No agent-like module is running on those

machines, thus preventing trainees to interfere with scenario

progression, either willingly or by mistake.

3) Branching: The scenario driver decides what step to

execute next depending on whether the result of the current

action was success or failure. This makes it easy for creators to

design scenarios using flowcharts with two possible outcomes

for each decision block. The reasoning behind such a binary

decision becomes clear if we consider defense training. When

an attack performed by CyPROM succeeds, it means that the

trainees’ defense tactic was not correct, and the system can

continue with the next steps in that attack chain. However, if

the attack fails, it means that some defense mechanisms are

in place, and a completely different attack sequence must be

used (or scenario execution can end).

A syntax extension to allow for more than two branches

per decision block—for instance, by using program exit codes

to make the decision—is straightforward, but the increased

complexity may make scenarios difficult to design.

Each scenario step contains information about what step

should be executed in case the included action was successful

or failed by using the keywords success and failure,

respectively. If an action return status occurs but the corre-

sponding keyword is missing, then the subsequent step in the

scenario file will be executed. Two special step labels are

used to control scenario execution: (i) REPEAT, to indicate

that scenario execution should be repeated from the beginning

(e.g., to conduct again the same attacks in case a trainee’s

defense tactics failed), and (ii) FINISH, to specify that

scenario execution should end, no matter what other steps

appear in the scenario file.

E. Database

The database used by CyPROM serves to store data needed

for several purposes, as follows: (i) UI interaction information;

(ii) configuration settings; (iii) log of the actions performed

by each scenario driver instance; (iv) information about the

current step in a scenario; (v) service check information.

The database is initialized by the management module, and

its tables are read and updated by the scenario driver instances

and the API module. Our implementation uses the SQLite

relational database management system for this purposes.

F. API

The API server is an optional module of CyPROM that

makes it easy for the system to interact with external compo-

nents. Currently, this module is mainly used to communicate

with the user interface, in particular the LMS, in order to

provide feedback to trainees via messages and hints, and to

get input from them via buttons or input forms.

72



V. FRAMEWORK INTEGRATION

In this section we discuss the integration of CyPROM with

the architecture presented in Section III-B. Please refer to

Figure 3 for an illustration of the relations between internal

CyPROM modules and framework components.

A. Interaction with CyTrONE

Some extensions of the CyTrONE source code were neces-

sary in order to integrate CyPROM with the framework. The

modifications are as follows:

1) Once CyTrONE confirms that the training content was

registered into the LMS and the cyber range was created,

it also starts CyPROM.

2) Upon starting CyPROM, CyTrONE provides the training

scenario description for that particular training session

as parameter; this supplementary description file must be

registered in advance in the CyTrONE training database,

and minor modifications were needed to add support for

such descriptions into the database.

3) Another parameter provided to CyPROM by CyTrONE

is a file containing the network details for the cyber

range created by CyRIS, such as IP addresses for the

VMs. This file was already generated by CyRIS, and

only needs to be made available to CyPROM at start.

4) Once CyPROM is started, its execution is indepen-

dent from that of CyTrONE, and continues until the

training scenario ends; optionally, CyPROM can inform

CyTrONE about the completion of the scenario.

B. Cyber Range Access

During scenario progression, CyPROM needs to access the

target machines in the cyber range environment for each par-

ticipating trainee. In addition to the target information format

presented in Section IV-C, CyPROM is also able to take as

input the cyber range description file generated automatically

by CyRIS after the range is created, as mentioned above. The

location of this file is provided to CyPROM by CyTrONE,

which also manages CyRIS execution, and CyPROM will pick

the target information it needs from it.

The condition for this integration to work as presented here

is to make sure that the guest names in CyRIS match the target

labels in the CyPROM training scenario. For CyRIS, the guest

names are included in the cyber range description file used to

create the cyber range. The match can be realized simply by

using the same name as target labels in the CyPROM training

scenario description. The only difference is that CyRIS does

not differentiate between multiple identical guests, whereas

CyPROM has to make the difference; hence, a guest index

needs to be added at the end of the target label. Thus, for

a guest type named desktop in CyRIS, the target labels

desktop1 and desktop2 must be used in CyPROM,

assuming that there are two such guests in the cyber range.

We note that CyPROM only includes mechanisms for

accessing the targets externally, without actually logging in

to them. For defense training this is enough, since CyPROM

only has to attempt attacks on those targets. For attack training,

however, scenario actions may include tasks that are to be

executed directly on the target hosts. The solution that we

currently use for this purpose is to have special accounts

dedicated to training purposes on such target machines; these

accounts are not supposed to be modified by trainees, and

allow CyPROM to use remote execution techniques (e.g., via

SSH) to carry out actions on those machines.

C. LMS / Web UI

We use an HTTP-based API server to handle user interface

operations in CyPROM, as discussed in Section IV-F, which

is a flexible solution allowing us to integrate the scenario

progression module with various other tools.

The LMS integration is currently implemented for Moo-

dle [11]—the main LMS supported by CyTrONE—in a

lightweight manner, as follows:

• The trigger mechanism in CyPROM, in particular the

signal trigger mentioned in Section IV-D, is used to

allow trainees to control the training session interactively

via buttons, for instance, to start and resume it.

• Another integrated functionality is to display messages

via the UI-related actions mentioned in the same section.

This makes it possible to inform trainees of the scenario

progression, give them hints, get answers to questions.

Figure 8 shows a screenshot of a training session as viewed

via Moodle. The training session page has three tabs; the ones

named “STATE” and “LOG” can be used to display public

information, such as the scenario state and action logs for all

trainees. The tab named “BOARD”, which is pictured, is a

message board page customized for each participant, showing

information which depends on the scenario progression for

that participant. As examples, the screenshot includes a status

report about the attack outcome for a given trainee, and a

question regarding the targeted vulnerability.

In the future we plan a more tight integration with Moodle

via the PHP plugin functionality that this LMS supports.

CyPROM could interact with such a custom plugin to provide

specific security training functionality, and allow for interac-

tive training sessions in a more flexible manner.

In addition to the LMS integration, we have also imple-

mented a simple web UI that can be used instead of Moodle

for a lighter installation, in case the full LMS features are not

required. The functionality in this case includes displaying the

state, log and message board pages, and can be used to conduct

CTF-style training, for example.

VI. EVALUATION

In this section we evaluate the proposed architecture from

the point of view of the provided functionality, and assess the

execution performance of the scenario progression module.

A. Functionality Assessment

We summarize in Table I the features of several free cyber-

security training systems and programs that are representative

examples of current training approaches. For comparison pur-

poses, our proposed architecture that integrates the CyPROM

73



Fig. 8. Screenshot of the scenario progression user interface displayed within
the Moodle LMS.

module with CyTrONE is denoted simply by “CyPROM”, as

we also compare it to the original CyTrONE framework.

The table is divided into two main sections, with the upper

half discussing features related to attack, forensic and defense

training. Thus, our proposed architecture can be used for all

training aspects, and includes dynamic environment features,

such as real-time changes and automatic attack/defense, in this

way providing a clear advantage over the other systems.

The second half of the table addresses some more general

features, such as training realism, flexibility, scalability, and

so on. Due to the training characteristics discussed above, our

architecture allows for realistic training, although programs

such as CYDER and Hardening—in which staff help via role

playing in conducting the training—are perhaps more realistic.

Our system also allows for flexibility and interactivity when

conducting the training, and due to its open-source nature the

architecture is both scalable and extensible regarding the train-

ing environment. Furthermore, the automation mechanisms

allow for control and reproducibility of the actions that take

place during the training, making our system superior overall

in comparison with existing approaches.

We also mention participation opportunities and educational

aspects as built-in features of our proposed architecture that

make possible unattended training activities at large scale,

another important advantage compared to other systems.

B. Requirement Evaluation

The detailed feature assessment presented in the previous

section will be used to determine how each of the evaluated

systems addresses the requirements we formulated in Section

II-B. This comparison is summarized in Table II, where again

we denote our architecture by CyPROM.

We note that our proposed architecture is the only one

that supports all three types of security training. As for

reacting to trainees’ activities, we emphasize that CYDER and

Hardening can only achieve this by having staff and white-hat

hackers play the active roles, whereas our architecture makes

it possible to automate part of this process.

Regarding control and reproducibility, SECCON contests

are done without any instructor involvement, hence they are

controlled and reproducible, similar to CyTrONE; none of

the other systems though extend these features to scenario

actions, like attack and defense tactics, as it is done in our

architecture. Finally, all systems have a low-to-medium barrier

to entry, except for CYDER, which is dedicated to government

employees and such. However, the only open-source systems

that truly provide anytime/anywhere training opportunities are

CyTrONE and our derived architecture.

C. Performance Assessment

The overall performance of CyTrONE was already analyzed

in [12], therefore we focus here on the novel element in our

proposed architecture, CyPROM. This component is relatively

simple in terms of implementation, being composed mainly of

text processing, command execution, and database operation

tasks. We used a Supermicro SuperServer 5018D-FN4T server

having an 8-core Intel Xeon CPU @ 2.10 GHz and 128

GB memory to assess CyPROM performance, with all the

necessary tools and the cyber range being hosted on it.

In Table III we summarize the results of our measurements,

calculated as averages over three experiment runs. The most

time-consuming tasks are related to initialization, as shown

in the upper part of the table. For the management module,

this includes the time to initialize the database, process the

input files (training scenario and target information), start the

scenario driver processes, etc. For the driver modules, this

overhead represents mainly the time to prepare the database

for running the scenario. Note that these two initialization

tasks only have to be carried out once in the beginning of

the execution of CyPROM, and we consider that the total

initialization overhead of about 83 ms is acceptably small.

The lower part of the table indicates the overhead for the

tasks that are executed repeatedly for each step in a scenario,

such as initialization, service check, trigger/action/branching

execution, and database accesses. The total service check

duration of under 5 ms shown in the table represents the case

in which the checked service is running, since a timeout delay

occurs if the service is not running (this delay is not very

important, as in that case we pause execution anyway). The

other larger overhead, again below 5 ms, was measured for the

database access operations needed to update the tables related

to scenario progression. The total overhead per scenario step

is of about 10 ms, generally smaller than the actual execution

time of actions. Hence, we conclude that the overhead intro-

duced by the actual operation of CyPROM is negligible, and

has no significant influence on scenario execution.

D. Discussion

Our architecture is mainly intended for stand-alone use as

a cybersecurity training system, but other applications can be

74



TABLE I
FUNCTIONALITY ASSESSMENT

Program/System Features SECCON CYDER Hardening CyTrONE CyPROM
Attack training capability Yes No No No Yes
Automatic defense support No No No No Yes
Forensic training capability Yes Yes No Yes Yes
Real-time changes support No No Yes No Yes
Defense training capability No No Yes No Yes
Automatic attack support No No No No Yes

Training realism Low High High Low Medium
Flexibility & interactivity High Low Medium Low High
Scalability & extensibility High Medium Low High High
Control & reproducibility High High Medium Low High
Participation opportunities Medium Low Medium High High
Educational aspects Medium High Low Medium High

TABLE II
REQUIREMENT EVALUATION

No. Realistic Training Requirements SECCON CYDER Hardening CyTrONE CyPROM
#1 Support attack/forensics/defense ©
#2 Respond to trainees’ actions © © ©
#3 Provide control & reproducibility © © ©
#4 Ensure a low barrier to entry © © © ©

TABLE III
PERFORMANCE ASSESSMENT

System Function Overhead [ms]

Management module initialization 64.99
Scenario driver initialization 17.97

Step initialization 0.05
Service check (total, on success) 4.55
Trigger execution 0.03
Action execution 0.06
Branching decision 0.42
Database access 4.63

imagined, especially when considering the scenario progres-

sion module. For instance, one could implement scenarios

that follow best-practice penetration test techniques, both to

automate the procedure, but also for educational purposes.

Furthermore, we consider extending the functionality of the

API, so that the training scenario can be modified dynamically,

for instance, with steps being added and/or branching decisions

being made externally, in real time. In this way, advanced

technologies could be integrated, such as artificial intelligence,

so that the enacted scenarios become more complex than what

can be expressed statically in input files.

Although we have not done it yet, CyPROM could also

be used for other purposes of realistic training environment

emulation, such as for traffic generation. Thus, it would

become possible to create background traffic in the cyber

range as needed, so that participants perform the training in

conditions similar to an actual live network environment.

VII. RELATED WORK

Related work for our paper can be split into three main

categories, as follows.

1) Training programs: In addition to SECCON, CYDER

and Hardening Project that were mentioned in Section II-A,

there are several other training programs in Japan that are

worth mentioning. Thus, Secure Eggs, offered by Nomura

Research Institute (NRI) SecureTechnologies [13], is a suite

of paid basic and specialized courses that take place over one

or two days. Despite its technical content, the short duration

makes it that Secure Eggs does not represent a thorough

education and training program.

Another program worth mentioning in Japan is Micro

Hardening [14], a stripped-down version of the Hardening

competition. In Micro Hardening, the trainees’ environments

are repeatedly attacked automatically in exactly the same

manner, in particular 3 or 4 times at 45 minute intervals. The

idea is that trainees are thus able to learn from their mistakes,

but this is a simple time-driven approach in which the same

attack steps are repeated blindly, without considering trainees’

activity. In contrast, our system takes this factor into account

for action selection and execution timing.

Globally, SANS Institute that we have mentioned already,

in addition to its on-site course suite, also provides an online

course named “NetWars Continuous Online Skill-Sharpening

Range” [15]. While this course is relatively thorough, barrier

to entry is high because of its high cost; moreover, the only

dynamic training provided is in king-of-the-hill form.

2) Training systems: Facebook CTF is an open-source

platform that supports quiz, flag and king-of-the-hill types of

CTF [16]. This platform does not provide any assistance with

cyber range setup in the manner of CyTrONE, neither uses

any scenario progression as we introduced via CyPROM.

In the academic world, Raj et al. propose the use of appli-

cation containers as a solution for improving the scalability

75



of CTF competitions [17]. Their work focuses on deployment

only, and doesn’t address issues such as content creation and

management, or training scenario progression.

There are also commercial systems for security training,

such as the Boeing Cyber-Range-in-a-Box (CRIAB) [18];

however, such systems use proprietary technologies that create

a vendor lock-in both in terms of software and hardware. Our

open-source solution, on the other hand, allows to freely create

training content, for instance by designing custom scenarios

that best suit a certain target audience.

3) Management tools: Although not directly related to

security training, there are tools used to configure network sys-

tems similarly to how CyTrONE is operating. We can mention

here cloud controllers, such as OpenStack [19], and some more

generic management tools, such as Ansible [20] and Chef [21].

Although our architecture shares some environment creation

features with them, the overall training functionality, including

the scenario progression mechanisms described in this paper

are an important differentiator.

VIII. CONCLUSION

In this paper we have presented an architecture for cyber-

security training that makes it possible to conduct realistic

activities that combine attack, forensic and defense training in

live cyber range environments. The architecture is built on top

of the CyTrONE cybersecurity training framework, and was

conceived as a solution to meet the training requirements that

we have defined in the beginning of the paper.

The key new element of the proposed architecture is the sce-

nario progression management module named CyPROM. This

module was designed to take a training scenario description as

input, and execute the steps in the scenario independently for

each participant. Each step contains an action to be performed,

and additional information about this action, such as when it

should be triggered, and what step should be executed next

depending on the outcome of the action; step execution is

done according to a trigger-action-branching mechanism.

CyPROM was integrated with CyTrONE and the other

training environment components, the Moodle LMS and the

cyber range used for hands-on practice. We have evaluated the

extended architecture from a functionality point of view, and

demonstrated that it meets the defined training requirements,

while providing significant advantages with respect to existing

solutions. Thus, the proposed architecture is the only system to

support all types of training in a controllable and reproducible

way; furthermore, scenario progression is carried out in a

manner that takes into account trainees’ activity. We have also

conducted a performance assessment of CyPROM, showing

that the new module introduces an initial 83 ms overhead,

and a 10 ms overhead per scenario step, both having only a

minimal impact on overall execution performance.

As future work, we consider extending the existing

CyPROM API, so as to make it possible to modify the training

scenario dynamically. This would allow CyPROM to interface

with external modules, such as AI technologies, to decide

the particular actions that should be taken at any given time,

depending on the current state of the scenario and associated

training environment. The required actions are to be selected

from an action library that will also be made available as

open source on the GitHub site of CROND [7], together with

CyPROM, CyTrONE and so on.

REFERENCES

[1] “DEF CON Hacker Convention,” https://www.defcon.org/.
[2] SANS Institute, “SANS NetWars Training Courses,”

https://www.sans.org/netwars/.
[3] R. Beuran, K. Chinen, Y. Tan, and Y. Shinoda, “Towards Effective

Cybersecurity Education and Training,” Japan Advanced Institute of
Science and Technology (JAIST), Tech. Rep. IS-RR-2016-003, October
2016.

[4] Japan Network Security Association (JNSA), “Security Contest (SEC-
CON),” (in Japanese), http://seccon.jp/.

[5] Ministry of Internal Affairs and Communications, Japan, “Cyber De-
fense Exercise with Recurrence (CYDER) Training Program Press
Release,” http://www.soumu.go.jp/main sosiki/joho tsusin/eng/
Releases/Telecommunications/130925 02.html.

[6] Web Application Security Forum, “Hardening Project,” (in Japanese),
https://wasforum.jp/hardening-project/.

[7] Cyber Range Organization and Design (CROND), “GitHub Reposito-
ries,” https://github.com/crond-jaist.

[8] T. Inoue and R. Beuran, “Proposal of scenario progress automation
system for defense exercises in cybersecurity training (in Japanese),”
in Internet Conference (IC 2018), 2018.

[9] C. Evans, “The Official YAML Website,” 2017, http://www.yaml.org/.
[10] Rapid7 LLC, “Metasploit: Penetration Testing Software,” 2017,

https://www.metasploit.com/.
[11] The Moodle Project, “Moodle – Open-source Learning Platform,” 2017,

https://moodle.org/.
[12] R. Beuran, C. Pham, D. Tang, K. Chinen, Y. Tan, and Y. Shin-

oda, “CyTrONE: An Integrated Cybersecurity Training Framework,” in
Proceedings of the International Conference on Information Systems
Security and Privacy (ICISSP 2017), 2017, pp. 157–166.

[13] Nomura Research Institute (NRI) Secure Technologies, “Secure
Eggs Training Program,” (in Japanese), http://www.nri-
secure.co.jp/service/learning/secureeggs.html.

[14] H. Kawaguchi (organizer), “Micro Hardening,” (in Japanese),
https://microhardening.connpass.com/.

[15] SANS Institute, “NetWars Continuous Online Skill-Sharpening Range,”
https://www.sans.org/netwars/continuous.

[16] Facebook, Inc., “Platform to host Capture the Flag competitions,” 2017,
https://github.com/facebook/fbctf/.

[17] A. S. Raj, B. Alangot, S. Prabhu, and K. Achuthan, “Scalable and
Lightweight CTF Infrastructures Using Application Containers,” in
Proceedings of the 2016 USENIX Workshop on Advances in Security
Education (ASE ’16), 2016.

[18] Boeing, Inc., “Cybersecurity & Information Management,”
2017, http://www.boeing.com/defense/cybersecurity-information-
management/.

[19] The OpenStack Foundation, “OpenStack – Open Source Cloud Com-
puting Software,” 2017, https://www.openstack.org/.

[20] Red Hat, Inc., “Ansible is Simple IT Automation,” 2017,
https://www.ansible.com/.

[21] Chef Software, Inc., “Chef – Automate Your Infrastructure,” 2017,
https://www.chef.io/chef/.

76


