
SecureWeaver: Intent-Driven Secure System Designer
Sian En Ooi

Razvan Beuran

Yasuo Tan

sianen.ooi@jaist.ac.jp

Japan Advanced Institute of Science and Technology

Nomi, Ishikawa, Japan

Takayuki Kuroda

Takuya Kuwahara

Norihito Fujita

NEC Corporation

Minato-ku, Tokyo, Japan

ABSTRACT
Design and management of networked systems, such as Informa-

tion Technology/Network (IT/NW) or IoT systems, are inherently

complex. Moreover, the need to adhere to security requirements

adds even more complexity, as the manual audit and security miti-

gation of system design are time, skill, and labour intensive.

In this paper, we present SecureWeaver, a secure system designer

that generates a system design which meets functional, quantita-

tive and security service requirements. SecureWeaver is based on

the intent-based designer for IT/NW services named Weaver, and

security support was implemented by improving theWeaver design

stage via a threat mitigation knowledge base, specific refinement

rules, and a security verification mechanism. A case study on video

surveillance service requirements is used to illustrate the security

threats and their mitigation during the automatic design process.

Our results show that SecureWeaver is able to mitigate and verify

the solutions from a security perspective without incurring a sig-

nificant overhead: in our experiments, average overhead is 0.04%

for systems with more than 100 elements. We also present a feature

comparison with three other related systems that emphasizes the

practical advantages of SecureWeaver.

CCS CONCEPTS
• Security and privacy→ Security requirements; • Networks
→ Network management; • Social and professional topics →
Systems analysis and design.

KEYWORDS
networked system, secure system design, automated design, design

space exploration, MITRE ATT&CK

ACM Reference Format:
Sian En Ooi, Razvan Beuran, Yasuo Tan, Takayuki Kuroda, Takuya Kuwa-

hara, and Norihito Fujita. 2022. SecureWeaver: Intent-Driven Secure System

Designer. In Proceedings of the 2022 ACM Workshop on Secure and Trustwor-
thy Cyber-Physical Systems (SaT-CPS ’22), April 27, 2022, Baltimore, MD, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3510547.3517923

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9229-7/22/04. . . $15.00

https://doi.org/10.1145/3510547.3517923

1 INTRODUCTION
Deploying new services andmanaging information technology/ net-

work (IT/NW) infrastructures are complex tasks, and the concepts

of Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS)

have been introduced as a way to address these issues. However,

there is a “communication” gap between service providers and

enterprise customers, where the customers convey their needs in

service-level requirement descriptions, whereas service providers

primarily deal with resource-level requirements [20]. Translation

between these types of requirements requires expert knowledge,

as the service provider has to consider and prepare the IT/NW

components and integrate them appropriately to meet customer’s

requirements. Approaches such as intent-based [6, 9, 14, 16, 20],

template-based [2, 3, 13] solutions have been developed to address

the issue.

Nevertheless, a system designer must not only meet the quali-

tative and quantitative requirements, but also verify whether the

resulting system design is secure. The “secure by design” concept

refers to a system that has been designed to be fundamentally se-

cure. Some works, such as [8, 15], explore the idea of secure Design

Space Exploration (DSE) as an integral part of the secure develop-

ment process. This helps streamline the development and verify

any potential security issues in the design stages, whereas a con-

ventional non-automated design approach that involves a complete

system design would require manual security audits and mitigation.

Similarly, the phenomenal growth of the Internet of Things (IoT)

engenders the need for the fast and efficient deployment of IoT

systems and cloud services. Since both the IT/NW and IoT domains

involve networked systems that are made of heterogeneous com-

ponents, we envisioned a secure system designer that is able to

automatically design networked systems that are secure, regardless

of their specific application domains.

While there are other automatic system design approaches [14,

16, 20] that can be used to design a system, they are usually lim-

ited to their specific domain, with selected cases for either archi-

tecture or parameter level design. Components, relationships and

constraints in a topology graph are specified in architecture level

design; in parameter level design, the parameters and fine tuning

are specified according to the given topology. Works in parameter

level design such as [20] have high flexibility compared to their

architectural level design counterparts. However, these are incom-

patible with our use case, as we focus on architecture level design

for IT/NW and IoT services.

Our work is based on Weaver [10, 11], an intent-based system

designer for IT/NW services. Weaver builds on the DSE approach

for designing a concrete system design by adding support for an

Session 3: Miscellaneous Topics SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA

107

https://doi.org/10.1145/3510547.3517923
https://doi.org/10.1145/3510547.3517923

abstract service requirement as input, thus bridging the gap be-

tween providers and customers mentioned above. This makes it

possible for Weaver to address architecture level design in a flexible

and efficient manner. However, while Weaver can solve qualitative

and quantitative constraints, it lacks a process to ensure that the

designed system is secure.

We extended the existing Weaver to create SecureWeaver, a

secure system designer that generates a system design which meets

not only functionality requirements, but also security requirements.

The core contributions of this paper are as follows:

• Proposed to employ the MITRE ATT&CK taxonomy to build

the threat mitigation knowledge base used in SecureWeaver

• Extended Weaver to support logical and conceptual connec-

tions and added security-specific refinement rules

• Implemented a security verification mechanism to validate

that all the threats present in the service requirement are

mitigated in the generated system design

The remainder of the paper is organized as follows. Section

2 introduces research related to intent-based and secure system

design. An overview of SecureWeaver is presented in Section 3.

A brief description of Weaver is given in Section 4, followed by

the SecureWeaver extension details in Section 5. The evaluation of

SecureWeaver is presented in Section 6 from security verification,

feature comparison and performance perspectives. The paper ends

with a conclusion and references.

2 RELATEDWORK
In this section, we discuss about the works related to SecureWeaver

and their differences. The work in [9] is an intent-based security

service automation for cloud services, IBCS (Intent-Based Cloud

Services for Security Applications). It translates the user’s network

security intents into low-level security policies by extracting the

data via Deterministic Finite Automata (DFA) method, maps the

extracted data to the appropriate Network Security Function (NSF)

as the low-level data, and generates the security policies using

Context-Free Grammar (CFG) to be applied to the network inter-

faces. IBCS requires a ready cloud environment along with full

knowledge of the target infrastructure security capabilities to be

able to generate its security policy, whereas SecureWeaver designs

from ground up a secure system that satisfies the given intent.

The work in [6] is an intent-based network management frame-

work using natural language. It accepts natural language intent

from an operator and extracts the required information using ma-

chine learning algorithm before passing the required information

to an intent assembly module that generates concrete network con-

figuration commands that meets the network management intent.

This is an intent-based network management of existing network

infrastructure, which does not meet our goal of automatically de-

signing a secure system.

The work in [18] is an intent-based Network Function Virtu-

alization (NFV) designer focusing on modelling and computing

virtual network functions (VNF) chains to meet the quantitative

and non-functional requirements such as security. In its quantita-

tive computation, it requires definitions of abstract weights for the

non-functional requirement, which may be hard to assign. These

quantitative scores of VNF are clustered to their respective levels to

Service

Requirement Security

Knowledge

SECURE CONFIGURATION DESIGNER

Figure 1: Overview of SecureWeaver.

find the VNF that satisfies the requirements. This is not as flexible

as SecureWeaver in architecture design.

The work in [1] is a model driven design for orchestrated cloud

serviceswhich focuses on security level evaluation. It utilizes template-

based matching to meet service requirement, where it also consid-

ers security propagation in the topology with numerical calcula-

tions to verify whether the template satisfies the security level.

SecureWeaver, on the other hand, uses a known threat mitigation

knowledge base which specifically maps the threat to their respec-

tive mitigation, and vice versa, which is more concrete than an

abstract quantitative calculation.

The work in [4] is a DSE based designer for IoT and cyber-

physical systems (CPS). It also uses the DSE approach to refine

a system topology. The difference with SecureWeaver is that it is

specifically used to design low-level IoT hardware and software,

while SecureWeaver deals with high-level architecture design.More-

over, it uses Microsoft’s STRIDE threat model to derive its attack

types, while SecureWeaver utilizes MITRE ATT&CK taxonomy to

define the threats and mitigations.

A more detailed comparison of some of these systems with Se-

cureWeaver will be presented later in Section 6.2.

3 OVERVIEW OF SECUREWEAVER
Manual audit and vulnerability mitigations of a concrete system

design in a production system is tedious in general. This typically

requires a lot of expert human effort and takes relatively long time to

resolve security issues. Fig. 1 illustrates the main motivation behind

SecureWeaver, where we extend Weaver with security in mind to

design secure system design. By integrating a security knowledge

base into Weaver with relevant modifications, we envisioned that

the system designer is able to consult the knowledge base regarding

entities in its topology for security issues and mitigate them with

appropriate mitigation techniques.

The concepts regarding the components and their relationship

in Weaver have to be extended to create SecureWeaver. A system

designer is not able to derive an appropriate system design when

the specified threats and relationships in a service requirement lack

information and context. Hence a certain level of context is required

in order to accurately express the security requirements and derive

a suitable solution that: (i) meets all the functional requirements;

(ii) has no unmitigated security issues.

The next two sections will introduce those aspects of the origi-

nal Weaver that are related to SecureWeaver (Section 4), and the

implementation of security support in SecureWeaver (Section 5).

Session 3: Miscellaneous Topics SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA

108

checkStatus

LAN

checkStatus

LAN

connTo

LAN

connTo

LAN HOST

LAN

LAN HOST

LAN HOST

LAN

(a) Intent Requirement

(d) System Configuration (c) Tree Search

Input

Output

R
e
f
i
n
e
m
e
n
t

connTo

LAN

(b) Rules

Figure 2: Weaver processing flow.

4 WEAVER SYSTEM DESIGNER
Our approach is based on the Weaver IT/NW system designer

[10, 11]. Fig. 2 gives an overview of the Weaver processing flow,

where the rectangular boxes denote the state of the topology at a

particular time. The arrows in the pyramid are refinements done

following the matching rules in Weaver.

A top-level description of the intended outcome (intent) is the

service requirement input, inspired by the concept of intent-based

networking (IBN). The abstract entities in the input are then contin-

ually refined using tree search with matching refinement rules until

the final topology is completely void of abstract entities. The final

topology, which is said to be concrete is then output by Weaver as

a system design for the actual implementation of the intent. The

following subsections will briefly describe the Weaver data for-

mat, rules and topology refinement, tree search, and system design

output.

4.1 Data Format Definitions
The data format used in Weaver is structured similarly to TOSCA

(Topology and Orchestration Specification for Cloud Applications)

[17], a specification that declaratively describe service configuration

in a topology to facilitate provisioning automation via definition of

components, their relationships, and their individual attributes.

A component is a pair “𝑣 : 𝑐𝑡𝑦𝑝𝑒”, where 𝑣 is the component

identifier and 𝑐𝑡𝑦𝑝𝑒 is its type. A component type is denoted as

𝑐𝑡𝑦𝑝𝑒 = (𝑛𝑎𝑚𝑒, 𝑎𝑏𝑠, 𝑐𝑎𝑝, 𝑟𝑒𝑞), where 𝑛𝑎𝑚𝑒 is the 𝑐𝑡𝑦𝑝𝑒 name, 𝑎𝑏𝑠

is its abstractness, 𝑐𝑎𝑝 is the component capability, and 𝑟𝑒𝑞 is its

associated requirement, describing one or more relationships with

other components.

An edge, 𝑒 , is also known as a relationship between two com-

ponents in Weaver, where 𝑒 = (𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡 , 𝑟𝑡𝑦𝑝𝑒) is a triplet of

the source component identifier, destination component identi-

fier, and its relationship type. A relationship type is defined as

𝑟𝑡𝑦𝑝𝑒 = (𝑛𝑎𝑚𝑒, 𝑎𝑏𝑠), where 𝑛𝑎𝑚𝑒 is an 𝑟𝑡𝑦𝑝𝑒 name and 𝑎𝑏𝑠 is its

abstractness. A generic operating system (OS) is an abstract com-

ponent , whereas “Ubuntu” is a concrete component, which can be

derived from the abstract OS component via inheritance.

{1}:App

{2}:Machine

HOST

{1}:App

DEPLOY-APP

checkStatus

ip_cam:IpCamera

t
1
=

check
Status

hc:HealthChecker

ip_cam:IpCamera

t
2
=

t
lhs

t
rhs

host:Machine

HOST

hc:HealthChecker

Figure 3: Example of a topology refinement step.

A topology can be formalised as a tuple 𝑡 = (𝑉 , 𝐸), where 𝑉 =

{𝑣𝑛𝑖𝑑1, ..., 𝑣𝑛𝑖𝑑𝑛} and 𝐸 = {𝑒𝑒𝑖𝑑1, ..., 𝑒𝑒𝑖𝑑𝑛} are a set of components

and relationships.

4.2 Rules and Topology Refinement
In order to refine an abstract service requirement input into a com-

pletely concrete topology, refinement process is repetitively done

to transform a topology from one state to another using matched re-

finement rule. A refinement rule, 𝑟 , is a one-step refinement process

that is denoted as a tuple 𝑟 = (𝑡𝑙ℎ𝑠 , 𝑡𝑟ℎ𝑠), where 𝑡𝑙ℎ𝑠 is the left-hand
side and 𝑡𝑟ℎ𝑠 is the right-hand side of a rule. An example of 𝑟 is

illustrated in Fig. 3 as “DEPLOY-APP”. Generally, a match is a map-

ping from the component placeholders, {1}, ..., {𝑛} to component

identifiers 𝑛𝑖𝑑 {1}, ..., 𝑛𝑖𝑑 {𝑛} , where𝑚({𝑖}) = 𝑛𝑖𝑑 {𝑖 } .
An action, 𝑟 [𝑚], is a function where 𝑟 is provided with a match-

ing,𝑚 to load the rule component placeholders with the relevant

component identifiers found in the topology. In short, the topology

refinement process can be illustrated as Fig. 3, where the health

checker application, ℎ𝑐 in topology 𝑡1 is transformed into 𝑡2 by rule

“DEPLOY-APP” with match,𝑚 : {1} ↦→ ℎ𝑐 . The arrow with dashed

line represents an abstract relationship, while an arrow with solid

line represents a concrete relationship. The base component 𝐴𝑝𝑝

in Fig. 3 has an inheritance relationship with 𝐻𝑒𝑎𝑙𝑡ℎ𝐶ℎ𝑒𝑐𝑘𝑒𝑟 com-

ponent type. Hence, component {1} of type 𝐴𝑝𝑝 is equivalent to

ℎ𝑐 of type 𝐻𝑒𝑎𝑙𝑡ℎ𝐶ℎ𝑒𝑐𝑘𝑒𝑟 , such that {1} in the rule “DEPLOY-APP”

can be replaced by {1} −→
𝐻𝑂𝑆𝑇

{2}.

4.3 Tree Search-based Algorithm for DSE
Weaver finds refinement candidates through a deterministic search

process, where it iteratively apply relevant actions to obtain a com-

pletely concrete topology. The search algorithm exits when all

entities in the topology are fully concretized; detailed information

on the tree search algorithm and topology concreteness definition

can be found in [11].

Session 3: Miscellaneous Topics SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA

109

hc:HealthCheckerip_cam:IpCamera

checkStatus
Threat

Figure 4: Service requirement with threat.

5 SECURITY SUPPORT ENHANCEMENT
In this section we discuss the extension of Weaver to: (i) accommo-

date threat information in the topology; (ii) formulate rules that

are compatible with our threat mitigation approach; (iii) discover

threats and verify their mitigation in the generated topology.

5.1 Security Threats
The blue Anonymous mask icon in Fig. 4 represents an explicitly

defined threat in the relationship. We define a threat as the path of

an attack to a target that requires protection. Fig. 4 shows a threat

in the relationship between an IP camera, 𝑖𝑝_𝑐𝑎𝑚 and a health

checker application, ℎ𝑐 , where 𝑐ℎ𝑒𝑐𝑘𝑆𝑡𝑎𝑡𝑢𝑠 is susceptible to threats

such as sniffing or eavesdropping.

In order to model threats and their inheritance for the affected

branches in a topology, the root relationship between two compo-

nent (e.g., 𝑐ℎ𝑒𝑐𝑘𝑆𝑡𝑎𝑡𝑢𝑠 between 𝑖𝑝_𝑐𝑎𝑚 and ℎ𝑐) has to be preserved

in the topology to verify its threat and possible mitigations. Hence,

a new approach to how Weaver transform its topology is required

to accommodate the threat mitigation information. For this paper,

we only consider threats in the relationship between two compo-

nents, and a threat needs to be explicitly defined in the service

configuration for it to be taken into account.

5.2 Threat Mitigation Knowledge Base
There are various methodologies for security assessment, such as

Lockheed Martin Cyber Kill Chain (CKC) [12], MITRE ATT&CK

[19], and Microsoft STRIDE [5]. The CKC is a well known intrusion-

centric framework that describes a well defined sequence of attack.

ATT&CK on the other hand is more like a list of techniques by

tactics, where it does not propose any specific order of operation.

STRIDE is a high-level threat model, commonly used during se-

curity development life-cycle as its focused on identifying overall

categories of attacks.

Since a threat is required to be explicitly defined in the service

requirement, the kill chain, and high-level modelling techniques

are not suitable, as they are incompatible with the Weaver refine-

ment process and do not have sufficient security context. For our

threat mitigation knowledge base, we chose ATT&CK as it provides

a rich taxonomy of adversarial tactics, techniques, and common

knowledge that can be readily used in various scenarios.

5.2.1 MITRE ATT&CK. The ATT&CK taxonomy is categorised

into tactics, techniques, sub-techniques, and mitigations. There are

a total number of 14 tactics, 185 techniques, 367 sub-techniques

and 42 mitigations in ATT&CK. To create the knowledge base, we

are mainly interested in threats and mitigations. Therefore, we

designate ATT&CK techniques and mitigations as the threats and

mitigations in the knowledge base.

The total number of techniques and sub-techniques in ATT&CK

is large. Hence, we started filtering the possible ATT&CK miti-

gations that are directly relevant to Weaver. This means that the

selected ATT&CK mitigations can be directly mapped to Weaver

existing 𝑟𝑡𝑦𝑝𝑒 structure without any modifications. We will be us-

ing the ATT&CK Network Sniffing (T1040) technique and Encrypt

Sensitive Information (M1041) mitigation for all the threat and

mitigation examples in this paper.

5.2.2 Threat Mitigation Data Structure. For the data structure in
the threat mitigation knowledge base, we implemented a JSON

key-value pair representation. The knowledge base keys are se-

cure protocols, and the values are the corresponding ATT&CK

mitigation and threat identifiers as a string. Some examples of the

key-value pairs used in this paper are: “𝐼𝑃𝑆𝐸𝐶” : “𝑀1041.𝑇1040”,

“𝑆𝑅𝑇𝑃” : “𝑀1041.𝑇1040”, and “𝐻𝑇𝑇𝑃𝑆” : “𝑀1041.𝑇1040”. This

means that when an IPSEC 𝑟𝑡𝑦𝑝𝑒 appears as the relationship be-

tween two components, the mitigation M1041 is used to counter

threat T1040.

5.3 Data Representation
In order to add security support, we have to be able to explicitly

define a threat in the service requirement and modify Weaver’s

refinement process to identify and verify security threats and miti-

gations in the topologies. For the first step, we utilize Weaver rela-

tionship properties data format to store the threat information (e.g.,

“T1040”) in the service requirement. The remaining steps require an

extension of Weaver that was done by preserving Weaver’s archi-

tecture and reusing its existing functionality as much as possible,

as explained next.

5.3.1 Logical and Conceptual Connections. In Section 5.1 we de-

scribed the issue with the rewriting and removal of relationships

between the root components. Security requires more context from

the topologies than just physical connections, and for this purpose

we introduce two new types of connections: logical and conceptual.

We define a logical connection as a relationship with an 𝑟𝑡𝑦𝑝𝑒

that corresponds to the TCP/IP model’s application and network

layer protocols. The TCP/IP model is well suited for describing

the relationship between two components, and we determined that

considering only the TCP/IPmodel’s application and network layers

is currently sufficient. The values of logical connections 𝑟𝑡𝑦𝑝𝑒 are

concrete, such as 𝐻𝑇𝑇𝑃 , 𝐻𝑇𝑇𝑃𝑆 , 𝑅𝑇𝑃 , 𝑆𝑅𝑇𝑃, 𝐼𝑃𝑆𝐸𝐶 and 𝐼𝑃 . Fig. 5

includes two such concrete logical connections, 𝐻𝑇𝑇𝑃 and 𝐼𝑃𝑆𝐸𝐶 ,

which are illustrated by dash-dotted lines.

A conceptual connection, 𝐶𝐶 , is defined as a pair of applica-

tion and network layer 𝑟𝑡𝑦𝑝𝑒 objects that connects two component

groups in a topology. A component group means a set of one or

more components that were derived via refinement rules from a

given component in the service requirement, and that correspond

logically to a service specified in that requirement. Fig. 5 includes

two groups, one made of the 𝐼𝑝𝐶𝑎𝑚𝑒𝑟𝑎, which forms a group by it-

self, and another made of the 𝐻𝑒𝑎𝑙𝑡ℎ𝐶ℎ𝑒𝑐𝑘𝑒𝑟 and the 𝐻𝑂𝑆𝑇 , as the

latter was added to the topology via a refinement rule correspond-

ing to the 𝐻𝑒𝑎𝑙𝑡ℎ𝐶ℎ𝑒𝑐𝑘𝑒𝑟 . The conceptual connection between

these two groups is the pair of 𝐻𝑇𝑇𝑃 and 𝐼𝑃𝑆𝐸𝐶 logical connec-

tions. Retaining such logical connections in the topology makes it

Session 3: Miscellaneous Topics SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA

110

HTTP

IPSECLAN

Group 1

HOST

Group 2

LAN

Conceptual
connection

Figure 5: Conceptual connection between 2 component
groups.

possible to preserve information needed by the subsequent security

verification algorithm.

5.3.2 Refinement Rules. The refinement rules in Weaver transform

one topology state to another by removing or changing abstract

𝑐𝑡𝑦𝑝𝑒 or 𝑟𝑡𝑦𝑝𝑒 entities to achieve a concrete state. Even for the

concrete logical connections in SecureWeaver, the refinement rules

have to be designed in a way that ensures the logical connections

are preserved in the topology.

When it comes to security concerns in refinement rules, we have

only explicitly included them in the service requirement. The threat

and mitigation are implicitly included through the TCP/IP appli-

cation and network layer protocols’ inherent security properties

when used as an 𝑟𝑡𝑦𝑝𝑒 in a topology, and they are defined in the

threat mitigation knowledge base for security verification purposes.

During topology refinement, there may be more than one solu-

tion to mitigate a threat. Fig. 6 illustrates a service requirement,

𝑡0 with 𝐻𝑒𝑎𝑙𝑡ℎ𝐶ℎ𝑒𝑐𝑘𝑒𝑟 and 𝐼𝑝𝐶𝑎𝑚𝑒𝑟𝑎 connected by 𝑐ℎ𝑒𝑐𝑘𝑆𝑡𝑎𝑡𝑢𝑠

with threat T1040. The 𝑐ℎ𝑒𝑐𝑘𝑆𝑡𝑎𝑡𝑢𝑠 can be either achieved using

𝐻𝑇𝑇𝑃 or𝐻𝑇𝑇𝑃𝑆 application protocol, where𝐻𝑇𝑇𝑃 is insecure and

𝐻𝑇𝑇𝑃𝑆 is secure. The left and right topology in Fig. 6 show the se-

quential topology refinements for 𝐻𝑇𝑇𝑃 and 𝐻𝑇𝑇𝑃𝑆 , respectively.

In the left topology state, 𝐻𝑇𝑇𝑃 does not mitigates the threat

T1040, for which an implicit threat is illustrated on the affected

relationship, denoted as a white Anonymous icon. Following the

refinement procedure of the left topology, the threat is implicitly

inherited by the 𝑐𝑜𝑛𝑛𝑇𝑜 abstract 𝑟𝑡𝑦𝑝𝑒 as shown in 𝑡𝑖+𝑛+1,1. Inheri-
tance in this context means that if the application layer relationship

has an implicit threat, the same threat is also applied implicitly

to the network layer relationship. In topology state 𝑡𝑖+𝑛+2,1, the
abstract 𝑐𝑜𝑛𝑛𝑇𝑜 𝑟𝑡𝑦𝑝𝑒 is replaced with a concrete 𝐼𝑃𝑆𝐸𝐶 logical

connection. At this point, the left topology’s threat is mitigated as

IPSEC is defined as a mitigation for T1040 in the threat mitigation

knowledge base. A mitigation is illustrated as a blue Anonymous

mask with a red “X” icon as shown in Fig. 6.

For the right topology state, 𝐻𝑇𝑇𝑃𝑆 mitigates the T1040 as de-

fined in the threat mitigation knowledge base. Hence, the remaining

refinements to concretize the right topology do not have any secu-

rity issue. This shows one should not eliminate logical connections

that do not mitigate a threat at first discovery by Weaver, as it

would truncate other possible solutions. Therefore, for the security

aware Weaver, we only perform security verification after all the

entities in the topology are concretized.

HTTP

checkStatus

T1040

HTTPS

t
i,1

t
i,2

rtype

=HTTP

rtype

=HTTPS

HTTPS

HOST
IP

t
i+m,2

t
i+n,1

t
0
=

t
i+n+1,1

t
i+n+2,1

t
i+m+1,2

HTTP

HOSTIPSEC
I

HTTP

HOSTconnTo

Figure 6: Example of possible refinements that mitigate the
threat defined in service requirement.

Table 1: Example of security verification outcome for a given
conceptual connection.

Threat in security requirement Applied mitigation Secure?

N/A N/A Yes

N/A M1041.T1040 Yes

T1040 M1041.T1040 Yes

T1176 M1041.T1040 No

T1040 N/A No

5.4 Security Verification Mechanism
In order to verify whether a threat in a topology is mitigated or

not, we implemented a security verification algorithm that ensures

every threat specified in the service requirement is addressed be-

fore Weaver outputs the system design. In general, we only want to

mitigate the threats that are explicitly defined in the service require-

ment, where a system design is secure if all the threats defined in

the service requirement are mitigated. Table 1 shows the expected

security verification results for each conceptual connection. For

the case where the security requirement is Browser Extensions,

T1176, if the mitigation applied in the conceptual connection does

not match its defined threat, the resultant system design is also

considered as insecure.

The security verification is done after Weaver verifies that both

topology and aspects have no abstract entities. Hence, the entry

Session 3: Miscellaneous Topics SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA

111

point for the security verification algorithm is declared in the topol-

ogy objective verification function in Weaver. We divided the secu-

rity verification process into three main parts.

5.4.1 Retrieve Connection Threats from Service Requirement. The
first part of the security verification process (topology.is_secure())

searches for all the relationship threats 𝑒𝑡ℎ𝑟𝑒𝑎𝑡 in the service re-

quirement input, 𝑡0, and store them into an array. A 𝐶𝐶𝑡ℎ𝑟𝑒𝑎𝑡 is an

relationship in the service requirement (top-level) that has a threat

defined in the relationship property. The “topology” prefix of the

𝑖𝑠_𝑠𝑒𝑐𝑢𝑟𝑒 () function denotes that the function is a class method of

a topology class, where a topology class holds a single topology

state in Weaver. After retrieving all the 𝑒𝑡ℎ𝑟𝑒𝑎𝑡 , the algorithm verify

each of the 𝐶𝐶𝑡ℎ𝑟𝑒𝑎𝑡 corresponding to 𝑒𝑡ℎ𝑟𝑒𝑎𝑡 at the second part of

the security verification process. When an unmitigated 𝐶𝐶𝑡ℎ𝑟𝑒𝑎𝑡 is

determined, the process will return False to signify that the target

topology is insecure. In this case where one of the objective fails,

the selected topology state will be discarded and a new topology

state will be refined and the verification process is repeated.

Algorithm 1 Search and verify the mitigation of threats in concep-

tual connections

Input: Edge src., 𝑒𝑠𝑟𝑐 , Edge dst., 𝑒𝑑𝑠𝑡 , Edge threat, 𝑒𝑡ℎ𝑟𝑒𝑎𝑡
Output: True or False

1: function topology.verify_CC(𝑒𝑠𝑟𝑐 , 𝑒𝑑𝑠𝑡 , 𝑒𝑡ℎ𝑟𝑒𝑎𝑡)

2: 𝑒𝑐𝑜𝑛𝑛 [] ← all connected edges to 𝑒𝑠𝑟𝑐
3: for all 𝑒𝑐𝑜𝑛𝑛 do
4: if 𝑒𝑐𝑜𝑛𝑛,𝑡𝑦𝑝𝑒 ! = “wire:lan” then
5: if 𝑒𝑐𝑜𝑛𝑛,𝑡𝑦𝑝𝑒 prefix ! = “wire:” then
6: if 𝑒𝑐𝑜𝑛𝑛,𝑑𝑠𝑡 == 𝑒𝑑𝑠𝑡 then
7: 𝐶𝐶𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 ← 𝑒𝑐𝑜𝑛𝑛 mitigation info

8: if 𝐶𝐶𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛,𝑡ℎ𝑟𝑒𝑎𝑡 == 𝑒𝑡ℎ𝑟𝑒𝑎𝑡 and

𝐶𝐶𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛! = ∅ then
9: return True

10: end if
11: else
12: 𝑒𝑑𝑠𝑡,𝑐ℎ𝑖𝑙𝑑 ← 𝑒𝑑𝑠𝑡 child that is connected to

𝑒𝑐𝑜𝑛𝑛,𝑑𝑠𝑡
13: if 𝑒𝑑𝑠𝑡,𝑐ℎ𝑖𝑙𝑑 ! = ∅ then
14: 𝐶𝐶𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 ← 𝑒𝑐𝑜𝑛𝑛 mitigation info

15: if 𝐶𝐶𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛,𝑡ℎ𝑟𝑒𝑎𝑡 == 𝑒𝑡ℎ𝑟𝑒𝑎𝑡 and

𝐶𝐶𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛! = ∅ then
16: return True

17: end if
18: end if
19: end if
20: else
21: if topology.verify_CC(𝑒𝑐𝑜𝑛𝑛,𝑑𝑠𝑡 ,𝑒𝑑𝑠𝑡 , 𝑒𝑡ℎ𝑟𝑒𝑎𝑡)

then
22: return True

23: end if
24: end if
25: end if
26: end for
27: return False

28: end function

5.4.2 Conceptual Connection Security Verification. The second part
of the security verification process (topology.verify_CC()) verifies

the 𝐶𝐶𝑡ℎ𝑟𝑒𝑎𝑡 that is passed on by the first part of the verification

process. Algorithm 1 takes𝐶𝐶𝑡ℎ𝑟𝑒𝑎𝑡 as an input and verify whether

the input’s threat is mitigated according to Table 1. To do this, all

connections (relationships) from the input relationship’s source

component to other components are first obtained and stored in

an array 𝑒𝑐𝑜𝑛𝑛 [] as shown in line 2 in Algorithm 1. Each 𝑒𝑐𝑜𝑛𝑛 in

the array are checked whether they are related to 𝐶𝐶𝑡ℎ𝑟𝑒𝑎𝑡 . An

application layer protocol relationship in a 𝑒𝑐𝑜𝑛𝑛 can be determined

via comparing the 𝑒𝑐𝑜𝑛𝑛 destination to the 𝐶𝐶𝑡ℎ𝑟𝑒𝑎𝑡 destination as

shown in line 6 in Algorithm 1. If one of the logical connection of

a conceptual connection is found, the 𝑟𝑡𝑦𝑝𝑒 information is then

retrieved from the threat mitigation knowledge base as shown in

line 7 in Algorithm 1.

If the 𝑒𝑐𝑜𝑛𝑛 does not have the prefix “wire:lan” and it fails the first

check, this means the relationship is a network layer of the TCP/IP

model, where 𝐶𝐶𝑡ℎ𝑟𝑒𝑎𝑡 source component may be connected to a

child of the𝐶𝐶𝑡ℎ𝑟𝑒𝑎𝑡 destination component. For this case, we have

information about the relationship 𝑟𝑡𝑦𝑝𝑒 , relationship root source

and destination components. Hence, we have to determine whether

the destination component of 𝑒𝑐𝑜𝑛𝑛 is a child of 𝐶𝐶𝑡ℎ𝑟𝑒𝑎𝑡 destina-

tion component. The function “topology.verify_node_child()” is

checked recursively whether the target component is a child of a

root component; it takes a target and root components as input,

and outputs True or False as result.

Up to this point, the assumption is that both application and

network layer relationships are connected from a root source com-

ponent to their respective destination components. For cases where

the network layer relationship does not connect from a root source

component, line 21 in Algorithm 1 calls recursively the topol-

ogy.is_secure() function with the 𝑒𝑐𝑜𝑛𝑛 relationship’s destination

component, replacing the 𝐶𝐶𝑡ℎ𝑟𝑒𝑎𝑡 root source component while

the other inputs stay constant. By doing so, Algorithm 1 is able to

flexibly verify topologies that have their application and network

layer relationships connected to components in any orientations.

5.4.3 Threat Mitigation Retrieval from Knowledge Base. The third
part of the security verification process is the function named

edge.retrieve_mitigation(), which retrieves the threat mitigation in-

formation of an application or network layer relationship from the

knowledge base. In Algorithm 1, the threat mitigation information

is retrieved when a relationship is verified to be of the target con-

ceptual connection. As noted in the prefix of the threat mitigation

retrieval function, the function is defined as a class of a relationship

(edge), where it could be efficiently referenced.

Using the 𝑛𝑎𝑚𝑒 of a relationship 𝑟𝑡𝑦𝑝𝑒 , the retrieval function

search through the threat mitigation knowledge base for the match-

ing 𝑛𝑎𝑚𝑒 key. This JSON key-value structure is sufficient for simple

evaluations of such approach. However, since a threat and/or mitiga-

tion may also reference to multiple application, network protocols

and many more entities, a better way to structure the knowledge

base would be by structuring the threat mitigation information

in an ontology. One example of ATT&CK based ontology is [7],

where the threat and mitigation (offensive technique) taxonomy is

mapped with the MITRE D3FEND (defensive technique) knowledge

Session 3: Miscellaneous Topics SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA

112

VideoSurveillance HealthChecker

IpCamera

Switch

Machine App

abs: True

req: HOST(1)

cap: APP(1)

abs: False

req: -

cap: -

abs: False

req: -

cap: -

abs: False

req: LAN(inf)

cap: HOST(1)

abs: False

req: LAN(1)

cap: -

abs: False

req: -

cap: LAN(inf)

Figure 7: Properties and relationships of components.

via digital artifacts. We plan to implement an ontology-based threat

mitigation knowledge base as a future work.

6 EVALUATION
In this section, we evaluate the proposed SecureWeaver system

described in Section 5. First, SecureWeaver is evaluated functionally:

we utilize SecureWeaver to generate a secure system design given

a service requirement that includes threats, and verify that they

are mitigated in all the possible concrete topologies. Then, we

compare SecureWeaver to other related systems to highlight their

pros and cons. Lastly, we conducted a performance evaluation on

SecureWeaver to determine its security verification overhead.

6.1 Functionality Evaluation
SecureWeaver is implemented in Python 3, and the experiments

we present here were performed with an Amazon Web Services

(AWS) Elastic Compute Cloud (EC2) VM instance. The EC2 instance

utilized is the “t2.micro”, which features one virtual CPU with a

frequency of up to 3.3 GHz and 1 GB of RAM.

6.1.1 Service Requirement for Evaluation. For this evaluation, we
use the following components to build the service requirement,

where all the component types and their deriving relations are

shown in Fig. 7. Both video surveillance and health checker compo-

nent types are derived from 𝐴𝑝𝑝 component type while the compo-

nent type’s abstractness, 𝑎𝑏𝑠 , capability, 𝑐𝑎𝑝 and requirement, 𝑟𝑒𝑞

are also shown in Fig. 7. An 𝐼𝑝𝐶𝑎𝑚𝑒𝑟𝑎 has 𝑟𝑒𝑞 = 𝐿𝐴𝑁 (1) while a
𝑆𝑤𝑖𝑡𝑐ℎ type has 𝑐𝑎𝑝 = 𝐿𝐴𝑁 (𝑖𝑛𝑓), where 𝐿𝐴𝑁 is an 𝑟𝑡𝑦𝑝𝑒 and the

number in the 𝑟𝑡𝑦𝑝𝑒 corresponds to the minimum or maximum

number that the same 𝑟𝑡𝑦𝑝𝑒 can be “connected” to. This means that

when an 𝐼𝑝𝐶𝑎𝑚𝑒𝑟𝑎 is defined in a service requirement, the final

topology must have a maximum number of one 𝑆𝑤𝑖𝑡𝑐ℎ “connected”

to it, while the 𝑆𝑤𝑖𝑡𝑐ℎ can be “connected” to an infinite number of

component type with 𝑟𝑒𝑞 = 𝐿𝐴𝑁 .

In this evaluation, we assume a customer has an IP camera in

the office and wants to sign up for a comprehensive security pack-

age that includes video surveillance and health checking services.

The corresponding service requirement shown in Fig. 8, where

each icon represents a component type labeled with its 𝑛𝑖𝑑 and

𝑐𝑡𝑦𝑝𝑒 . The component 𝑖𝑝_𝑐𝑎𝑚 of type 𝐼𝑝𝐶𝑎𝑚𝑒𝑟𝑎 represents the

existing IP camera in the customer’s office, while the ℎ𝑐 of type

𝐻𝑒𝑎𝑙𝑡ℎ𝐶ℎ𝑒𝑐𝑘𝑒𝑟 and 𝑣𝑠 of type 𝑉𝑖𝑑𝑒𝑜𝑆𝑢𝑟𝑣𝑒𝑖𝑙𝑙𝑎𝑛𝑐𝑒 are the services

that are to-be deployed. Functional requirements of the new ser-

vices are denoted as abstract relationships of type 𝑐ℎ𝑒𝑐𝑘𝑆𝑡𝑎𝑡𝑢𝑠 ,

vs:VideoSurveillancehc:HealthChecker ip_cam:IpCamera

sendVideocheckStatus

T1040 T1040

Figure 8: Evaluation service requirement.

RTPHTTPS

LAN

LAN LAN

HOSTHOST IP HO
IPSEC

RTPHTTP

LAN

LAN LAN

HOSTHOST IP
SE
C

ST HO

IPSEC

SRTPHTTPS

LAN

LAN LAN

HOSTHOST IP
IP

SRTPHTTPS

LAN

LAN LAN

HOSTHOST IP
IPSEC

4

3

2

1

HO

Figure 9: Examples of topologies for which the security veri-
fication was successful.

𝑒𝑠𝑒𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠 , and 𝑠𝑒𝑛𝑑𝑉𝑖𝑑𝑒𝑜 , 𝑒𝑠𝑒𝑛𝑑𝑉𝑖𝑑𝑒𝑜 , where 𝑒𝑐ℎ𝑒𝑐𝑘𝑆𝑡𝑎𝑡𝑢𝑠 means

ℎ𝑐 has to regularly monitor 𝑖𝑝_𝑐𝑎𝑚 status and 𝑒𝑠𝑒𝑛𝑑𝑉𝑖𝑑𝑒𝑜 means

𝑖𝑝_𝑐𝑎𝑚 is required to stream its video feed to 𝑣𝑠 . The threats defined

in 𝑐ℎ𝑒𝑐𝑘𝑆𝑡𝑎𝑡𝑢𝑠 and 𝑠𝑒𝑛𝑑𝑉𝑖𝑑𝑒𝑜 are both ATT&CK defined network

sniffing, T1040, where there may be a threat to the confidentiality

of the communication between the IP camera and its applications.

6.1.2 SystemDesign Security Verification. After providing SecureWeaver

with the evaluation service requirement, it generates a concrete

and secure system design that corresponds to the input service

requirement.

SecureWeaver has two mode of operation: automatic and inter-

active. In automatic mode, SecureWeaver will by default match and

apply the first refinement rule that satisfies both quantitative and

qualitative requirements, and only output the first system design

that meets the quantitative, qualitative and security requirements.

In interactive mode, SecureWeaver displays all valid refinement

rules that can be applied to the current state of the topology, and the

user can manually choose the next refinement rule to be applied.

Examples of possible concrete and secure SCs are shown in Fig. 9,

where the topology with denoted with “1” in the top-left corner is

the default system design output in automatic mode, and the other

topologies are generated via interactive mode.

Session 3: Miscellaneous Topics SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA

113

RTPHTTP

LAN

LAN LAN

HOSTHOST IP
IP

RTPHTTP

LAN

LAN LAN

HOSTHOST IP HO

IPSEC

1

2

Figure 10: Examples of topologies rejected by the security
verification algorithm.

For the first system design in Fig. 9, ℎ𝑐 and 𝑣𝑠 are communicat-

ing with 𝑖𝑝_𝑐𝑎𝑚 via inherently insecure application layer protocols

(𝐻𝑇𝑇𝑃 and𝑅𝑇𝑃), which do notmitigate the T1040 threats defined in

the service requirement. Hence, SecureWeaver secures the topology

by applied 𝐼𝑃𝑆𝐸𝐶 network protocol for both conceptual connec-

tions to mitigate their respective threats (𝐼𝑃𝑆𝐸𝐶 mitigates T1040

as M1041, encrypt sensitive information). For system design 2, the

communication between ℎ𝑐 and 𝑖𝑝_𝑐𝑎𝑚 is replaced with 𝐻𝑇𝑇𝑃𝑆

in the application layer, which addresses T1040 via M1041; hence,

the plain 𝐼𝑃 network layer protocol can be used for the concep-

tual connection between the ℎ𝑐 and 𝑖𝑝_𝑐𝑎𝑚. For system design 3,

both ℎ𝑐 and 𝑣𝑠 are communicating via 𝐻𝑇𝑇𝑃𝑆 and 𝑆𝑅𝑇𝑃 on the

application layer, both protocols mitigating T1040 via M1041. It is

also possible to “oversecure” a conceptual connection, as shown in

system design 4: 𝑆𝑅𝑇𝑃 already mitigates the threat between ℎ𝑐 and

𝑖𝑝_𝑐𝑎𝑚 at the application layer, but 𝐼𝑃𝑆𝐸𝐶 is used at the network

layer.

We also present two examples of rejected topologies that are

concrete but insecure, as shown in Fig. 10. These topologies do not

appear as the final system design as they are rejected during the

refinement and verification process. For the first rejected topology,

both conceptual connection betweenℎ𝑐 , 𝑣𝑠 and 𝑖𝑝_𝑐𝑎𝑚 are insecure

as both application and network layer protocol does not mitigates

the threat. In the second rejected topology, while the conceptual

connection between 𝑣𝑠 and 𝑖𝑝_𝑐𝑎𝑚 is secure, the topology is re-

jected due to the insecure conceptual connection between ℎ𝑐 and

𝑖𝑝_𝑐𝑎𝑚.

6.2 Feature Comparison
In this subsection, we compare SecureWeaver to the related works

discussed in Section 2. The comparison will mainly cover what each

automatic system designer can do, especially on security. Table 2

shows the summary of the feature comparisons, where the method

of system design, target domain usage, security threat and mitiga-

tion approach and security knowledge base is compared. For the

system design method, both SecureWeaver and [4] use DSE, while

[1] uses template matching and [18] uses clustering and external

tools to manage its dependency process. In general, template-based

approaches are more rigid than search-based design.

For the target domain for the system designer, SecureWeaver

covers all three aspects where the others are specifically used for

IT/NW or IoT. Furthermore, all three related works security threat

mitigation approaches are quantitative-based, where numerical

result is used to satisfy the quantitative security requirement. Se-

cureWeaver mitigates threat in a qualitative manner, where we

determine that the target threats are mitigated via threat mitiga-

tion from its knowledge base which is a matching problem and

not as an optimization problem. In this case, as long as all service

requirements are met, the designed system is satisfactory, which

also results faster and efficient design process.

All three related works use databases that store the set/ tem-

plate/attack chain and their numerical values for security calcula-

tions. While [18] and [1] are based on abstract numerical values,

[4] designed their attack chain based on the STRIDE model. The

SecureWeaver database is based on ATT&CK for a more concrete

and comprehensive coverage. Thus, SecureWeaver is well suited

for addressing architecture level design in IT/NW and IoT domains.

6.3 Performance Evaluation
In order to evaluate the overhead of the security verification mech-

anism in SecureWeaver, we used it to design an increasing number

of customer offices, 𝑛, from 1 to 30. In this scenario we evaluated

parameters such as time taken to design or verify a topology and

the number of checks performed by portions of SecureWeaver to

output a secure system design. Since SecureWeaver performance

evaluation is performed on an AWS EC2 “t2.micro” instances, the

experiments are specifically done spaced in time to prevent exhaust-

ing the “t2.micro” instances burstable CPU limits.

6.3.1 Expected System Design Output. The service requirement

used is similar to that in Fig. 8, where each office contains a sin-

gle IP camera and it is connected to a health checker and video

surveillance application. When increasing the number of offices,

the number of IP cameras also increase linearly along with the

video surveillance applications as a pair. For the health checker

application, there is only one instance, and all IP camera will send

their status to it. Hence, the expected system design output using

SecureWeaver in automatic mode is shown in Fig. 11, where each

office has an IP camera, a LAN switch and a video surveillance

application, and the health checker application connects to every

office’s IP camera. Both 𝐻𝑇𝑇𝑃 and 𝐼𝑃𝑆𝐸𝐶 are chosen by default in

automatic mode as the application and network layer protocol in

the their relationship, respectively.

6.3.2 Performance Evaluation Results. The performance evalua-

tion results are shown in Table 3, where 𝑛 is the number of offices,

𝑛𝑐𝑜𝑚𝑝 is the number of components in the system design, 𝑛𝑟𝑒𝑙 is

the number of relationships in the system design, 𝑛𝑎𝑙𝑙 is the to-

tal number of components and relationships in the system design,

𝑛𝑡ℎ𝑟𝑒𝑎𝑡 is the number of service requirement threats, 𝑛𝑖𝑡𝑒𝑟 is the

number of algorithm iterations, 𝑛𝑡𝑜𝑝𝑜 is the number of topology

concreteness and quantitative checks, 𝑛𝑠𝑒𝑐 is the number of secu-

rity verifications,𝑛𝑐ℎ𝑖𝑙𝑑 is the number of component dependency

searches, 𝑡𝑡𝑜𝑡𝑎𝑙 is the total time elapsed in seconds to design and

verify the system design, 𝑅𝑆𝐷𝑡𝑡𝑜𝑡𝑎𝑙 is the relative standard deviation

of 𝑡𝑡𝑜𝑡𝑎𝑙 , 𝑡𝑠𝑒𝑐 is the time elapsed in seconds for security verification,

Session 3: Miscellaneous Topics SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA

114

Table 2: Feature comparison of SecureWeaver with related works.

Name Method Target Threat Mitigation Security Knowledge

SecureWeaver DSE IT/NW, IoT Qualitative, via security verifica-

tion

ATT&CK database

INSpIRE [18] Clustering IT/NW Quantitative, via score calcula-

tion

VNF & score database

[1] Template IT/NW Quantitative, via security level

calculation

Pattern & security level database

[4] DSE IoT Quantitative, via probabilistic at-

tack chain calculation

STRIDE based attack chain, security function

database

LAN

.
.
.

RTP
HO
ST

IPSE
C

H
O
S
T

LA
N

HTTP

HT
TP

IPSE
C

IPSEC

Office 1

LAN

RTP
HO
ST

IPSE
CLA

N

Office n

LAN

Figure 11: Expected output topology and security configura-
tion.

��� ��� ��� ��� ��� ��� ���
���

���

�

���

���

 ��

!��

����

����

�
�
��
��
�
�
��
"
�
��
��

�
��
� �
�
��
��#
�$

�

%
�
��
�
��
��
� �
�
��
��
��
��
��
��#
&
$

�
���
'�

�����

�
�����

���

�(�

�(

�(�

�(�

�(�

�(�

�(

�(!

Figure 12: Performance evaluation results for SecureWeaver.

𝑅𝑆𝐷𝑡𝑠𝑒𝑐 is the relative standard deviation of 𝑡𝑠𝑒𝑐 , and 𝑡𝑠𝑒𝑐/𝑡𝑡𝑜𝑡𝑎𝑙 is
the percentage of 𝑡𝑠𝑒𝑐 from the total 𝑡𝑡𝑜𝑡𝑎𝑙 .

The results in Table 3 are the averages of 10 experiments for each

𝑛 number of offices. As both 𝑛𝑐𝑜𝑚𝑝 and 𝑛𝑟𝑒𝑙 increase, the average

𝑡𝑡𝑜𝑡𝑎𝑙 increased in a manner that can be curved fitted (𝑅2 = 1) as

shown in Equation 1, where 𝑛𝑎𝑙𝑙 is the sum of 𝑛𝑐𝑜𝑚𝑝 and 𝑛𝑟𝑒𝑙 :

𝑡𝑡𝑜𝑡𝑎𝑙 = 3 · 10−5 · 𝑛3
𝑎𝑙𝑙
− 0.001 · 𝑛2

𝑎𝑙𝑙
+ 0.1834 · 𝑛𝑎𝑙𝑙 − 3.9823. (1)

The average 𝑡𝑠𝑒𝑐 to the total number of 𝑛𝑐𝑜𝑚𝑝 and 𝑛𝑟𝑒𝑙 can be

curved fitted (𝑅2 = 0.9992) as shown in Equation 2:

𝑡𝑠𝑒𝑐 = 4 · 10−9 · 𝑛3
𝑎𝑙𝑙
+ 8 · 10−7 · 𝑛2

𝑎𝑙𝑙
+ 8 · 10−5 · 𝑛𝑎𝑙𝑙 − 0.003. (2)

A more detailed analysis shows that the above performance is an

intrinsic characteristic of the original Weaver (and we plan to use

artificial intelligence to increase its efficiency). When considering

only the security verification part of the system, we note that the

average elapsed time, 𝑡𝑠𝑒𝑐 , increases much slower. Thus, when

expressed in percentages, 𝑡𝑠𝑒𝑐 versus 𝑡𝑡𝑜𝑡𝑎𝑙 decreases sharply from

1.57% for 𝑛 = 1 to 0.03% for 𝑛 = 30. These results are plotted and

shown in Fig. 12. For real-world system designs have more than

100 entities (9 to 30 offices), the overheads are 0.07% at 𝑛 = 9 to

0.03% at 𝑛 = 30 with an average overhead of 0.04%. This means that

our SecureWeaver extension only incurs a small overhead, which

becomes comparably very small with respect to the total processing

time as 𝑛𝑐𝑜𝑚𝑝 and 𝑛𝑟𝑒𝑙 increase.

7 CONCLUSION
In this paper, we presented SecureWeaver, a secure system designer

based on Weaver that generates a system design that meets func-

tional, quantitative and security service requirements. We discussed

its usefulness in creating secure system design through a case study

and feature comparison with related works, and showed its feasi-

bility through performance evaluation.

We evaluated SecureWeaver using an IoT video surveillance ser-

vice requirement case study, where the results showed that it is able

to design secure system from an abstract service requirement that

includes security threats. We also presented a feature comparison

between SecureWeaver and three other related works that empha-

size the advantages of SecureWeaver. Lastly, in the performance

evaluation we demonstrated that the new security verification al-

gorithm in SecureWeaver only incurs a small overhead with an

average of 0.04% of the total design time for systems containing 100

or more entities, which underlines the feasibility of the proposed

approach.

REFERENCES
[1] Flora Amato, Nicola Mazzocca, and Francesco Moscato. 2018. Model driven

design and evaluation of security level in orchestrated cloud services. Journal of
Network and Computer Applications 106 (2018), 78–89.

[2] James DesLauriers, Tamas Kiss, Gabriele Pierantoni, Gregoire Gesmier, and Gabor

Terstyanszky. 2021. Enabling modular design of an application-level auto-scaling

and orchestration framework using tosca-based application description templates.

Session 3: Miscellaneous Topics SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA

115

Table 3: Numerical results for the performance evaluation of SecureWeaver.

𝑛 𝑛𝑐𝑜𝑚𝑝 𝑛𝑟𝑒𝑙 𝑛𝑎𝑙𝑙 𝑛𝑡ℎ𝑟𝑒𝑎𝑡 𝑛𝑖𝑡𝑒𝑟 𝑛𝑡𝑜𝑝𝑜 𝑛𝑠𝑒𝑐 𝑛𝑐ℎ𝑖𝑙𝑑 𝑡𝑡𝑜𝑡𝑎𝑙 [𝑠] 𝑅𝑆𝐷𝑡𝑡𝑜𝑡𝑎𝑙 [%] 𝑡𝑠𝑒𝑐 [𝑠] 𝑅𝑆𝐷𝑡𝑠𝑒𝑐 [%] 𝑡𝑠𝑒𝑐/𝑡𝑡𝑜𝑡𝑎𝑙 [%]
1 6 8 14 2 25 44 9 1 0.13 1.02 0.0021 1.73 1.57

2 10 16 26 4 101 220 21 11 0.87 0.69 0.0045 4.37 0.51

3 14 24 38 6 190 499 37 27 2.57 0.90 0.0073 1.24 0.29

4 18 32 50 8 265 761 57 49 5.14 0.69 0.012 0.92 0.23

5 22 40 62 10 335 995 81 77 8.80 0.59 0.014 2.08 0.16

6 26 48 74 12 405 1222 109 111 13.87 0.43 0.016 1.25 0.12

7 30 56 86 14 475 1449 141 151 20.89 3.35 0.019 1.85 0.09

8 34 64 98 16 545 1676 177 197 28.99 0.47 0.023 1.76 0.08

9 38 72 110 18 615 1903 217 249 39.61 0.64 0.026 3.76 0.07

10 42 80 122 20 685 2130 261 307 52.41 0.78 0.032 9.46 0.06

15 62 120 182 30 1035 3265 541 687 159.04 0.39 0.061 7.00 0.04

20 82 160 242 40 1385 4400 921 1217 359.97 0.52 0.12 6.58 0.03

25 102 200 302 50 1735 5535 1401 1897 689.97 0.46 0.21 15.50 0.03

30 122 240 362 60 2085 6670 1981 2727 1195.69 0.48 0.31 13.65 0.03

In 11th International Workshop on Science Gateways, IWSG 2019. CEUR Workshop

Proceedings.

[3] Charafeddine El Houssaini, Mahmoud Nassar, and Abdelaziz Kriouile. 2015. A

cloud service template for enabling accurate cloud adoption and migration. In

2015 International Conference on Cloud Technologies and Applications (CloudTech).
IEEE, 1–6.

[4] Lukas Gressl, Christian Steger, and Ulrich Neffe. 2021. Design Space Explo-

ration for Secure IoT Devices and Cyber-Physical Systems. ACM Transactions on
Embedded Computing Systems (TECS) 20, 4 (2021), 1–24.

[5] S Hernan, S Lambert, T Ostwald, and A Shostack. 2006. Uncover Security Design

Flaws Using The STRIDE Approach.

[6] Arthur S Jacobs, Ricardo J Pfitscher, Rafael H Ribeiro, Ronaldo A Ferreira, Lisan-

dro Z Granville, Walter Willinger, and Sanjay G Rao. 2021. Hey, Lumi! Using

Natural Language for {Intent-Based} Network Management. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21). 625–639.

[7] Peter E Kaloroumakis and Michael J Smith. 2021. Toward a Knowledge Graph of
Cybersecurity Countermeasures. Technical Report. Technical report.

[8] Eunsuk Kang. 2016. Design space exploration for security. In 2016 IEEE Cyberse-
curity Development (SecDev). IEEE, 30–36.

[9] Jinyong Kim, Eunsoo Kim, Jinhyuk Yang, Jaehoon Jeong, Hyoungshick Kim,

Sangwon Hyun, Hyunsik Yang, Jaewook Oh, Younghan Kim, Susan Hares, et al.

2020. IBCS: intent-based cloud Services for Security Applications. IEEE Commu-
nications Magazine 58, 4 (2020), 45–51.

[10] Takayuki Kuroda, Takuya Kuwahara, Takashi Maruyama, Kozo Satoda, Hideyuki

Shimonishi, Takao Osaki, and Katsushi Matsuda. 2019. Weaver: A Novel Config-

uration Designer for IT/NW Services in Heterogeneous Environments. In 2019
IEEE Global Communications Conference (GLOBECOM). IEEE, 1–6.

[11] Takuya Kuwahara, Takayuki Kuroda, Takao Osaki, and Kozo Satoda. 2021. An

intent-based system configuration design for IT/NW services with functional

and quantitative constraints. IEICE Transactions on Communications E104.B, 7
(2021), 791–804.

[12] Lockheed Martin. 2014. Cyber kill chain. http://cyber.lockheedmartin.com/

hubfs/GainingtheAdvantageCyberKillChain.pdf

[13] Nicolae Paladi, Antonis Michalas, and Hai-Van Dang. 2018. Towards secure cloud

orchestration for multi-cloud deployments. In Proceedings of the 5th Workshop on
CrossCloud Infrastructures & Platforms. 1–6.

[14] Minh Pham and Doan B Hoang. 2016. SDN applications-The intent-based North-

bound Interface realisation for extended applications. In 2016 IEEE NetSoft Con-
ference and Workshops (NetSoft). IEEE, 372–377.

[15] Andy D Pimentel. 2020. A case for security-aware design-space exploration of

embedded systems. Journal of Low Power Electronics and Applications 10, 3 (2020),
22.

[16] Adeel Rafiq, Asif Mehmood, Talha Ahmed Khan, Khizar Abbas, Muhammad

Afaq, and Wang-Cheol Song. 2020. Intent-based end-to-end network service

orchestration system for multi-platforms. Sustainability 12, 7 (2020), 2782.

[17] Matt Rutkowski, CN Chris Lauwers, and C Curescu. 2020. TOSCA Simple Profile

in YAML Version 1.3. https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-

YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf

[18] Eder J Scheid, Cristian C Machado, Muriel F Franco, Ricardo L dos Santos, Ri-

cardo P Pfitscher, Alberto E Schaeffer-Filho, and Lisandro Z Granville. 2017.

INSpIRE: Integrated NFV-based intent refinement environment. In 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM). IEEE, 186–194.

[19] BE Strom, A Applebaum, DP Miller, KC Nickels, AG Pennington, and CB Thomas.

2018. MITRE ATT&CK: Design and Philosophy. The Mitre Corporation, McLean.
Technical Report. VA, Technical report.

[20] Chao Wu, Shingo Horiuchi, Kenji Murase, Hiroaki Kikushima, and Kenichi

Tayama. 2021. Intent-driven cloud resource design framework to meet cloud

performance requirements and its application to a cloud-sensor system. Journal
of Cloud Computing 10, 1 (2021), 1–22.

Session 3: Miscellaneous Topics SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA

116

http://cyber.lockheedmartin.com/hubfs/Gaining the Advantage Cyber Kill Chain.pdf
http://cyber.lockheedmartin.com/hubfs/Gaining the Advantage Cyber Kill Chain.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Overview of SecureWeaver
	4 Weaver System Designer
	4.1 Data Format Definitions
	4.2 Rules and Topology Refinement
	4.3 Tree Search-based Algorithm for DSE

	5 Security Support Enhancement
	5.1 Security Threats
	5.2 Threat Mitigation Knowledge Base
	5.3 Data Representation
	5.4 Security Verification Mechanism

	6 Evaluation
	6.1 Functionality Evaluation
	6.2 Feature Comparison
	6.3 Performance Evaluation

	7 Conclusion
	References

