
1

Abstract-- Hardware data emulators are used to deploy a

large-scale model of the ATLAS Data Acquisition architecture.
The emulators, based on FPGAs and on the Alteon Gigabit
Ethernet NIC, are described, and their performance
determined. The emulators are used in the large-scale test bed;
sample results are presented.

I. INTRODUCTION

The ATLAS Trigger/DAQ (T/DAQ) architecture involves
~1600 data sources (Readout Buffers, or ROBs) connected to
several hundred Level 2 processing units and at least 100
SubFarm Interfaces (event builders). An Ethernet network
connects all of these nodes. As shown in Fig. 1, there are 3
layers of switches necessary to accommodate the number of
ports required [1]. A number of questions arise which affect
both software implementation and hardware deployment,
including: frequency of packet loss, side effects of flow
control, effectiveness of traffic shaping, overheads of different
protocols, utility of VLANs in limiting scope of broadcasts
and in preventing loops which would be discarded by the
spanning tree protocol.[2]. The answers to some of these
questions can only be obtained unambiguously by building
the final system and running it, but the cost would be
prohibitive. Instead, we have chosen to build a test bed,
which is a slice of the final system comprising about 10 per
cent of the final nodes, on which to obtain answers to these
questions. Deploying such a system requires ~150 ROBs;
the ROBs are not presently available and will not be
available in these numbers for at least one year. Thus we
have chosen to use hardware data emulators which behave as
either ROBs or ROSes (defined in the next section) so that
the data flow in the test bed system is as much like that in
the final system as possible.
We describe the emulators and the efforts made to understand
the degree to which the emulators themselves contribute to

Manuscript received June 16, 2003. This work was supported in part by

the U.S. Department of Energy under contract no. DE-AC02-98CH10886.
M.J. LeVine is with Brookhaven National Laboratory, Upton, LI, NY

11973 (e-mail: levine@bnl.gov).
S. Stancu, R. Beuran, and C. Meirosu are with CERN, 1211 Geneva,

Switzerland, and “Politehnica” University of Bucharest, Bucharest,
Rumania

Reiner Hauser is with the Michigan State University Department of
Physics and Astronomy, East Lansing, Michigan, US

Christian Haeberli and Hanspeter Beck are with the Laboratory for
High Energy Physics, University of Bern, 3012 Bern, Switzerland.

R.W. Dobinson , B. Martin, L. Tremblet, and E. Knezp are with CERN,
1211 Geneva, Switzerland.

D. Botterill is with Rutherford Appleton Laboratory, Chilton, Didcot,
Oxon, UK

limited event rates and lost packets. Finally we describe first
results in the test bed using the emulators.

II. ATLAS TDAQ ARCHITECTURE

The ATLAS TDAQ domain begins with a set of
approximately 1600 data sources, called Readout Buffers
(ROBs), which receive event fragments from the detector
Readout Drivers (RODs) via fiber Readout Links (ROLs), on
each Level 1 (LVL1) accept; LVL1 accepts occur at rates of
up to 75 kHz. The event fragment transmitted over each
ROL are nominally up to 1.4 kB.

An event is assigned to a member of the Level2
processing farm (L2PU), which requests event fragments
associated with this event from selected ROBs, depending on
the nature of the LVL1 information for this event. On
average the number of ROBs addressed will be <2% of the
total.

The L2PU applies selection criteria to the event based on
the event fragments received. A decision is passed to the
Dataflow Manager (DFM). If the event is accepted by LVL2,
the DFM assigns it to a SubFarm Interface (SFI), whose task
is to build the complete event and pass it to a member of the
Event Filter (EF), the next step in the process of deciding
whether to write the event to tape or other media or to
discard it. The SFI assigned to this task requests fragments
from all of the ROBs, and uses the responses to build the
event before passing it to the EF.

There are several versions of the TDAQ organization under
active consideration: one version considers all of the ROBs
to be independently connected to the TDAQ network, and the
nodes L2PU and SFI communicate directly with each ROB.
Other versions have the ROBs grouped into a Readout
System (ROS), still with independent network interfaces,
and which communicate with a PC called the ROS controller
via either Ethernet or PCI bus. In these versions, the L2PU
and the SFI communicate with the ROS controller, and the
responses are aggregated into a ROS response issued by the
ROS controller.

III. ROS EMULATORS

Two ROS emulators have been implemented: an FPGA
Fast Ethernet ROB emulator and an Alteon Gigabit Ethernet
ROS emulator. Both are described in detail in the following
paragraphs. For the studies reported here, the ATLAS Data
Collection Message Passing [3] was implemented as a

Validation of the ATLAS Trigger/DAQ Network
architecture using hardware data emulators

M. J. LeVine, S. Stancu, Ch. Haeberli, L. Tremblet, R. Beuran, C. Meirosu, R.W. Dobinson, B.
Martin, E. Knezo, H.-P. Beck, R. Hauser, D. Botterill

2

lightweight layer on raw Ethernet, whose functionality is
similar to that of UDP.

Both types of emulators can operate in alias mode, where
a given emulator responds to multiple node IDs using the
same Ethernet hardware address. This allows the simulation
of a large number of nodes using a smaller number of
physical emulators, up to the limit of the emulators’ ability
to keep up with the request rate.

A. FPGA emulator
The FPGA ROS emulator is based on a Fast Ethernet

(FE) tester constructed at CERN as a general-purpose traffic
generator and device for measurement of network parameters
(e.g., latency, packet loss, throughput). The FE tester
implements 32 FE ports. It has been described in detail
[4,5].

The ROS emulator uses the physical platform of the
FPGA emulator, with the FPGAs programmed to respond to
data requests coming from ATLAS Data Collection. The
newly coded FPGAs communicate using a message format
conforming to the ATLAS Data Collection Message Passing
specifications, and produce data formatted according to the
ATLAS Event Format [6]. The contents of the detector data
payload produced by the emulator are meaningless; only the
length of the response is intended to be meaningful for the
purposes of these measurements.

Incoming requests are parsed by one process on the FPGA
and translated into a 32 byte descriptor, which is written to a
queue serviced by the concurrent process responsible for
building the outgoing response frames. The ROS emulator

issues flow control packets to protect its descriptor queue,
and responds to flow control packets received. It also is
capable of generating VLAN tags.

Squeezing the ROS emulator functionality into the
modest-sized FPGAs chosen for the FE tester, Altera FLEX
10K50 (50,000 gates), proved to be a challenge. A ROS
emulator functionality was achieved by use of on-chip
memory to build a template of the outgoing packet headers
and trailers. About 90% of the words in the various headers
are invariant for all frames; only the remaining 10% have to
be written to the memory on a case-by-case basis. The
contents of the memory were then used to stream to the
Ethernet PHY.

In principle, the data responses from a ROS can comprise
multiple RODs, but the restrictioins imposed by the limited
resources of the FPGA do not allow this; only single ROD
responses can be generated. Additionally, the limited
resources available prevent the FPGA emulator from
implementing the UDP protocol; only raw Ethernet has been
implemented.

In spite of the limitations imposed by the FPGA
resources, the response of the emulator is extremely fast.
The response frame is normally transmitted starting less than
1 µs following reception of the entire request frame. The
only conditions under which the delay would be longer are
those times when the transmitter has received a flow control
PAUSE frame due to congestion elsewhere in the system.
The FPGA emulator is capable of receiving and transmitting
at Fast Ethernet line speed.

Fig. 1. The ATLAS Dataflow architecture

3

B. Alteon emulator
The GE ROS emulator is implemented on the Alteon

programmable NIC, based on the Tigon 2 chip. The modules
dealing with the host communication have been suppressed,
as they are used only for starting the emulator and gathering
statistics. The chip has two embedded MIPS processors
(RISC processors) running at approximately 86 MHz, which
can randomly access the 1MB memory of the NIC. This
memory contains both the binary code and the data structures
needed for operation.

The Tigon PCI/Gigabit Ethernet Controller provides a 64-
bit high-speed memory bus to connect to local memory. Six
entities within the Tigon arbitrate for the use of the Memory
Bus. A priority scheme is enforced between these requesters
so that no requester can cause a loss or corruption of the data
flow. The Gigabit Ethernet interfaces (receive, transmit) have
the highest priority within the Tigon, since it is imperative
that the Gigabit Ethernet interfaces never under-run or
overrun.

Host accesses to the Tigon must occur in a timely fashion
and therefore it is next in the priority scheme. A host access
takes place only when there is no DMA activity on the bus.

The DMA is used only for downloading the firmware to the
NIC's memory, and for reading statistics. Therefore, under
normal operation of the ROS emulator the DMA engines are
not active. The NIC is controlled using a modified Linux
device driver, which makes the NIC's memory appear as a
regular device for the user level code.

1) Internal processors
The Tigon contains two internal 32-bit general-purpose

processors, modeled after the R4000 RISC processor;
however the supported instructions and their decoding is
unique to the Tigon. Many instructions were removed and
several new ones added for embedded optimization.

The operation of the processor is governed by firmware.
External to the Tigon is a small non-volatile memory which
contains all the power on diagnostics and PCI initialization
tasks. Any additional software can be downloaded by the
host driver into the local SRAM memory. Since each local
memory operation fetches 8 bytes, up to two processor
instructions can be loaded into the Tigon on each instruction
fetch cycle. A small instruction cache as well as SRAM
internal to the Tigon (Scratch Pad) is also provided to
enable the processor to reduce its usage of the valuable local
memory bandwidth. Firmware is compiled from C and

Fig. 2. Virtual buffers used to increase performance in the Alteon emulator

4

assembly language using GNU R4000 tools.
One processor receives frames, assembles them into

messages (a message can be sent using several frames [3]),
and extracts the information into a "message descriptor". The
message descriptor contains all the information needed for
building a reply message. The message descriptors are then
written to a shared queue.

The second processor dequeues message descriptors from
the shared queue, and builds up the response message. The
response message is subsequently split into frames which are
passed to the Ethernet transmit interface.

The Tigon 2 chip has a "semaphore" register which allows
having shared memory regions, like the descriptor queue,
preventing simultaneous access from both processors.

2) Building the ROS fragment
The Alteon emulator is able to generate multi-frame

messages up to 64 kB in length. The ROS fragment (the
reply generated by the emulator) can contain up to 50 ROD
fragments, so long as the maximum size limitation is not
exceeded.

The response rate of the Alteon ROS emulator is limited
by the CPU frequency and the use of the shared memory
Bus. The use of multi-frame messages implies building the
message to be sent in a memory region, and then copying
pieces from that message in separate Ethernet frames. The
process of disassembling the message into Ethernet frames
cannot be avoided, but it can be improved. Not all the
contents from the message sent by the ROS are relevant
(only ROS, ROB and ROD headers are meaningful).

In order to improve the speed of generating the replies, we
have used a "virtual buffer" (see Fig. 2). Not all the data in
the reply message is relevant, and also some pieces of the
relevant data can be identical. The "virtual buffer" is seen
from the outside as a contiguous region of memory,
representing a mixture of relevant and irrelevant data. The
internal representation of the "virtual" buffer consists of a
vector of descriptors and the relevant data memory region.

The example in Fig. 2 shows a virtual buffer made up of 5
buffer descriptors and three data memory regions (Header,
SubHeader x, Trailer x). Using a proper interface, this virtual
buffer appears as the "virtual memory region" on the left side
of the figure, when the user wants to copy the contents of
this buffer to a different memory location.

The virtual buffer can significantly improve the
performance when the amount of meaningless data is large.
For example, for a 41-frame message with a single ROB
fragment inside:
• building up the memory region and then splitting it into

frames requires 192452 clock ticks.
• building up a virtual buffer, and then splitting it into

frames requires 36368 clock ticks, for an improvement
of factor 5 in speed.

IV. VALIDATION OF EMULATORS

A number of measurements have been made using the
emulators in small test setups with one PC issuing requests,
one or two switches and a number of emulators. There are

from 1 to 8 Alteons and 1 to 127 FPGA emulators present in
the various tests. In most of these tests the emulators are
operating in alias mode described above. The PC is
programmed to issue requests at intervals which should
produce a given data rate for the responses. The latency is
measured as well as the frequency of packet loss. For these
measurements latency is defined as the time interval between
delivering the request to the PC operating system (OS) and

receiving the response from the PC operating system. Thus
latency includes OS effects, waiting time in intervening
switches, as well as the latency due to the emulator itself.

Fig. 3 shows a latency measurement made with 16 Alteon
emulators, where the total bit rate varies from 150 Mbps to
500 Mbps, for data payloads ranging from 1200 Bytes to
60000 Bytes. The latency varies linearly with the payload
size, which reflects transit time on the wire and in the
switch.

Fig. 4 shows an identical measurement made using a
single Alteon emulator. The linear dependence of latency on
data size is still the case, though barely visible in this figure,
for data rates below 400 Mbps. But for data rates higher
than this, the latency increases dramatically, reflecting queues

1PC-16 Alteons

0

100

200

300

400

500

600

700

800

900

1000

0 20000 40000 60000

data size [bytes]

A
v
g

 l
a
te

n
cy

 [
u

s] 150 Mbps

200 Mbps

250 Mbps

300 Mbps

400 Mbps

500 Mbps

Fig. 3. Latency vs data size for several requested data rates, using 16 Alteon
emulators

Fig. 4. Latency vs requested throughput using 1200 Byte data size, for various
configurations of Alteon and FPGA emulators. Numbers of Alteons greater
than 16 refer to virtual emulators (see text).

5

filling in the Alteon. This represents the upper limit of the
Alteon’s usefulness as a ROB emulator.

Fig. 5 shows a similar measurement made with a variety
of emulators, many of them in alias mode, all with a data
size of 1200 Bytes. Configurations labeled with numbers of
nodes greater than 16 (Alteons) or 127 (FPGAs) were carried
out in alias mode. The latency is well behaved except for the
case of the single Alteon.

Summarizing these measurements and others not shown
here, the emulators behave as expected with the exception of
the Alteons at high data rates (>350 Mbps) for the smallest
data payloads (1200 Bytes). All emulators have reasonable
latencies at any data rate for data payloads > 1200 Bytes.

V. OTHER MEASUREMENTS

A variety of studies have been carried out using the
emulators, which have been reported elsewhere [7], to
determine the behavior of switches using VLANs, flow
control, broadcast, and the effective size of the MAC address

table internal to the switches used.

VI. USE OF THE EMULATORS IN THE ATLAS ARCHITECTURE

The ROB/ROS emulators are now in use in the ATLAS
Dataflow test bed. These measurements are ongoing, but
some sample measurements are presented here.

Fig. 6 shows results obtained using 8 Alteons or 124
FPGA emulators, responding to requests addressed to 1600

ROBs, building an event of 2.2 MB. The measurement
was carried out with the number of event builders (SFIs)
working in parallel ranging from 1 to 8. Fig. 6 shows that
the gain with increasing the number of event builders is
linear with the FPGA emulators, while the Alteon results
show that the Alteons cannot keep up with 200 requests per
Alteon at 120 Hz for these small event fragment sizes
(1400 Bytes).

VII. SUMMARY

Hardware emulators based on an FPGA FE tester and a
customized Alteon NIC have been studied to determine the
limits of their performance. Understanding these limits
allows the intelligent use of these emulators in a large-scale

test bed for the ATLAS Dataflow network.

VIII. ACKNOWLEDGEMENTS

The authors want to thank the ATLAS T/DAQ group for its
support for the research reported here.

IX. REFERENCES

[1] Dobinson et al., “ATLAS TDAQ: A Network-based Architecture,”
ATLAS Document DC-059.

[2] Beck at al., “The base-line DataFlow system of the ATLAS Trigger
& DAQ”, contribution to this conference.

[3] H.P. Beck and F.W. Wickens, “The Message Format used by
DataCollection..”, ATLAS document DC-022

[4] Dobinson et al., “Testing and modeling Ethernet switches and
networks for use in ATLAS high-level triggers”, IEEE Trans. Nucl.
Sci vol. 48, June 2001, p. 607.

[5] Barnes et al., “Testing ethernet networks for the ATLAS data
collection system”, IEEE Trans. Nucl. Sci. vol. 49, April 2002, p.
516

[6] Bee et al., “The raw event format in the ATLAS Trigger & DAQ,
ATLAS Internal Note ATL-DAQ-98-129, Oct. 2002

[7] S. Stancu and M. Ciobotaru, “The use of Ethernet in the DataFlow of
the ATLAS Trigger & DAQ”, to be published in the proceedings of
CHEP 2003

Fig. 6. Event building rate as a function of number of parallel event
builders, for 8 Alteon emulators and for 124 FPGA emulators.

Fig. 5. Latency vs requested throughput using 1200 Byte data size, for
various configurations of Alteon and FPGA emulators. Numbers of Alteons
greater than 16 refer to virtual emulators (see text).

