CIAC 2019 (Rome, Italy)

Shortest Reconfiguration Sequence for Sliding Tokens on Spiders

Duc A. Hoang^{1, 3} Amanj Khorramian² Ryuhei Uehara¹ May 27–29, 2019

¹School of Information Science, JAIST, Japan

²University of Kurdistan, Sanandaj, Iran

³Kyushu Institute of Technology, Japan [As of April 01, 2019]

Reconfiguration and Sliding Tokens

15-PUZZLE

Rubik's Cube

Rush-Hour

They are all examples of Reconfiguration Problems:

two configurations, and a specific rule describing how a configuration can be transformed into a (slightly) different one

whether one can transform one configuration into another by applying the given rule repeatedly

The figures were originally downloaded from various online sources, especially Wikipedia

New insights into the computational complexity theory

Given
Decision
Find
Shortest

Two configurations $A,B, \ \mathrm{and} \ \mathrm{a} \ \mathrm{transformation} \ \mathrm{rule}$

Decide if A can be transformed into B

A transformation sequence between them?

A shortest transformation sequence between them?

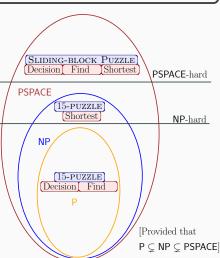
SLIDING-BLOCK PUZZLE

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

15-PUZZLE

New insights into the computational complexity theory

These simple reconfiguration problems give us a new sight of these representative computational complexity classes.



Surveys on Reconfiguration

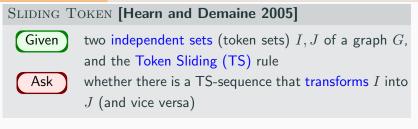
Jan van den Heuvel (2013). "The Complexity of Change". In: Surveys in Combinatorics. Vol. 409. London Mathematical Society Lecture Note Series. Cambridge University Press, pp. 127–160. DOI: 10.1017/CB09781139506748.005

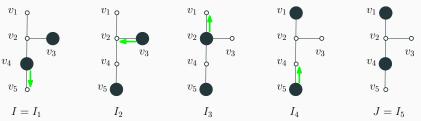
Naomi Nishimura (2018). "Introduction to Reconfiguration". In: *Algorithms* 11.4. (article 52). DOI: 10.3390/a11040052

Online Web Portal

http://www.ecei.tohoku.ac.jp/alg/core/

The SLIDING TOKEN problem





A TS-sequence that transforms $I=I_1$ into $J=I_5$. Vertices of an independent set are marked with black circles (tokens).

Note: This is a variant of SLIDING-BLOCK PUZZLE

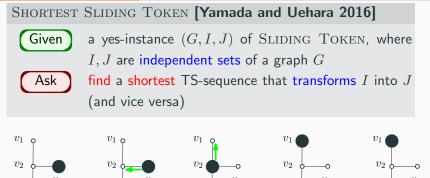
 v_4

 v_4

 $I = I_1$

 v_5

 $J = I_5$



A shortest TS-sequence that transforms $I=I_1$ into $J=I_5$. Vertices of an independent set are marked with black circles (tokens).

Note: This is a variant of SLIDING-BLOCK PUZZLE

Theorem (Kamiński et al. 2012)

It is is NP-complete to decide if there is a TS-sequence having at most ℓ token-slides between two independent sets I,J of a perfect graph G even when ℓ is polynomial in |V(G)|.

Theorem (Kamiński et al. 2012)

SHORTEST SLIDING TOKEN can be solved in linear time for cographs (P_4 -free graphs).

Theorem (Yamada and Uehara 2016)

SHORTEST SLIDING TOKEN can be solved in polynomial time for proper interval graphs, trivially perfect graphs, and caterpillars.

Very recently, it has been announced that

Theorem (Sugimori, AAAC 2018)

SHORTEST SLIDING TOKEN can be solved in O(poly(n)) time when the input graph is a tree T on n vertices.

- Sugimori's algorithm uses a dynamic programming approach.
 (A formal version of his algorithm has not appeared yet.)
- ullet The order of poly(n) seems to be large.

Very recently, it has been announced that

Theorem (Sugimori, AAAC 2018)

SHORTEST SLIDING TOKEN can be solved in O(poly(n)) time when the input graph is a tree T on n vertices.

- Sugimori's algorithm uses a dynamic programming approach.
 (A formal version of his algorithm has not appeared yet.)
- ullet The order of poly(n) seems to be large.

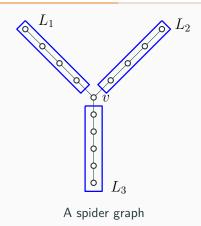
Theorem (Our Result)

SHORTEST SLIDING TOKEN can be solved in $O(n^2)$ time when the input graph is a spider G (i.e., a tree having exactly one vertex of degree at least 3) on n vertices.

 We hope that our algorithm provides new insights into improving Sugimori's algorithm.

SHORTEST SLIDING TOKEN for Spiders

Spider Graphs

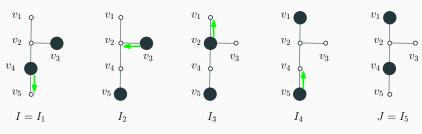


A spider G is specified in terms of

- \bullet a body vertex v whose degree is at least 3; and
- $d = \deg_G(v)$ legs L_1, L_2, \dots, L_d attached to v

Detour

We say that a TS-sequence S makes detour over an edge $e=xy\in E(G)$ if S at some time moves a token from x to y, and at some other time moves a token from y to x.



S makes detour over $e = v_4 v_5$

Challenge

Knowing when and how to make detours.

Our Approach

The body vertex v is crucial. Roughly speaking, we explicitly construct a shortest TS-sequence when

- Case 1: $\overline{\max\{|I \cap N_G(v)|, |J \cap N_G(v)|\}} = 0$
 - ullet No token is in the neighbor $N_G(v)$ of v
 - Detour is not required
- Case 2: $0 < \max\{|I \cap N_G(v)|, |J \cap N_G(v)|\} \le 1$
 - \bullet At most one token (from either I or J) is in the neighbor $N_G(v)$ of v
 - Detour is sometimes required
- Case 3: $\max\{|I \cap N_G(v)|, |J \cap N_G(v)|\} \ge 2$
 - \bullet At least two tokens (from either I or J) are in the neighbor $N_G(v)$ of v
 - Detour is always required

Target assignments

A target assignment is simply a bijective mapping $f:I\to J$. Observe that

- ullet Any TS-sequence S induces a target assignment f_S .
- Thus, each S uses at least $\sum_{w \in I} \operatorname{dist}_G(w, f_S(w))$ token-slides.

Indeed,

Lemma (Key Lemma)

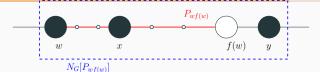
One can construct in linear time a target assignment f that minimizes $\sum_{w \in I} \operatorname{dist}_G(w, f(w))$, where $\operatorname{dist}_G(x, y)$ denotes the distance between two vertices x, y of a spider G.

Case 1: $\max\{|I \cap N_G(v)|, |J \cap N_G(v)|\} = 0$

Observation

In the figure above, w can be moved to f(w) along the shortest path $P_{wf(w)}$ between them only after both x and y are moved.

Case 1: $\max\{|I \cap N_G(v)|, |J \cap N_G(v)|\} = 0$



Observation

In the figure above, w can be moved to f(w) along the shortest path $P_{wf(w)}$ between them only after both x and y are moved.

Theorem

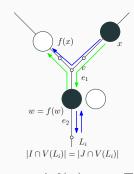
When $\max\{|I\cap N_G(v)|, |J\cap N_G(v)|\}=0$, one can construct a (shortest) TS-sequence using M^* token-slides between I and J, where $M^*=\min_{\mathsf{target\ assignment\ }f}\sum_{w\in I}\mathsf{dist}_G(w,f(w))$. Moreover, this construction takes $O(|V(G)|^2)$ time.

Hint: The Key Lemma allows us to pick a "good" target assignment, and the above observation tells us which token should be moved first.

Special Case

- w and f(w) are both in $N_G(v) \cap V(L_i)$;
- the number of I-tokens and J-tokens in L_i are equal.

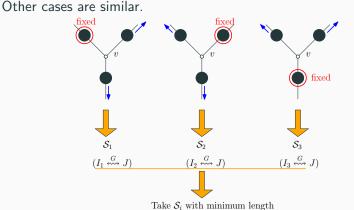
In this case, any TS-sequence must (at least) make detour over either e_1 or e_2 .



- To handle this case, simply move both w and f(w) to v. The problem now reduces to Case 1.
- This is not true when each leg of G contains the same number of I-tokens and J-tokens. However, this case is easy and can be handled separately.
- When the above case does not happen, slightly modify the instance to reduce to Case 1.

Case 3: $\max\{|I \cap N_G(v)|, |J \cap N_G(v)|\} \ge 2$

We consider only the case $|I \cap N_G(v)| \ge 2$ and $|J \cap N_G(v)| \le 1$.



- For any TS-sequence S, exactly one of the $d = \deg_G(v)$ situations (as in the above example) must happen.
- Applying the above trick (regardless of J-tokens) reduces the problem to known cases (either Case 1 or Case 2).

Conclusion

Conclusion

- We provided a $O(n^2)$ -time algorithm for solving Shortest Sliding Token for spiders on n vertices.
- A shortest TS-sequence is explicitly constructed, along with the number of detours it makes.

Future Work

- Extend the framework to improve the running time of Sugimori's algorithm for trees.
- What about the graphs containing cycles?

Bibliography i

Hearn, Robert A. and Erik D. Demaine (2005). "PSPACE-Completeness of Sliding-Block Puzzles and Other Problems through the Nondeterministic Constraint Logic Model of Computation". In: *Theoretical Computer Science* 343.1-2, pp. 72–96. DOI: 10.1016/j.tcs.2005.05.008.

Heuvel, Jan van den (2013). "The Complexity of Change". In: *Surveys in Combinatorics*. Vol. 409. London Mathematical Society Lecture Note Series. Cambridge University Press, pp. 127–160. DOI: 10.1017/CB09781139506748.005.

Kamiński, Marcin, Paul Medvedev, and Martin Milanič (2012). "Complexity of independent set reconfigurability problems". In: *Theoretical Computer Science* 439, pp. 9–15. DOI: 10.1016/j.tcs.2012.03.004.

Nishimura, Naomi (2018). "Introduction to Reconfiguration". In: Algorithms 11.4. (article 52). DOI: 10.3390/a11040052.

Bibliography ii

Yamada, Takeshi and Ryuhei Uehara (2016). "Shortest reconfiguration of sliding tokens on a caterpillar". In: *Proceedings of WALCOM 2016*. Ed. by Mohammad Kaykobad and Rossella Petreschi. Vol. 9627. LNCS. Springer, pp. 236–248. DOI: 10.1007/978–3–319–30139–6_19.