
Introduction to
Algorithms and Data Structures

5.5. Data Structure (0):
Array and Linked List

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

http://www.jaist.ac.jp/~uehara/course/2020/myanmar/
1

mailto:uehara@jaist.ac.jp
http://www.jaist.ac.jp/%7Euehara

Algorithms and Data Structure

• Algorithm: Method for solving a problem
• Data Structure:

– Way for storing data and intermediate values
– Influence on efficiency of a computation
– Depending on algorithms
– Example: array, linked list, stack, queue, heap, tree

ARRAY AND LINKED LIST

Array: Easy to access
• Put data on consecutive area in memory
• We can access any index in a constant

time： Random Accessibility
⇔ (Linked list does not have this property)

• Easy to access in order of indices：
Sequential accessibility
⇔ (Some data may have no ordering)

(E.g. some tree structure)

[First data structure!]

Linked list
• Sequence of records
• They can be located in any places in memory
• Each item stores the place(s) of its “next” (and

“previous”) data
– Data: storing data
– Pointer: indicates its “next” data (by address)

• Some variations
– One-way linked list: Store “next”
– Two-way linked list: Store “next”/“previous”

– Tree can be: Store “neighbors”

data

pointer

data

pointer

data

pointer

data

pointer

data

pointer

data

pointer

data

pointer

[Second data structure]

data

← →

data

→

One-way linked list
• Sequence of records

– Data: store data
– Pointer: indicates its “next” data (by address)

typedef struct{
int data;
struct list_t *next;

} list_t;
list_t *new_r;
new_r =
(list_t *)

malloc(sizeof(list_t));

data pointer

Initialization

Example: Store many data
into one-way linked list

• Basic:
– Initialize list. head indicates the top data
– For each data x, make a record r that has x in data area
– Append (concatenate) r to the list

• We append at the top or last of the list

head

head

New record r

x

End of list

list_t *head, *new_r;
head = NULL;
while(/* we have data */){

int x = input data;
new_r = (list_t *)

malloc(sizeof(list_t));
new_r->data = x;
new_r->next = head;
head = new_r;

}

headhead

21
head

21
head

13

13 1333

New record is added at the top
(in reverse order)

A program for adding new records at
the top of the linked list

1 2

3 4

(It is empty at first)

Advantage of linked list (comparing to array):

Easy to add/remove data

• No move of data • (Many) data should be shifted
head head

Update values
locally

1

2

3

1

4

2

3

Move all
remaining data

Insert

[Important point!]

One-way linked list:
＜Insertion of data＞

• Insert data x after the
node p
– Make a record r
– “Next node of r” was

“next node of p”
– “next node of p”

becomes r

void insert (Node p, data x) {
Node r = new Node(x, p.next);
p.next = r;

}

head

head

p

p

r ｘ

• Remove the next node of node p
→ We can skip it (without removal)

head p

head p It is discarded

One-way linked list:
＜Remove data (1)＞

void deleteNextNode (Node p) {
p.next = p.next.next;

}

↓We like to remove this guy!

x
head p

head p
x

y is gone

One-way linked list:
＜Remove data (2)＞

• Remove the current node p (or its data y)
→ We do not remove p itself, but we remove the next node q of p.

Before removing, copy the data x from q to p.

ｙ

void delete (Node p) {
p.data = p.next.data;
p.next = p.next.next;

}

[bit tricky!]

Properties of one-way linked list

• Advantage: Easy to insert/remove
O(1) time ⇔ array requires O(n) time

• Disadvantage: “Taking the i-th data” is slow…
O(n) time ⇔ array requires O(1) time

Consider:
– In practical, when should you use array, and when

should you use one-way linked list?
– How about advantage/disadvantage of one-way

and two-way linked lists?

	Introduction to �Algorithms and Data Structures��5.5. Data Structure (0):� Array and Linked List
	Algorithms and Data Structure
	Array and LINKED LIST
	Array: Easy to access
	Linked list
	One-way linked list
	Example: Store many data�into one-way linked list
	A program for adding new records at �the top of the linked list
	Advantage of linked list (comparing to array):�Easy to add/remove data
	One-way linked list: �＜Insertion of data＞
	One-way linked list:�＜Remove data (1)＞
	One-way linked list:�＜Remove data (2)＞
	Properties of one-way linked list

