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Abstract

This paper proposes an improved sound segre-
gation model based on auditory scene analy-
sis in order to overcome three disadvantages in
our previously proposed model. The improved
model solves the problem of segregating two a-
coustic sources by using constraints related to
the heuristic regularities proposed by Bregman.
In the improvements, we (1) reconsider the es-
timation of unknown parameters using Kalman
filtering, (2) incorporate a constraint of chan-
nel envelopes with periodicity of the fundamen-
tal frequency into the grouping block, and (3)
consider a constraint of smoothness of instan-
taneous amplitudes on channels. Simulations
are performed to segregate a real vowel from a
noisy vowel and to compare the results of us-
ing all or only some constraints. The proposed
model can improve our previous model and pre-
cisely segregate real speech even in waveforms
using all of the constraints related to Bregman’s
four regularities.

1 Introduction

The problem of segregating the desired signal from a
noisy signal is an important issue not only in robust
speech recognition systems but also in various types of
signal processing. This problem has been investigated
by many researchers, and many methods have been pro-
posed. For example, an investigation of robust speech
recognition [Furui and Sondhi, 1991}, includes noise re-
duction or suppression [Boll, 1979] and speech enhance-
ment methods [Junqua and Haton, 1996]. An investiga-
tion of signal processing includes signal estimation us-
ing a linear system [Papoulis, 1977] and signal estima-
tion based on a stochastic process for signals and noise
[Papoulis, 1991]. One recent proposal is Blind Separa-
tion [Shamsunder and Giannakis, 1997], which estimates
the inverse-translation-operator (input-output transla-
tion function) by using the observed signal to estimate
the original input.

However, in practice, it is difficult to segregate each
original signal from a mixed signal, because this problem
is an ill-posed inverse problem and the signals exist in
a concurrent time-frequency region. Furthermore this
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problem is difficult to solve without using constraints on
acoustic sources and the real environment.

On the other hand, the human auditory system can
easily segregate the desired signal in a noisy environment
that simultaneously contains speech, noise, and reflec-
tions. Recently, this ability of the auditory system has
been regarded as a function of an active scene analysis
system called ” Auditory Scene Analysis (ASA)”. ASA
has become widely known as a result of Bregman’s book
[Bregman, 1990]. Bregman has reported that the human
auditory system uses four psychoacoustically heuristic
regularities related to acoustic events to solve the prob-
lem of Auditory Scene Analysis. These regularities are
(i) common onset and offset, (ii) gradualness of change,
(iii) harmonicity, and (iv) changes occurring in the a-
coustic event [Bregman, 1993]. If an auditory sound seg-
regation model were constructed using constraints relat-
ed to these heuristic regularities, it should be possible to
uniquely solve the sound segregation problem (ill-posed
inverse problem). In addition, this model should be ap-
plicable not only to a preprocessor for robust speech
recognition systems but also to various types of signal
processing.

Some ASA-based investigations have shown that it
is possible to solve the segregation problem by apply-
ing constraints to sounds and the environment. These
approaches are called ”Computational Auditory Scene
Analysis (CASA)”. Some CASA-based sound segrega-
tion models already exist. There are two main types of
models, based on either bottom-up or top-down process-
es. Typical bottom-up models include an auditory sound
segregation model based on acoustic events [Cooke, 1993,
Brown, 1992], a concurrent harmonic sounds segrega-
tion model based on the fundamental frequency [de
Cheveigné, 1993], and a sound source separation system
with an automatic tone modeling ability [Kashino and
Tanaka, 1993]. Typical top-down models include a seg-
regation model based on psychoacoustic grouping rules
[Ellis, 1996] and a computational model of sound seg-
regation agents [Nakatani et al., 1995a, Nakatani et al.,
1995b]. All of these models use some of the four regu-
larities and the amplitude (or power) spectrum as the
acoustic feature. Thus, they cannot completely extract
the desired signal from a noisy signal when the signal
and noise exist in the same frequency region.

In contrast, we have been tackling the problem of seg-



regating two acoustic sources as a fundamental prob-
lem. We believe that this problem can be unique-
ly solved by using amplitude, phase information, and
mathematical constraints related to the four psychoa-
coustically heuristic regularities [Unoki and Akagi, 1997,
Unoki and Akagi, 1999a).

This fundamental problem is defined as follows [Unoki
and Akagi, 1997, Unoki and Akagi, 1999a]. First, only
the mixed signal f(t), where f(t) = fi(t) + f2(t), can be
observed. Next, f(t) is decomposed into its frequency
components by a filterbank (the number of channels is
K). The output of the k-th channel X} (¢) is represented

by
Xi(t) = Sk(t) exp(jwrt + jor(t)). (1)
Here, if the outputs of the k-th channel X; x(¢) and
X (t), which correspond to fi(t) and fa(t), are as-
sumed to be
X1 k(t) = Ag(t)exp(jwrt + j01%(t)), (2)
Xok(t) = By(t)exp(jwit + j021 (1)), (3)

then the instantaneous amplitudes of the two signals
A (t) and Byg(t) can be determined by

A(t) Sy (t) sins(iizgiz)— or(t)) : (4)
Bu(t) — Sk (1) Sins(i(flkg(:zt)_ 91k(t))’ (5)

where 0 (t) = O2x(t) — 01 (t), Ok (t) # nm,n € Z, and
wy, is the center frequency of the k-th channel. Instanta-
neous phases 61 (t) and a5 (t) can be determined by

—  _arctan Yi(t) cos g (t) — sin gy (t)
but) = tan ( s1n¢k()+cos¢k( ))
Y (t)
+ arcsin (Sk N0l ) (6)
C aretan Y (t) cos ¢ (t) + sin ¢ (t)
bar(t) = tan (Yk )sin qbk(t) . ¢k(t)>
)Yi(t)
+ arcsin ( AN ACEES] ) (7)
where
Yi(t) V (2Ak () Bi(1)? — Zi(t)?/ Zk(t),  (8)
Zk(t> = S (t)2 — Ak(t)2 — Bk(t)2. (9)

Hence, f1(t) and f2(t) can be reconstructed by using
the determined pair of [A(t) and 0y (¢)] and the deter-
mined pair of [By(t) and 62 (t)] for all channels. How-
ever, Ay (t), Bi(t), 601x(t), and 025 (t) cannot be uniquely
determined without some constraints, as is easily under-
stood from the above equations. Therefore, this problem
is an ill-inverse problem.

To overcome this problem, we have tried to construc-
t a basic solution using constraints related to the four
regularities [Unoki and Akagi, 1997, Unoki and Akag-
i, 1999a]. Thus, we have proposed a sound segregation
model based on auditory scene analysis [Unoki and Aka-
gi, 1999b]. This model solves the problem of segregating
two acoustic sources by using constraints on the conti-
nuity of instantaneous phases as well as constraints on
the continuity of instantaneous amplitudes and funda-
mental frequencies. In simulations, we showed that all
constraints related to the four regularities are useful in
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Figure 1: Auditory sound segregation model.

segregating an AM-FM harmonic complex tone from a
noisy AM-FM harmonic complex tone. We also showed
that the proposed model can precisely segregate a real
vowel from a noisy vowel even in waveforms.

However, this model has the following disadvantages:

(1) the segregation accuracy improvement differs de-
pending on the two types of noise (white or pink
noise),

(2) it often fails to extract the components of envelopes
with periodicity at the fundamental frequency by
using the constraint of common onset / offset, and

(3) the segregated vowel feels as if it does not have good
hearing quality.

This paper proposes an improved sound segregation
model based on auditory scene analysis to overcome the
above disadvantages.

2 Auditory sound segregation model

In this paper, the desired signal fi(t) is assumed to
be a harmonic complex tone, where Fy(t) is the funda-
mental frequency. The proposed model segregates the
desired signal from the mixed signal by constraining the
temporal differentiation of Ay (t), 614 (t), and Fo(t).

The proposed model is composed of four blocks: an
auditory-motivated filterbank, an Fj estimation block, a
separation block, and a grouping block, as shown in Fig.
1. Constraints used in this model are shown in Table 1.

2.1 Awuditory-motivated filterbank

The auditory-motivated filterbank decomposes the ob-
served signal f(t) into complex spectra Xy (t). This fil-
terbank is implemented as a constant Q gammatone fil-
terbank that is constructed with K = 128, a bandwidth
of 60 6000 Hz, and a sampling frequency of 20 kHz [Un-
oki and Akagi, 1997]. Sk(t) and ¢ (t) are determined
by using the amplitude and phase spectra defined by the
wavelet transform [Unoki and Akagi, 1997].

2.2 Fj estimation block

The Fj estimation block determines the fundamental fre-
quency of f1(t). This block is implemented as the Comb
filtering on an amplitude spectrogram Sy, (t)s [Unoki and
Akagi, 1999b]. Since the number of channels in Xj(t) is
finite, the estimated Fy(t) takes a discrete value. In ad-
dition, the fluctuation of Fy(t) has a staircase shape and
the temporal differentiation of Fy(¢) is zero at any seg-
ment. Therefore, this paper assumes that Eg r(t) = 0 in
constraint (ii) of Table 1 for a segment. Let the length
of the above segment be T}, — T _1, where T}, is the con-
tinuous point of Fy(¢).



Table 1: Constraints corresponding to Bregman’s psychoacoustical heuristic regularities.

Regularity (Bregman, 1993)

Constraint (Unoki and Akagi, 1999)

(1) Unrelated sounds seldom start or stop at exactly
the same time (common onset/offset)

Synchronism of onset/offset

[Ts — Tk,on] < ATg
|18 — Ikon| < Alg

(ii) Gradualness of change (a) Slowness (piecewise- dA(t)/dt = Ci,r(t)
(a) A single sound tends to smoothly and slowly differentiable polynomial  df1x(t)/dt = Dx, r(t)
change its properties approximation) dFy(t)/dt = Eo r(t)
(b) A sequence of sounds from the same source (b) Smoothness oA = f b [A(R+1 (t)]?dt = min
tends to slowly change its properties (Spline interpolation) op = f t"[H(R‘H (t)]%dt = min

(iii) When a body vibrates with a repetitive period,
these vibrations give rise to an acoustic pattern
in which the frequency components are multiples
of a common fundamental (harmonicity)

(iv) Many changes that take place in an acoustic

= 37, [(log A1) FH2

= min (new)

Multiples of the repetitive
fundamental frequency

n x Fo(t), n=12,---,Ng,
(=K _ [log(n'Fo(t)/fo)“
2

log

(a) Slow modulation

event will affect all components of the result- Correlation between the % ~ %, k#{
ing sound in the same way and at the instantaneous amplitudes
same time (b) Fast modulation
Channel envelopes with |Fo(t) — Fo(t)| < AFy (new)
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Figure 2: Concept of constraints related to Bregman'’s
regularities.

2.3 Grouping block

The grouping block determines the concurrent time-
frequency region of the desired signal using constraints
(i) and (iii) in Table 1, and then reconstructs the segre-
gated instantaneous amplitude and phase using the in-
verse wavelet transform [Unoki and Akagi, 1999a). fi(t)

and fo(t) are the reconstructed fi(t) and fo(t).

Constraint (i) is implemented by comparing the on-
set/offset (Tk,on, Torr) Of Xi(t) with the onset/offset
(Ts, Tr) of X;(t) corresponding to Fy(t), where ATy =
25 ms and ATg = 50 ms. Onset Ty on and offset Ty, g
in X (t) are determined by using the nearest maximum
or minimum point of |d¢(t)/dt| and dSy(t)/dt.

Constraint (iii) is implemented by determining the
channel number corresponding to the integer multiples of
Fy(t). The channel number ¢ of X;(¢), in which the har-
monic components exist in the output of the ¢-th chan-
nel, is determined by using (iii) in Table 1. [-] is the ceil
symbol, meaning the approximation of the closest integer
value toward positive infinity. In addition, K is an even
number and fj is the center frequency of the analyzing
wavelet in the constant Q gammatone filterbank.

and 6a5(t) from Sk(t) and ¢k (t) using constraints (ii)
and (iv) in the determined concurrent time-frequency
region, as shown in Fig. 2 [Unoki and Akagi, 1999b)].

Constraint (ii) is implemented such that Cj r(t) and
Dy, r(t) are linear (R = 1) piecewise-differentiable poly-
nomials in order to reduce the computational cost of es-
timating Cy r(t) and Dy r(t). In this assumption, Ag(t)
and 601 (t), which can be allowed to undergo a temporal
change, constrain the second—order polynomials (Ar(t) =
kal dt—l—C,’cOandle fD]cl +Dk0)

In the segment Tj, — T—1 that can be determined by
Eo r(t) = 0, the terms Ag(t), Bi(t), 61x(t), and 02 (¢)
are determined by the following steps. First, the estima-
tion regions, Co(t) — Pi(t) < Cr1(t) < Cro(t) + Pr(t)
and Dy, o(t) = Qr(t) < Di(t) < Dio(t) + Qi (t), are de-
termined by using the Kalman filter, where C o(t) and

Dy, o(t) are the estimated values and Pg(t) and Qy(t) are
the estimated errors (See Appendix A). Next, the candi-
dates of Ci 1(t) at any Dy 1(t) are selected by using the
spline interpolation in the estimated error region [Unoki
and Akagi, 1999a]. Then, Cj,1(t) is determined by using

< A ,21 >
arg max D i R (10

Cr.o—Pr<Cx 1<Chk.o+Ps ||Ak||||AkH

Cra=

where Ay (t) is obtained by the spline interpolation and

Ak(t) is determined in the across-channel that satisfies
constraint (iii). Finally, Dy 1(¢) is determined by using

< Ap, A >
arg max =Tk Tk 7 (11

Do~ @r<Dr1<Drot+@Qi || Ag|||| Ax ||

Dy =

Since, 0 (t) is determined by

Sk (t) sin(¢x(t) — O1x(1)) )
Sk (t) cos(pr(t) — 011 (1)) + Ci(2) (i2)

01 (t) = arctan (
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Figure 3: Signal processing of a separation block.

where Cy(t) = — [ Ci,r(t)dt—Cl,o = —Ag(t) [Unoki and

Akagi, 1999&], and 01 () is determined from Dy 1(t), the
terms Ag(t), Bi(t), and 02, (¢t) can be determined from
Eq. (4), Eq. (5), and 625 (t) = 0k (t)+061x(t), respectively.

3 Improvements to previous model

To overcome the three disadvantages in the previous
model, we improved the following three respects.

3.1 Estimation of C} () and Dy (¢)

We previously set the statistical parameters (mean
and variance) for Ag(t) and 01,(t) with ad-hoc values
without considering the distribution of the power of
noise. As a result, the estimation of Cy, o(¢) and Dy, o(¢)
was influenced by the power of the noise components
that passed through the channels.

Since we need to know the statistical parameters of
A (t) and 615(t), we improved the estimation of C o(¢)
and Dy o(t) by using Kalman filtering as follows (See
Appendix A about details):

1. estimate By(t) and 63 (t) with Kalman filtering,
2. estimate Ay (t) and 014 (t) from Egs. (4) and (6),

3. calculate mean and deviation of Ag(t) and 6014 (¢),
and

4. estimate Cio(t) and Dgo(t) with the previous
method [Unoki and Akagi, 1999b)].

3.2 Constraint of envelopes with periodicity

Fig. 4 shows an original signal /a/ and its instanta-
neous amplitudes, A (t)s. Channel envelopes with peri-
odicity at the fundamental frequency Fy(t) exist at high-
er frequencies. This is caused by using constant Q filter-
bank.

In our previous model, the constraint of common onset
and offset often failed to extract channel envelopes with
the original added white noise, but the constraint could
extract channel envelopes with the original added pink
noise. This is because the power of noise components at
a higher frequency disturbed the detection of the onset
and offset of the desired signal using constraint (i).

We reconsider constraint (iv) to solve this problem.
We divide constraint (iv) into two temporal modulation-
s: slow modulation and fast modulation. Then, we re-
gard slow temporal modulation as common fluctuation-
s of Ak(t) and regard the fast temporal modulation as
channel envelopes with periodicity at the fundamental
frequency.

In order to detect channel envelopes with periodici-
ty at Fo(t), we implement a detection of the difference

L
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Envelopes with
periodicity

frequency

Common onset / offset
1000 zona 3n0a 4000 so0a G000 roon 0o gaoa 10000
time

Figure 4: Original signal /a/ (top) and its instantaneous
amplitudes, A (t)s (bottom).

between Fy(t) and Fy(t) as the fast modulation, where
Fy(t) is determined by the Fy estimation block and Fy(¢)
is estimated by using the autocorrelation between Sy ()
for any t as follows.

/t+T

Acorr,k(ta T) = Sk CL‘ + T)d[L' (13)

TO (t) = arg max Acorr,k (ta T)7 (14)
Tmin STST;nax
Fot) = 1/Tp(t), (15)

where Tmin = 1/400, Tmax = 1/60, T = 1/60, and 7
is lag length. The above common value, 60, means the
lowest frequency of the filterbank. In this paper, AFy of
constraint (iv-b) in Table 1 is 10 Hz.

3.3 Smoothness of A(t) on channels

In our previous model, we set Ay(t)s on the non-desired
signal region, which is not constraint by (i) and (iii),
have been to zero. However, zero-setting might cause a
decrease in the quality of the segregated signal form our
experience and some reports [Boll, 1979].

To consider the above disadvantage, we consider the
constraint of smoothness on the frequency axis instead
of zero-setting. This constraint is shown in Table 1 (ii-
b). For any t, we set values, which are determined by
using spline interpolation, into A, (t)s when these are not
satisfied in grouping constraints.

3.4 Overview of the proposed model

Fig. 5 shows an overview of signal processing of the
proposed model. First, the noisy vowel /a/ f(t) shown
in Fig. 5 A (the SNR of f(t) is 10 dB) is decomposed
into Sk(t) and ¢x(t) as shown in Figs. 5 B and C, re-
spectively. Next, Fy(t) is estimated as shown in Fig. 5
D. The concurrent time-frequency region of the desired
signal f1(t) is determined using constraints (i), (iii), and
(iv-b) as shown in Figs. 5 E, F, and G. Finally, the
instantaneous amplitudes and the instantaneous phases
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Figure 5: Overview of signal-flow in proposed model.

of the two signals are determined from Sk (t) and ¢y (¢)
using constraints (ii) and (iv-a). The determined Ag(¢)
and 01 (t) are shown in Figs. 5 I and J, respectively.
The segregated signal fi(t) is shown in Fig. 5 K. In
this figure, the segregated By(t), Oax(t), and fa(t) are
omitted.

4 Simulations

To show that the proposed method can segregate the
desired vowel from noisy vowel even in waveforms, we
performed the following three simulations:

1. vowel segregation (/a/, /i/, /u/, /e/, /o/) from a
noisy vowel: the dataset size was 160 (five vowels,
four speakers, four noise signals, and two types of
noise);

2. vowel segregation (/aoi/) from a noisy vowel: the
dataset size was 32 (one vowel, four speakers, four
noise signals, and two types of noise); and

3. vowel segregation from another vowel (double vowel
condition): one vowel was (/a/, /i/, /u/, /e/, [o/)
from the male (mau) or female (fkn) speaker and the
other was /aoi/ from the female (fsu) or male (mht)
speaker, and the dataset size was 40 (five vowels,
two speakers, and four noise signals).

The speech signals were the Japanese vowels of four
speakers (two males and two females) in the ATR-
database [ATR Tech. Rep., 1988]. The noise was pink or
white noise and the SNRs of noisy signals ranged from
5 to 20 dB in 5-dB steps.

4.1 Evaluation measures

We used two measures to evaluate the segregation per-
formance of the proposed method.

One was the ratio of the original fi(t) (signal) and the
difference between the original and the segregated signal
f1(t) (noise), as defined by

foT fi(t)*dt .
JT () = fu(t))2dt

The aim of using this measure was to evaluate whether a
segregation model can segregate a desired signal from a
noisy signal precisely even in waveforms. This measure
is called “segregation accuracy.”

The other measure was an objective distortion esti-
mator for hearing aids such as the spectrum distortion

101ogqq (dB) (16)

reconsidered with the simultaneous and temporal mask-
ing effects. This measure is defined by

5 mma 22

" X1(w)

(dB)  (17)

where X;(w) and X 1(w) are the amplitude spectra of

fi1(t) and fi(¢), respectively. This is called “auditory-
oriented spectral distortion (ASD)” [Mizumachi and Ak-
agi, 1999]. In the above equation, the frame length is
21.3 ms, the frame shift is a quarter of the frame length,
W is the analyzable bandwidth of the filterbank (about
6 kHz), the sampling frequency is 48 kHz, and the win-
dow function is Hamming [Mizumachi and Akagi, 1999].
Since the sampling frequency of our model is 20 kHz, we
have to do an up-sampling of 20 kHz to 48 kHz to use
the ASD.

4.2 Comparison with the other model

In addition, we compared the proposed model’s perfor-
mance with the performances of other typical methods
for the above simulations. The other methods corre-
spond to:

(1) Previous model [Unoki and Akagi, 1999b],

(2) Segregation model using constraints (ii-a) and (iii)
(labeled by Cond. 1),

— extracting the harmonics using the Comb filter
— determining Ag(t) and 6015(t) from C(t) and
Dy o(t)
(3) Segregation model using constraints (iii) (labeled by
Cond. 2),

— extracting the harmonics using the Comb filter
— Ag(t) = Sk(t) and 014 (t) = Pi(t)
(4) Spectral subtraction [Boll, 1979] on the gammatone
filterbank (labeled SS), and

— bias (mean of noise) subtraction
— half-wave rectification
— reduction of noise residual

(5) Segregation model using no constraints (labeled by
Cond. 3).

— all-pass filtering
— Ag(t) = Sk(t) and 014 (t) = ¢i(t) for all k
We compared with the above conditions as follows:

(1) can the proposed method improve our previous
model,
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does it have the advantage of the smoothness of the
instantaneous amplitude and phase,

does it have the advantage of the instantaneous
phase,

is it more useful than basic noise suppression, and

(5) is the proposed method’s segregation accuracy im-
proved as noise separation.

4.3 Results and considerations

Figs. 6, 8 and 10 show the auditory-oriented spectral
distortion (ASDs) in the three simulations. In these fig-
ures, the bar height shows the mean of the ASD and the
error bar shows its standard deviation. Figs. 7, 9 and
11 show the segregation accuracies in the three simula-
tions. In these figures, the bar height shows the mean
of the segregation accuracy and the error bar shows its
standard deviation.

The results show that the proposed method is better
than our previous model, and that it obtained better
segregation accuracy than the other five methods. The
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Figure 9: Segregation accuracy for simulation 2: (a)
bandpassed pink noise, (b) bandpassed white noise.

proposed model can precisely segregate a desired vowel
from a noisy vowel even in waveforms, and it can reduce
the ASD for sound segregation. However, we cannot
conclude that it can precisely segregate a desired vowel
form a noisy vowel in hearing, by using only the AS-
D.] We need to do hearing tests by using a subjective
measure. The comparisons with conditions (2) and (3)
show that the simultaneous signals can be precisely seg-
regated using the instantaneous amplitude and phase.
The comparison with condition (4) shows that the pro-
posed model is more useful than spectral subtraction in
the measure of segregation accuracy and the ASD. The
comparison with condition (5) shows that the improve-
ments in segregation accuracies at an SNR of 5 dB for
simulations 1, 2 (in the case of pink-noise), and 3 were
about 12, 8, and 5 dB, respectively.

5 Conclusions

This paper proposes an improved sound segregation
model based on auditory scene analysis in order to over-
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come three disadvantages in our previous model. This
improved model solves the problem of segregating two a-
coustic sources by using constraints related to the heuris-
tic regularities proposed by Bregman. We first reconsid-
er the estimation method of Cj o(t) and Dy o(t), then
incorporate the constraint of channel envelopes with pe-
riodicity of the fundamental frequency into the grouping
block, and finally consider the constraint of smoothness
of A (t) on channels.

We demonstrated that the proposed model can im-
prove the previous model and that it can precisely seg-
regate real speech from noisy speech in three simulation-
s of segregating two acoustic sources. The evaluations
showed that the proposed model can improve the previ-
ous model, and that all constraints related to the four
regularities are useful in order to segregate the desired
vowel from a noisy vowel. Furthermore, the proposed
method can precisely segregate the desired signal from
noisy signal, compared with basic spectral subtraction.

In the future work, we will (1) do hearing tests for
vowel segregation by using the proposed model and some
other model, and (2) improve the proposed model so that
it can be applied to consonants-vowel segregation.
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Appendix A: Reconsidered estimation method
of Cj0(t) and Dy o(t)

The system of the Kalman filtering is defined by
F,.x, + G,,w,,

H,. x, + Vv,

(state), (18)
(observation), (19)

Xm+1 —
Ym =

where the mean and variance of the terms, xg, w,,, and
Vi, are known, and F,,, G,,, H,,, and v,, are known
matrices [Brown and Hwang, 1992]. The Kalman filter-
ing problem determines the minimum variance require-
ment X,,|,,, from the observed y,,, m =0,1,2,---, M as
follows.

> Ym) (20)

The minimum variance is sequentially calculated.

)A(m\m = E(Xm + Yo, -

1. Filtering equation

)A(m\m = )A(m|m—1 + Km(Ym - Hmf(m\m—l) (21)

)A(m+1\m = F7n§(m|m (22)

2. Kalman gain

K,, = 2A:m\m—lI_I:(nT

S (23
Hmzm\mle;knT + E’Um

3. Covariance equation for the estimated-error

E7n\m = 2m|‘mfl - KmHmﬁm\mfl (24)
Soitim = FuZamFEl + G2, G:L(25)

4. Initial state

Xo|—1 = Xo, o1 = Zap. (26)

The symbols and X are the mean and variance of
a random variable, respectively.

In this paper, we reconsider how to estimate C}, g and
Dy, o from the observed component Xy (¢) using Kalman
filter. The estimation duration is [Tp_1 — Tp]. It is
then decomposed into discrete time t,,, = m - At, m =
0,1,2,---, M, where the sampling period is At = 1/f;
and fs is the sampling frequency.

First, Bi(t) and 0o (t) are estimated the Kalman fil-
tering with the parameters in Egs. (18) and (19) as
shown in Table 2. By performing the Kalman filter-
ing according to Eqs. (18) and (19), we obtain the
minimal-variance estimated value X(t;,) = Xp|m and

the covariance matrix é(t,,) = ﬁ?m‘m at discrete time
tm. Therefore, we obtain the estimated By(t) = |%(t)|
and Oz (t) = |%(t)]- A )

Next, we obtain the estimated A (¢t) and 615 (¢) from
Egs. (4) and (6) from the above parameters.

Finally, Cko(t) and Dy (t) are estimated with our
previous Kalman filtering [Unoki and Akagi, 1999b] with
the parameters in Egs. (18) and (19) as shown in Table 2.
Note that let Cy(t) and Dy (t) be C(t) = [ Ci,o(t)dt and
Dy(t) = [ Dro(t)dt, respectively. By Performing the
Kalman filtering according to Egs. (18) and (19), we ob-
tain the minimal-variance estimated value X(tm) = Xp|m
and the covariance matrix €(t,) = 2m‘m at discrete
time t,,. As a result, the estimated CA’kﬁ(t) and Dk,g (1),
and the estimated errors Pj(t) and Q(t) are deter-
mined by Cjo(t) = |dx(t)/dt| and Py(t) = |dé(t)/dt|,
Dy o(t) = arg(dx(t)/dt), and Qy(t) = arg(dé(t)/dt), re-
spectively.



