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Abstract

In studies of analogical reasoning, the distinction between sur-
face and structural similarity has been repeatedly investigated.
However, this distinction has not been investigated in a gen-
erative analogy where target representations are not provided
in advance. This study uses computational methods to analyze
how this distinction is involved in generative analogy. In the
experiment, participants were given an example and asked to
generate an original graphic by modifying the example. The
procedure was repeated twice. The result indicated that the
first graphics that the participants generated were similar in
both surface and structural features to the presented example.
However, the second graphics that they generated varied in the
degree of surface and structural similarity. This result may in-
dicate characteristics of generative analogy but is also compati-
ble with the results of previous studies of analogical reasoning.
Keywords: Similarity; Analogical Reasoning; Creation;
Learning by example

Introduction
Similarity is a central component of intelligent processing in
both human thinking and computational systems. In partic-
ular, analogical reasoning, which infers a target situation by
applying a known base instance, is known to play a central
role in human cognition. There have been numerous psycho-
logical and computational studies of the nature of analogical
reasoning.

Recently, computational modeling on this topic extended
the scope of its field of application to include more complex,
large-scale situations. One such situation is visual analogy.
For example, Forbus and Usher (2002) constructed a model
that shows mapping between two freehand drawings and Fer-
guson (2007) proposed a method that flexibly constructs map-
ping between non-isomorphic pictures. These studies offer a
new direction for studies of analogical reasoning by using re-
cent developments in computational resources.

In contrast, there has been little extension of the research
framework for psychological studies of analogical reasoning.
Indeed, although recent experimental research on analogical
reasoning controls details factors based on a computational
model and uses complex stimuli (e.g., Gentner & Sagi, 2006),
the tasks used in these studies are similar to those in studies
conducted 10 years ago. The main task used in studies of
analogical reasoning has always been similarity judgment or
mapping between a base and target.

The authors consider that the tasks used in these previous
studies involve analogical reasoning that defines target repre-
sentations in advance. In the real world, analogical reasoning
is applied to a task where humans freely generate a target
representation after observing a base. In this paper, we call
such activity generative analogy. A creation of visual art is

an example of generative analogy, where artists explore novel
representations (target) based on observations of a natural ob-
ject as a motif (base). Although some researchers have dealt
with generative analogy in psychological studies (Ishibashi
& Okada, 2004; Okada, Yokochi, Ishibashi, Namba, & Ueda,
2007), there are no studies presenting a formal analysis that
links generative analogy with computational models of ana-
logical reasoning.

Therefore, in the present study, we attempted to apply
formal computational analysis to a generative analogy. To
achieve this goal, we used computational models of analogi-
cal reasoning to score work produced in a generative analogy
task. Based on the computed scores, we investigated the hy-
potheses described below.

Hypotheses
The focus of studies on analogical reasoning is the distinction
between two types of similarity: similarity of surface features
and similarity of structural features. Surface features indi-
cate the attributes of objects, and structural features indicate
the relations between objects. The structure mapping theory
(Gentner, 1983) used predicate calculus to represent this dis-
tinction: surface similarity is a matching of predicates that
have a single argument. Structural similarity is constructed
based on matching predicates that have several arguments.
This distinction was implemented in a computational model
constructed by Falkenhainer, Forbus, and Gentner (1989).

The structure mapping theory assumes that useful analog-
ical reasoning is achieved by using a base that shares only
structural features with a target. However, many psychologi-
cal studies have indicated a difficulty in using structural simi-
larity in analogical reasoning (Holyoak & Koh, 1987). People
usually prefer literal similarity in which a base shares both
surface and structural features with a target (Gentner, Ratter-
mann, & Forbus, 1993). If there is no surface similarity, they
take little notice of structural similarity. The exceptions are
experts in the target task domain (Novick, 1988) or those who
have received sufficient training on the target task (Markman
& Gentner, 2000).

Following the above studies, the present study investigates
the distinctions between surface and structural similarity in a
generative analogy task. Specifically, we examined the fol-
lowing two hypotheses:

• Our literal similarity hypothesis predicted that participants
would be influenced by both the surface and structural fea-
tures of a presented base when they performed the target
task first.



Figure 1: User interface of task environment.

• Our relational shift hypothesis predicted that participants
would be strongly influenced by the structural features of a
presented example after they practiced the target task.

Task
In this study, we formulated a generative analogy task af-
ter investigating basic education strategies in visual art. As
Ishibashi and Okada (2004) indicate, learning by example is
a popular learning method in this field. In our study, partic-
ipants generated original graphics by modifying an example.
This task is similar to the type of analogical modification that
Okada et al. (2007) investigated.

The type of graphic that participants generated was graphic
composition, which requires learners to create an attractive
and original layout by arranging simple geometric shapes. In
basic education on visual art, learners work on this task to
develop the ability to control attributes of an individual object
with the aim of constructing a wholly consistent graphic. This
learning goal of graphic composition seems to be compatible
with the assumptions of the structure mapping theory.

We developed a task environment in which participants ob-
served an example of a graphic composition and then pro-
duced an original composition (Figure 1). The user interface
consisted of two panels: the right panel presented an example
and the left panel provided a space in which the participants
created their composition. Each panel consisted of a 5 by 5
grid and the graphics were created by arranging several ob-
jects on the grid. The environment provided menus for as-
signing the values of the x-axis, y-axis, darkness, size, and
shape.

Method of analysis
For the above task environment, we developed a method
of computing the surface similarity and structural similarity
of the graphics generated by a participant (target) and the
graphic presented to the participant (base). We assumed that
if a target shared structural features with a base, the partici-
pant who had generated the target was influenced by the struc-
tural features of the graphic. Similarly, if a target shared com-
mon surface features with a base, we assumed that the surface
features of the base influenced the creation of the graphic.
Our method of computation, which was a modification of pre-
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Figure 2: Example of coding.

vious computational models of analogical reasoning, is ex-
plained as follows.

Coding The computation of both types of similarities uses
a coding scheme that represents a graphic as propositions.
An example of coding is presented in Figure 2. This coding
contains the following two types of propositions.
• Propositions of attributes describe values selected by a par-

ticipant when the graphic is generated. Specifically, the
propositions indicate the values of five dimensions of at-
tributes: location on x-axis, location on y-axis, lightness,
size, and shape. These values are obtained directly from
the task environment.

• Propositions of relations indicates the relations between
pairs of objects. These relations are described according to
five dimensions: distance, direction, lightness difference,
size difference, and shape difference. These values are ob-
tained from the attributes of the two objects. Distance and
direction are obtained from the locations on the x- and y-
axis. lightness difference, size difference, and shape dif-
ference are obtained from each corresponding attribute of
lightness, size, and shape.

Surface similarity
Surface similarity is computed as shared attributes between a
base and a target. We used content vector matching (Forbus,
Gentner, & Law, 1995) in our computations of surface simi-
larity. Our method creates content vectors for each dimension
of attribute (k) by counting each value. For example, a vector
((2x 1) (1x 2)) is created as a content vector of x-axis in Fig-
ure 2. For all five dimensions (d), a dot product of a content
vector of the target (tk) and a content vector of the base (bk) is



calculated. Finally an average of the dot products is obtained
as follows1.

Sur f ace similarity score =
d
∑

k=1

tk ·bk
d

Structural similarity
Structural similarity was computed as the common relational
structures of a base and target. The commonality of their
structure was computed by estimating the maximum map-
ping from the base to the target while satisfying two con-
straints: parallel connectivity and one-to-one mapping (Gen-
tner, 1983). The former means that if two predicates are
placed into correspondence then the arguments to these predi-
cates are also placed into correspondence, and vice versa. The
latter indicates that each item in the base maps to, at most, one
item in the target, and vice versa.

An example of a common relational structure is illustrated
schematically in Figure 3, where descriptions are represented
as graph structures. The top and middle graphs in the fig-
ure represent the base and target structures constructed from
the graphics on the left side of the figure. The oval nodes
represent predicates and the boxed nodes represent objects.
There are two types of edges: solid edges connecting a pred-
icate with its first argument and dashed edges connecting a
predicate with its second argument. If the predicate is com-
mutative, there are no distinctions between these two types of
edges.

The bottom network in the figure represents a common
structure of the base and the target. The structural similarity
score is quantified as the number of predicates in the global
map. In the case of Figure 3, the score is 10, which is shown
in the lower right-hand corner of the figure. The value in
parentheses is the size of the global map as a fraction of the
size of the target structure.

Generally, the common structure of two graphs can be
extracted using graph-matching algorithms. The present
study used an algorithm modified from the SME (Structure-
Mapping Engine; Falkenhainer et al., 1989), which includes
the following two steps.

Local match construction First, the correspondences of
propositions (P-match) are constructed by comparing the
predicates in the base proposition with the predicates in the
target proposition. If the two propositions have a predicate
that is the same, a P-match is created. Each of the P-matches
consists of a pair of predicates (a Pre-match) and pairs of ar-
guments (O-matches). This process is applied to every possi-
ble combination of propositions, and a list that contains every
constructed P-match is created.

Global map construction In the second step, a global map
that is a set of consistent P-matches is created. This step uses
a ranking algorithm, as Forbus and Oblinger (1990) did. In
this study, we used a weight that was a simple summation

1To produce surface similarity scores ranging from 0 to 1, feature
vectors were normalized to unit vectors.
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Figure 3: Example of common relational structure.

of two individual O-match frequencies and the co-occurrence
frequency of two O-matches for ranking.

The basis for connecting a P-match is an investigation of
whether a pair of P-matches conflict with each other. Con-
flicts are defined as situations where several P-matches share
the same object but have a different O-match that includes
this object. Beginning with the P-match that has the high-
est weight, this method sequentially chooses one of the P-
matches and deletes the P-matches conflicting with it. The
process results in a set of consistent P-matches.

Experiment
We conducted an experiment to test our literal similarity and
relational shift hypotheses. To test the hypotheses, we con-
trolled the degree of experience by presenting participants
with two examples separately. The participants generated
their original graphics by modifying each graphic. It can be
assumed that the generation of the second graphic was a more
familiar situation for the participants who had no previous ex-
perience in graphic composition.

Participants Nineteen graduate student volunteers from
the Japan Advanced Institute of Science and Technology par-



ticipated in the experiment. Most of them had no basic knowl-
edge of graphic composition.

Materials The examples used in this experiment are shown
in Figure 4. A ceramic artist who graduated from an art uni-
versity and who has a master’s degree in architecture created
the examples.

Example A Example B

Figure 4: Examples used in experiment.

Procedures Participants took part individually in the exper-
iment, which included the following steps.

Instruction: The participants were told the goal of the ex-
periment was “an investigation of learning by example in
graphic composition”, and they were asked to create origi-
nal graphics by modifying the presented example. In addi-
tion, the experimenter strongly prompted the participants to
use the features in the example in their graphics and to make
their graphics as creative as they could.

First session: The experimenter placed one of the exam-
ples in the task environment. Ten participants were presented
with Example A, and the other nine participants were pre-
sented with Example B. The participants generated their orig-
inal graphics while observing the example.

Second session: After the participants finished generating
their graphic in the first session, they received an example
that had not been provided in that session. As in the first ses-
sion, they generated their graphics by modifying the example
for a period of thirty minutes. In the following analysis, we
investigated the difference between the two sessions by coun-
terbalancing the effect of graphic types.

Results
To investigate the distinctions between surface and structural
similarity in the generative analogy task, we computed two
similarity scores for the generated graphics. Using the com-
puted scores, we then tested our two hypotheses.

Mean scores for surface and structural similarity Figure
5 presents the means of the surface and structural similarity
scores for the two sessions. In addition to the scores that were
computed for the presented example, this figure shows the
scores computed for the example that was not presented in the
session. The former is represented by the bars labeled “Influ-
ence” and the latter is indicated by the bars labeled “Control.”
For example, when the graphics were generated by modifying
Example A, we call the similarity score computed for Exam-
ple A “Influence”, and the similarity score computed for Ex-
ample B “Control.” To judge whether the participants were

influenced by the features of the presented example, we com-
pared “Influence” with “Control.”

We conducted a 2 (order: first-second) × 2 (base type:
influence-control) analysis of variance on the surface and
structural similarity scores. As a result, significant main ef-
fects of the base type were obtained for both the surface sim-
ilarity score [F(1,18) = 29.07, p < .01] and the structural
similarity score [F(1,18) = 7.74, p < .05]. We could not de-
tect significant main effects of the order [surface similarity:
F(1,18) = 0.00, n.s. structural similarity: F(1,18) = 0.02,
n.s.] and interactions of the base type and order [surface sim-
ilarity: F(1,18) = 0.09, n.s. structural similarity: F(1,18) =
0.11, n.s.].

The results support the literal similarity hypothesis by in-
dicating the influence of the surface and structural features
on the generative analogy task. However, we could not find
evidence to support the relational shift hypothesis because no
effects concerning the order difference were observed.
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Figure 5: (a) Mean scores for surface similarity, (b) Mean
scores for structural similarity. Error bars indicate standard
errors of means.
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Figure 6: Scatter plot of graphics.

Correlations of the two similarity scores Although the
above results did not indicate a relational shift, we could not
conclude that there were no differences in the influence of
surface and structural features on participants’ generation of
graphics between the first and second sessions. Since Figure
5 presents the means of the two similarity scores indepen-
dently, we were unable to observe how the two scores related
to each other.



To explore the relations between the two similarity scores,
we drew a scatter plot whose two axes corresponded with
the two similarity scores (Figure 7), and computed the cor-
relation coefficients of the two scores. The results showed
a significant correlation for the first session [r(17) = .561,
p < .05] but no significant correlation for the second session
[r(17)=−.118, n.s]. The difference between the correlations
was statistically compared using Fisher’s Z-transformation.
The results showed there was a significant difference between
the two coefficients [χ(1) = 4.33, p < 01].

These results are consistent with the literal similarity hy-
pothesis because the two similarity scores were correlated for
the first session. However, the same pattern did not apply to
the second session where the two similarity scores were dis-
criminated. It could be considered that in the second session
two types of graphics were generated: graphics sharing only
the structural features of the presented example, and graphics
sharing only the surface features of the presented example.
The following analysis presents cases in which the two simi-
larity scores were discriminated.

Case studies Figure 6 can be divided into four areas by the
means of surface and structural similarity (the two lines in the
figure). We defined representative cases of each area as cases
that had the biggest normalized distance from the two means
of the similarity scores (the cases labeled with h-str/h-sur, h-
str/l-sur, l-str/h-sur, l-str/l-sur in the figure).

Figure 7 presents screenshots of our analysis system show-
ing details of the computations for each case. The left part
of each screen presents two graphics that are inputs of sim-
ilarity computations. The lines on the graphics represent O-
matches in the computed structural similarity. The size of
the circles on the objects corresponds with the number of
Pre-matches that the O-match is included in. The right part
of each screen presents stacked bar graphs where the degree
of similarity of the two scores was divided into each dimen-
sion. In the graphs, the colors of the bars are associated with
the dimensions as follows: light blue - x-axis/distance, yel-
low - y-axis/direction, red - size/size difference, green - light-
ness/lightness difference, dark blue - shape/shape difference.

From the outputs of our computations, we can speculate
on situations in which two similarity scores were discrimi-
nated. In the cases labeled with h-str/h-sur and l-str/l-sur,
the ratios of the degree of similarity in five dimensions were
almost the same as in the two similarity scores. In contrast
to the above cases, in the cases of h-str/l-sur and l-str/h-sur,
there are differences in the ratios of the corresponding dimen-
sions between the two similarity scores. That is, in the case
of h-str/h-sur, the surface similarity score of the x-axis was
very low, but the structural similarity scores for direction and
distance, which are relations constructed from the values of
the x-axis and y-axis, were high. Similarly, in the case of l-
str/h-sur, the surface similarity scores for lightness and size
were high, but the structural similarity scores for lightness
difference and shape difference were low.

That is, in cases in which the two similarity scores were

separated, the scores were different in the degree of simi-
larity in corresponding dimensions. This difference can be
explained by the method used for computation. Computa-
tion of the surface similarity score used the absolute refer-
ence values of the attributes, but the structural similarity score
was computed using the relative reference values of the at-
tributes. Therefore, the structural similarity score was robust
in cases where the locations of objects moved in parallel, such
as h-str/l-sur. Also, the surface similarity score was com-
puted as the means of dimensions, but the structural similarity
score was computed as the size of the single global mapping.
Therefore, the structural similarity score was naturally low
when there were many conflicting O-matches in a set of local
matches, as l-str/h-sur indicates.

Discussion
Our results supported the literal similarity hypothesis in a
generative analogy task; the means of the two similarity
scores exceeded those of the control conditions in the first
session, and there were significant correlations between the
two similarity scores. Thus, our study successfully extended
the field of application of analogical reasoning to include gen-
erative analogy.

However, our findings did not support the relational shift
hypothesis. Instead, we observed that the two similarity
scores were discriminated in the second sessions.

A possible interpretation of this discrimination is that af-
ter the first session, participants definitely noticed structural
features in the graphic composition. However, some of them
did not use the structural features of the example in the sec-
ond session because they did not consider that a simple copy
of the structure would lead to an original graphic. This inter-
pretation does not seriously contradict previous findings on
analogical reasoning. Rather, we consider that this result may
indicate characteristics of generative analogy tasks.

Of course, our results could be interpreted on the basis of
experimental manipulation. In our experiment, participants
practiced the task of generating a graphic composition only
twice. It could be considered that this amount of experience
was insufficient to produce a relational shift. If they had more
experience, they might have created graphics that shared only
structural features with the example. However, this interpre-
tation does not explain the changes in the correlation between
the two similarity scores. Therefore we consider that the first
interpretation is more feasible.

However, we must note that the results depend on the im-
plementation of similarity computation, as our case studies
indicate. Our method constructs structural similarity only
from first-order relations, although many researchers, in-
cluding Gentner (1983), have pointed out the importance of
higher-order relations (relations of relations) in analogical
reasoning. According to previous studies, structural similar-
ities constructed from first-order relations, which our study
used, are relatively easy to notice, even by novices.

We did not include higher-order relations in our method of
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Figure 7: Case studies. Our analysis system indicates details of similarity computations.

analysis because we could not find a method to clearly de-
scribe these relations. To construct mapping of higher-order
relations in computations of visual analogy, previous stud-
ies have proposed such methods as describing the creator’s
intention (Forbus & Usher, 2002), chunking similar objects
(Ferguson, 2007), and using incremental mapping (Tomai,
Lovett, Forbus, & Usher, 2005). However, we could not apply
these methods to our task without making arbitral assump-
tions. Our method is a simple one, but it is fully automated.
Therefore, we consider it could play a role in providing objec-
tive criteria for examining links between human free thought
and cognitive theories.
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