Desktop Site

News & Events


Mr.Phan Viet Anh,Intelligent Robotics Area, achieved the best student paper award in KSE 2016.

The authors, including Viet Anh Phan(2nd year doctral student), Ngoc Phuong Chau, and Minh Le Nguyen, from Nguyen laboratory, Intelligent Robotics Area, achieved the "best student paper award", in KSE 2016.

The KSE conference is an open international forum for presentation, discussion and exchange of the latest advances and challenges in research of Knowledge and Systems Engineering. The eighth edition of the conference, KSE 2016, was held in Hanoi, the capital of Vietnam, during October 6-8, 2016, and organized by the Le Quy Don Technical University. KSE 2016 presentations include contributions dealing with any aspects of Knowledge and Systems Engineering such as machine learning, data mining, knowledge management, and so on.

■ Date awarded
October 7th, 2016

■ Title
"Exploiting Tree Structures for Classifying Programs by Functionalities"

■ Abstract
Analyzing source code to solve software engineering problems such as fault prediction, cost, and effort estimation always receives much attention of researchers as well as companies. The traditional approaches are based on machine learning, and software metrics obtained by computing standard measures of software projects. However, these methods have faced many challenges due to limitations of using software metrics which were not enough to capture the complexity of programs.

The aim of this paper is to apply several natural language processing techniques, which deal with software engineering problems by exploring information of programs' abstract syntax trees (ASTs) instead of software metrics. To speed up computational time, we propose a pruning tree technique to eliminate redundant branches of ASTs. In addition, the k-Nearest Neighbor (kNN) algorithm was adopted to compare with other methods whereby the distance between programs is measured by using the tree edit distance (TED) and the Levenshtein distance. These algorithms are evaluated based on the performance of solving 104-label program classification problem. The experiments show that due to the use of appropriate data structures although kNN is a simple machine learning algorithm, the classifiers achieve the promising results.

■ Comment
Our group is in Prof. Le-Minh Nguyen laboratory. We are very honored and thankful for the award. We would like to thank Prof. Le-Minh Nguyen for his guidance and deep discussions about the approaches. We also would like to thank other members of our lab for their constructive comments on the first versions of the paper. We are also really thankful to JAIST for providing us a great environment for doing research. This award encourages us doing researches better to obtain higher achievements.


November 9,2016