研究員のNGYUENさんが2019MRS Fall MeetingにおいてBest Oral Presentation Awardを受賞

 研究員のNguyen Cong Thanh さん(環境・エネルギー領域大平研究室)が2019MATERIALS RESEARCH SOCIETY(MRS)Fall MeetingにおいてBest Oral Presentation Awardを受賞しました。
 MRSは、材料研究における基礎領域と応用領域の研究を発表、議論することを目的に開催される世界有数の国際会議で、今回、2019MRS Fall Meetingは2019年12月1日~6日にかけてアメリカ合衆国のボストンで開催されました。


Microparticle-Assisted Texturing (MPAT) Process on As-Cut Crystalline Silicon:Controllable Texture Size, Low Optical Reflectivity, Quick Formation, Extremely Low Material Loss andToward Mass-Production

Cong Thanh NGUYEN, Keisuke OHDAIRA, Hideki MATSUMURA

We presented a novel technique to form random textures on as-cut crystalline silicon (c-Si) used for sunlight trapping in solar cells, so-called microparticle-assisted texturing (MPAT) process, in which glass microparticles were mixed with conventional alkaline-based texturing chemical solutions. As a result, the texture size, etching duration, solution consumption, and c-Si etched loss were reduced by almost one order of magnitude. Consequently, the texturing cost should be reduced by the same order. Especially optical reflectivity (R) is ~ 7%, almost world-record for the random textures. The MPAT process was applicable to c-Si wafers with thickness down to 50 µm for low material cost. The superiorities were attributed to that the glass microparticles with certain kinetic energy can sweep out reaction-generated hydrogen bubbles from the c-Si surface to speed up the texture formation. In addition, we developed a suitable wet chemical cleaning prior to surface passivation using catalytic chemical vapor deposition (Cat-CVD) silicon nitride (SiNx)/amorphous silicon (a-Si) stacked layers. A world-record low surface recombination velocity (SRV) ~0.38 cm/s was achieved. Toward mass-production using the MPAT process, we fabricated an MPAT machine for etching of multiple full-size wafers with a pitch of 5 mm to obtain uniform textures with a yield almost 100%. The standard deviation of R is < 0.1% over all the wafers in the same batch. Therefore, the MPAT process is realistic in the mass-production of the low-cost and high-performance thin c-Si-based solar cells.

We are excited and honored to receive the award. We sincerely appreciate the attention that the materials research society (MRS) gives to our work. I appreciate my colleagues have done to help and encourage me in my professional growth, especially Prof. Matsumura and Prof. Ohdaira. I could not ask for more effective mentors who always encouraged me even when doing crazy ideas, like trying some materials bought from supermarkets, fabricating experimental tools, and very patient to wait for my very-long-time consideration before doing experiments, and so on. I deeply appreciate your trust in me!
I also would like to thank NEDO (New Energy and Industrial Technology Development Organization), Japan for their financial support.

award20200110-1.jpg award20200110-2.jpg