研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。サスティナブルイノベーション研究領域の水田教授が応用物理学会からフェロー称号を受理
サスティナブルイノベーション研究領域の水田 博教授に公益社団法人応用物理学会からフェローの称号が授与され、表彰を受けました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を行っています。公益性の高い学会として広く活動を展開し、社会連携事業にも取り組んでいます。
*参考:公益社団法人応用物理学会ホームページ
■フェローの概要等
「応用物理学会フェロー表彰」制度は、同学会の会員表彰制度の一環として、2006年に創設されました。この表彰制度は、同学会における継続的な活動を通じて、学術・研究における業績、産業技術の開発・育成における業績、教育・公益活動を通した人材育成や教育における業績などにより、応用物理学の発展に貢献した在籍累計年数10年以上の正会員を対象とし、特に貢献が顕著であると認められた会員を表彰するものです。また、フェローの人数は同学会個人会員数の3%程度と定められています。
*参考:第16回(2022年度)応用物理学会フェロー表彰者
■授与日
令和4年9月20日
■表彰内容
ナノメータスケール電子-機械複合機能素子の研究
■水田教授からの一言
本フェロー表彰の対象となった研究は、企業から大学に異動した2003年頃に「従来の電子デバイスの中に機械的に動くパーツを入れたら面白いことができるのでは?」という単純な発想で開始したものです。約20年にわたり東工大、サウサンプトン大、本学と職場を移しながら継続し、特に本学ではグラフェンなど原子層材料を用いて、気相単分子センシングやナノスケール熱制御素子などの極限機能素子について原理探索から社会実装までを進めてきました。英国で働いた期間も長かったのですが、その間、応用物理学会では200件超の発表、分科会・研究委員会幹事、シンポジウム世話人、また応物主催/共催の国際学会の実行委員長・論文委員長など、微力ながら学会の活動に参画させていただきました。これらはひとえに学内外の多くの方々からいただいた多大なご支援、特に研究室の同僚の方々・学生の皆さんのご協力の賜物です。この場をお借りして心より御礼を申し上げます。
*水田教授は2012年に英国物理学会(IOP)フェローの称号も受理しています。
![]() 表彰を受けた水田教授(左) |
![]() |
![]() |
![]() |
| 記念盾とフェローバッジ | |
令和4年9月21日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/09/21-1.html世界初!個々の原子間の結合強度の測定に成功 ―強くて伸びる白金原子の鎖状物質―
![]() |
| 国立大学法人 北陸先端科学技術大学院大学 国立大学法人 金沢大学 |
世界初! 個々の原子間の結合強度の測定に成功
―強くて伸びる白金原子の鎖状物質―
ポイント
- 個々の原子の並びを見ながら、その結合強度を測る手法(顕微メカニクス計測法)の開発
- 白金原子が一列に並んだ鎖状物質を作製し、その結合強度を測定
- 結合強度が高く、よく伸びる白金原子の鎖状物質
- 原子スケールで制御された機能性物質探索への期待
| 北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の大島 義文教授、富取 正彦教授、張家奇 大学院生(博士後期課程)、石塚慧介 大学院生(博士後期課程)、環境・エネルギー領域の前園 涼教授、本郷 研太准教授、及び金沢大学・理工研究域 数物科学系の新井 豊子教授は、International School for Advanced Studies (SISSA)のErio Tosatti教授との共同研究で、物質を構成する個々の原子の並びを観察しながら、その結合強度を計測できる顕微メカニクス計測法を開発した。この手法を使って、白金原子が一列に並んだ鎖状物質が強い結合強度を持つとともに、白金の塊(バルク)と比較してかなり大きく引き伸ばしても破断しないという特異な性質を持つことを発見した。実験結果を第一原理計算で解析したところ、この鎖状物質は、エネルギーが最小になる安定構造を取っているわけではなく、その形成に必要な張力が極小な構造であることを突きとめた。この鎖状物質がもつこの特有な性質の解明は、今後ますます期待される原子スケールで制御された機能性物質の創製に指針を与える大きな成果である。 本研究成果は、2021年4月29日(米国東部標準時間)に科学雑誌「Nano Letters」誌のオンライン版で公開された。なお、本研究は、日本学術振興会(JSPS)科研費, 18H01825, 18H03879、笹川科学研究助成, 2020-2006、ERC ULTRADISS Contract No. 834402, the Italian Ministry of University and Research through PRIN UTFROM N. 20178PZCB5の助成を受けて行われた。 |
原子が鎖状に並んだ1次元物質の力学的性質は、同じ組成や構造を持つバルク物質と大きく異なることが理論計算によって予想されていた。しかし、1次元物質の性質はわずかな原子の変位にも敏感に変化するため測定例が少なく、解明が進んでいない。原子配列構造とその力学的性質の相関を明らかにできれば、1次元物質などの性質を決めるメカニズムの解明に繋がる。このメカニズムこそが、1次元物質を活用した新しい原理で動作する電子デバイスやセンサー開発の指針となる。
最近、私たちは、原子配列を直接観察できる透過型電子顕微鏡(TEM)のホルダーに細長い水晶振動子を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする顕微メカニクス計測法を世界で初めて開発した(図1)。この手法では、水晶振動子の共振周波数が、物質との接触で相互作用を感じることによって変化することを利用する。共振周波数の変化量は物質の等価バネ定数に対応するので、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)で、TEMによる原子像がぼやけることはない。この手法は、従来の手法(小さなSi製テコを利用してその変位から力を計測する手法、TEM-AFM法[*1])では困難だった結合強度の高精度測定を実現している。
本研究では、このTEMホルダー内部で白金原子鎖を150個作製してその特性を詳細に調べ、白金原子鎖における原子結合強度が25 N/mであることを突きとめた。この値は、白金のバルク結晶の原子結合強度20 N/mよりも25%高い。また、原子間結合の長さ(0.25 nm)は最大0.06 nmも延びることが分かった。これは原子結合の最大弾性ひずみが24%になることを示しており、バルク結晶の値(5%以下)と比較して著しく高い(図2)。さらに、第一原理計算の結果を合わせて考察することで、このような特異な原子結合の性質は、白金原子鎖がエネルギー的に最安定な構造ではなく、形成に必要な張力が極小となる構造を取ることによって生まれることがわかった。
本研究は、1次元物質がもつ特異な原子結合に関わる性質を明らかにし、理論計算と組み合わせることによって形成メカニズムを突きとめた点に大きな成果がある。今後ますます期待される原子スケールで制御された機能性物質の創製に指針を与える大きな成果である。

図1.個々の原子の並びを観察しながら、原子間の結合強度を計測する顕微メカニクス計測法。透過型電子顕微鏡(TEM)を用いてナノ物質の構造観察をしながら、長辺振動水晶振動子(LER)を用いて物質の結合強度を計測できる。この測定によって、赤矢印で示す部位の白金原子鎖の原子間結合強度が25 N/mであることがわかった。
図2. 左上は透過型電子顕微鏡(TEM)像、左下はそのシミュレーション像である。原子4個からなる原子鎖が得られている。その観察時に測定された電気伝導(コンダクタンス量子単位G0でプロット)とばね定数の時間変化を、それぞれ右上と右下に示す。赤い矢印で示す領域は形成した原子鎖を破断することなく引っ張ることができた時間帯である。毎秒0.08 nmの速度で引っ張っており、白金原子鎖は破断なく約0.1 nm伸びた。
【論文情報】
| 雑誌名 | Nano Letters |
| 題名 | Peculiar Atomic Bond Nature in Platinum Monatomic Chains |
| 著者名 | Jiaqi Zhang, Keisuke Ishizuka, Masahiko Tomitori, Toyoko Arai, Kenta Hongo, Ryo Maezono, Erio Tosatti, Yoshifumi Oshima* |
| 掲載日 | 2021年4月29日(米国東部標準時間)にオンライン版に掲載 |
| DOI | 10.1021/acs.nanolett.1c00564 |
【用語解説】
[*1] TEM-AFM法(透過型電子顕微鏡と原子間力顕微鏡を組み合わせた測定法)
従来の測定法の一つ。ナノ物質に接触したSiカンチレバーを引っ張ると、Siカンチレバーがたわむ(変位する)。このたわみ(変位)から、ナノ物質に負荷されている力を求める。一方、この負荷された力によって変形したナノ物質を透過型電子顕微鏡によって計測することで、このナノ物質の機械的強度を得る。ただし、10 nm以下のサイズをもつナノ物質は1Åしか変形しない(原子間距離は2-3Åである)。このような変形を高い精度で測定することは難しく、ナノ物質の強度測定にばらつきが出てしまうという課題があった。
令和3年4月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/04/30-1.html学生の中村さんが令和2年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞
学生の中村 航大さん(博士前期課程1年、環境・エネルギー領域、大平研究室)が令和2年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。
北陸・信越支部発表奨励賞は、応用物理学会北陸・信越支部が開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的として授与されるものです。
今回、令和2年度応用物理学会北陸・信越支部学術講演会は、11月28日にオンラインで開催されました。
■受賞年月日
令和2年11月28日
■発表題目
封止材無しn型フロントエミッタ型結晶Si太陽電池モジュールの電圧誘起劣化
■講演の概要
近年、太陽光発電システムの導入が急増しているが、そのほとんどは、モジュールに封止材を有している。封止材を有した結晶シリコン(c-Si)太陽電池モジュールは、いくつか問題点があり、その一つである電圧誘起劣化(PID)は、太陽電池モジュールのアルミフレームとセル間の電位差に起因して性能が低下する現象である。PIDは、Na+侵入や電荷蓄積が封止材を経由して起きるため、封止材を無くせばこの問題は解決できると考えられる。本研究では、今後の普及が期待される、n型c-Siを基板に用い、光入射側にp型エミッタ層があるn型フロントエミッタ型c-Si太陽電池モジュールを作製し、封止材の有無がPIDにおよぼす影響を調査した。封止材の無いモジュールでは、SiNx膜からの電子移動やNa+の侵入の経路が存在しないため、性能低下が抑制できた。また、わずかに電荷蓄積型のPIDが見られたのは、リーク電流の経路を介してSiNx膜から電子が流出することにより正電荷が蓄積し、表面再結合が増大したためと考えられる。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。ご指導いただいた、大平圭介教授、Huynh Thi Cam Tu特任助教ならびに研究室のメンバーには厚く御礼申し上げます。本受賞を励みに、今後もより一層精進して参りたいと思います。
令和2年12月7日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/12/7-2.htmlNEDO「ムーンショット型研究開発事業」研究開発プロジェクトに採択
![]() |
国立大学法人北陸先端科学技術大学院大学 |
|
このたび、北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)ら8機関による提案研究が、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の「ムーンショット型研究開発事業※」におけるムーンショット目標4「2050年までに、地球環境再生に向けた持続可能な資源循環を実現」の達成を目指す研究開発プロジェクトに採択されました。
1)ON型光スイッチ:陸域の生活圏では材料として安定ですが、投棄後に海洋流出するまでの過程で生じる表面損傷などにより太陽光がプラスチック内部に届き生分解が始まる(ON)スイッチです。 2)OFF型光スイッチ:蛍光灯や太陽光暴露のある状態では生分解が抑制(OFF)され、海中・海底・コンポストなどの暗所の環境で生分解が始まるという「光スイッチ」です。 3)また、これらを具有させたON/OFF型という理想的システムも同時に提案します。 さらには、海洋生物が誤飲したり周りまわって人間の食料中に混ざり込んでも消化管内で物理的障害や化学的毒性を生じない「食せるプラスチック」の開発も目指します。 2030年にはこれらの海洋実環境における分解性を証明し衣料品やビニール袋などの試作品を作製します。さらに、上記のシステムは広範囲のプラスチックに適用できるため、2050年までにはさらに多くのプラスチックへと展開し様々な種類や形態の光スイッチ型分解性プラスチック製品へと展開します。本プロジェクトは、二酸化炭素の固定化、炭素循環および窒素循環などの概念を取り入れた統合的な地球環境保全・再生に資するものです。加えて、本プロジェクトは、成熟期に差し掛かってきた我が国の石油化学産業をバイオ化学産業に業態転換せしめ、新たな成長に向けたパラダイムチェンジ型イノベーションの一端を担う可能性を有します。 |
<参 考>
1 ムーンショット型研究開発制度
本制度の詳細については、以下を参照
https://www8.cao.go.jp/cstp/moonshot/index.html
2 ムーンショット目標
2020年1月CSTIにおいてムーンショット目標1~6が決定。2020年7月には健康・医療戦略推進本部においてムーンショット目標7が決定
目標1:2050年までに、人が身体、脳、空間、時間の制約から解放された社会を実現
目標2:2050年までに、超早期に疾患の予測・予防をすることができる社会を実現
目標3:2050年までに、AIとロボットの共進化により、自ら学習・行動し人と共生するロボットを実現
目標4:2050年までに、地球環境再生に向けた持続可能な資源循環を実現
目標5:2050年までに、未利用の生物機能等のフル活用により、地球規模でムリ・ムダのない持続的な
食料供給産業を創出
目標6:2050年までに、経済・産業・安全保障を飛躍的に発展させる誤り耐性型汎用量子コンピュータを実現
目標7:2040年までに、主要な疾患を予防・克服し100歳まで健康不安なく人生を楽しむための
サステイナブルな医療・介護システムを実現
3 NEDOムーンショット型研究開発事業の採択結果
https://www.nedo.go.jp/news/press/AA5_101346.html
令和2年9月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/09/7-1.html学生の秦野さんが令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞
学生の秦野加奈さん(博士前期課程2年、応用物理学領域、水谷研究室)が令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材、環境材料など、工学と物理学の接点にある最先端課題、学際的なテーマ、社会問題解決に取り組みながら学術活動を続けています。
応用物理学会北陸・信越支部学術講演会発表奨励賞は、応用物理学会北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的とし授与されるものです。
令和元年度応用物理学会北陸・信越支部学術講演会は、12月7日に福井県福井市において開催されました。
■受賞年月日
令和元年12月7日
■研究タイトル
光第二高調波を用いたサクラン水溶液の動的観察
■発表者
秦野加奈、李彦蓉、趙越、Khuat Thi Thu Hien, 水谷五郎、桶葭興資、岡島麻衣子、金子達雄
■研究概要
サクランは2007年にJAISTの金子 達雄教授と岡島研究員(環境エネルギー領域、金子研究室)により発見された高分子多糖類です。本研究ではフェムト秒レーザーを用いた光第二高調波(SHG)顕微鏡により、対称性の破れという観点から、サクラン水溶液が乾燥する過程でどのように変化するかをとらえることを試み、水溶液中のサクランから発生する第二高調波を観察することに成功しました。また、実際に観察されたトーラス状の形をした20m程度のサイズのSHGスポットの発生は興味深いものであり、これよりサクラン水溶液中のマランゴニ対流についての新たな知見が得られる可能性があります。
■受賞にあたっての一言
サクラン研究会に続き、SHGを使ったサクラン研究に興味と意義を感じて頂けたことを大変光栄に思います。日頃からご指導いただいている水谷先生、金子先生、また両研究室でお世話になっている皆さまにこの場をお借りして御礼申し上げます。

令和2年1月15日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/01/15-1.html学生の平松さんが令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞
学生の平松 考樹さん(博士前期課程2年、応用物理学領域、村田研究室)が、令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、発表奨励賞を授与し、その功績を称えることを目的としています。
令和元年度応用物理学会北陸・信越支部学術講演会は、12月7日に福井県福井市において開催されました。
■受賞年月日
令和元年12月7日
■研究題目、論文タイトル等
ケイ素含有イオン液体を用いた高効率電気化学発光セルの作製とその動作機構の解明
■研究者、著者
平松 考樹、鈴木 貴斗、村田 英幸
■受賞対象となった研究の内容
電気化学発光セル (LEC)は、発光層が発光材料および電解質からなる発光素子です。素子に電圧を印加すると電解質由来のイオンが分極し、電気二重層とp、nドープ領域を形成することで電荷の注入および輸送を促進するため、有機ELと比較しシンプルな層構造で発光できる素子となっています。LECでは電解質のアニオンとカチオンの構造が電気二重層およびp、nドープ領域の形成に影響し、電荷バランスを決定します。本研究ではイオン液体をLECの電解質に使用しており、そのアニオンおよびカチオンの構造により電荷バランスを制御することで高効率発光を実現しました。
■受賞にあたっての一言
応用物理学会北陸・信越支部学術講演会にて、発表奨励賞をいただけましたこと大変光栄に思っております。本研究を進めるにあたりご指導いただきました村田教授、卒業生の鈴木貴斗様 (現 日清紡ホールディングス (株))をはじめ、多くのご助言をいただきました研究室の皆様にこの場をお借りして、心より御礼申し上げます。

令和元年12月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/12/17-1.html蛍光タンパク質フォトルミネッセンスの電気制御に成功
蛍光タンパク質フォトルミネッセンスの電気制御に成功
ポイント
- 蛍光タンパク質とは下村脩らが発見したGFP及びその類縁分子の総称で、大きさおよそ4ナノメートル、基礎医学・生物学研究に広く利用されている。今回、金属と水溶液の界面に蛍光タンパク質を配置し、そのフォトルミネッセンス(蛍光)を電気制御することに世界で初めて成功した。
- この原理をもとに、蛍光タンパク質を用いた微小ディスプレイの作成と動作にも成功した。
|
北陸先端科学技術大学院大学(JAIST)(学長・浅野哲夫、石川県能美市)の先端科学技術研究科のTRISHA, Farha Diba(博士後期課程学生)、濱宏丞(博士前期課程学生・研究当時)、生命機能工学領域の今康身依子研究員、平塚祐一准教授、筒井秀和准教授らの研究グループは、蛍光タンパク質のフォトルミネッセンス(蛍光)を電気的に制御する手法を世界で初めて確立し、この原理を用いた微小ディスプレイの作成と動作に成功した。
蛍光タンパク質とは、下村脩らによりオワンクラゲから最初に発見された緑色蛍光タンパク質(GFP)及びその類縁分子の総称で、大きさおよそ4ナノメートル、成熟の過程で自身の3つのアミノ酸が化学変化を起こし明るい蛍光発色団へと変化する。生体内の細胞や分子を追跡したり、局所環境センサーを作ったりすることが可能になり、GFPの発見は2008年のノーベル化学賞の対象になった。蛍光タンパク質は多様な光学特性を示すことでも知られ、例えば、フォトスイッチングという現象を使うと、蛍光顕微鏡の空間解像度を格段に良くすることができ、その技術も2014年のノーベル化学賞の対象に選ばれた。 研究グループは、金薄膜に蛍光タンパク質を固定化し、±1~1.5V程度の電圧を溶液・金属膜間に印加することによりフォトルミネッセンスが最大1000倍以上のコントラスト比で変調される現象を発見した。またこの原理に基づいた、大きさ約0.5ミリのセグメントディスプレイの試作と動作に成功した(下図)。 本成果は、5月8日(水)に「Applied Physics Express (アプライド・フィジックス・エクスプレス)」誌に掲載された。 なお、本研究は、国立研究開発法人理化学研究所・光量子工学研究センターとの共同研究であり、また、科学研究費補助金、光科学技術振興財団、中部電気利用基礎研究支援財団などの支援を受けて行われた。 |

<今後の展開>
基礎医学・生物学研究で広く使われている蛍光タンパク質の性質は、溶液や細胞内環境において詳しく調べられてきた。今回、金属―溶液の界面という環境において、新たな一面を示すことが明らかになった。現状での表示装置としての性能は既存技術に比べれば動作速度や安定性の点で及ばないものの、今後、電気制御メカニズムの詳細が明らかになれば、蛍光タンパク質の利用は、分子センサー素子など、従来の分野を超えてより多様な広がりをみせる可能性がある。
<論文情報>
"Electric-field control of fluorescence protein emissions at the metal-solution interface"
(金属・溶液界面における蛍光タンパク質発光の電圧制御)
https://iopscience.iop.org/article/10.7567/1882-0786/ab1ff6
T. D. Farha, K. Hama, M. Imayasu, Y. Hiratsuka, A. Miyawaki and H. Tsutsui
Applied Physics Express (2019)
令和元年5月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/05/16-1.html高分子の相転移を利用した人工光合成に成功-可視光エネルギーによる高効率な水素生成を達成-
高分子の相転移を利用した人工光合成に成功
-可視光エネルギーによる高効率な水素生成を達成-
ポイント
- 実際の光合成に習った光エネルギー変換システムの構築
- 高分子の可逆的相転移挙動を利用して高効率な水素生成に成功
|
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、先端科学技術研究科環境・エネルギー領域の桶葭興資講師らは東京大学大学院の吉田亮教授と共同で、電子伝達分子を持つ刺激応答性高分子を合成し、高分子の相転移によって電子伝達を加速させる人工光合成システムを構築した。
石油ショック以来、持続可能社会の実現に向けて人工光合成*1が注目を浴び、様々なシステムが考案されてきた。しかし、実際の葉緑体が持つ光合成システムにあるような、水分子との連動的な電子伝達組織の構築が未だ提案されてこなかった。これに対し本研究では、機能分子間の電子伝達に駆動力が生じるよう、高分子の相転移を利用した人工光合成システムを設計した。 まず、刺激応答性高分子*2のポリ(N-イソプロピルアクリルアミド)(poly(NIPAAm))*3に電子伝達分子ビオロゲン*4を導入すると、その酸化/還元*5状態によって高分子の相転移*6温度が異なることを見出した。この高分子poly(NIPAAm-co-Viologen) は一定温度下で酸化/還元変化により可逆的なコイル - グロビュール転移*7を伴い、加速的に電子伝達して水素を生成する。光エネルギーが与えられた際、光励起電子をビオロゲン分子が受けると、その周辺の高分子は疎水的となる。これが、界面活性剤で分散された触媒ナノ粒子近傍の疎水的な空間に潜り込み、電子を渡して水素生成する。実際、可視光エネルギーを用いた水素生成は、相転移温度付近で10%を超え、高い量子効率が達成された。 従来の溶液システムによる人工光合成では、液相中で機能性分子や触媒ナノ粒子が乱雑な分散状態のため電子伝達も乱雑となり、反応が進むにつれて分子凝集による機能低下が問題であった。これとは大きく異なり、粒子間に高分子が介在することで粒子凝集を抑制すると同時に、高分子の相転移によって電子伝達の加速が得られた。 高分子相転移現象は、ソフトアクチュエータ*8やドラッグデリバリーシステム*9の開発に広く利用されてきたが、今回の光エネルギー変換への利用は画期的である。本成果により、可視光エネルギーによる人工光合成システム「人工葉緑体」の構築が期待される。 ![]() 本成果は、4月25日付WILEY発行Angewandte Chemie International Edition (オンライン版) に掲載された。なお、本研究は科学研究費補助金などの支援を受けて行われた。 |
<今後の展開>
可視光エネルギーにより水を完全分解 (2H2O + hν → 2H2 + O2) する反応場として、高分子網目中に機能分子を配置した光エネルギー変換システムを構築することが期待される。
<論文情報>
| 掲載誌 | Angewandte Chemie International Edition (WILEY) |
| 論文題目 | Polymeric Design for Electron Transfer in Photoinduced Hydrogen Generation through a Coil-Globule Transition |
| 著者 | Kosuke Okeyoshi, Ryo Yoshida |
| 掲載日 | 2019年4月25日付、オンライン版 |
| DOI | 10.1002/anie.201901666 |
<用語解説>
*1. 人工光合成
光合成を人為的に行う技術のこと。自然界での光合成は、水・二酸化炭素と、太陽光などの光エネルギーから化学エネルギーとして炭水化物などを合成するものであるが、広義の人工光合成には太陽電池を含むことがある。自然界での光合成を完全に模倣することは実現していないが、部分的には技術が確立している。
*2. 刺激応答性高分子
温度やpHなど外部刺激に応答して可逆的に親・疎水性など物理化学的性質を変化させる高分子のこと。
*3. ポリ(N-イソプロピルアクリルアミド)
この高分子水溶液は、32度付近で下限臨界温度型の相転移挙動を示す。最も広く研究されている刺激応答性高分子。
*4. ビオロゲン
4,4'-ビピリジンの窒素原子上をアルキル化したピリジニウム塩のこと。農薬の他、生物学や光触媒反応、エレクトロクロミック材料などの研究で使用されている。
*5. 酸化/還元
酸化還元反応とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のこと。
*6. 相転移
ある系の相が別の相へ変わることを指す。熱力学または統計力学的において、相はある特徴を持った系の安定な状態の集合として定義される。
*7. コイル - グロビュール転移
分子鎖が広がったランダムコイル状態から凝集したグロビュール状態をとること。またその逆の状態変化のこと。今回の場合、高分子がランダムコイル状態で親水的、グロビュール状態で疎水的な性質を持つ。
*8. ソフトアクチュエータ
軽量で柔軟な材料が変形することによりアクチュエータとして機能する材料、素子、デバイスのこと。
*9. ドラッグデリバリーシステム
体内の薬物分布を量的・空間的・時間的に制御し、コントロールする薬物伝達システムのこと。
令和元年5月15日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/05/15-1.html学生の米澤さんが笹川科学研究助成に採択
学生の米澤 隆宏さん(博士後期課程3年、応用物理学領域、高村研究室)が公益財団法人・日本科学協会笹川科学研究助成に採択されました。
笹川科学研究助成は、課題の設定が独創性・萌芽性をもつ研究、発想や着眼点が従来にない新規性をもつ若手の研究を支援しています。
■採択期間
2019年4月1日~2020年2月10日
■研究課題
界面状態の理解に基づく半導体/絶縁体基板上へのシリセン成長と物性・形成機構の解明
■研究概要
Siの二次元結晶である「シリセン」は理論的に新奇量子現象の発現やそれを利用した次世代電子デバイスへの応用が期待されていますが、合成報告されたシリセンの殆どが金属基板を用いているため、シリセン自体の物性の殆どが未解明のままとなっています。本研究では半導体/絶縁体基板上へのシリセン合成を試み、電子線/X線を用いた分析や原子分解能顕微鏡観察、計算による解析などの多角的な評価を通じて、シリセンの物性・形成機構の解明を目指します。
■採択にあたって一言
私のシリセンに関する研究が伝統のある笹川科学研究助成に採択されたことを大変嬉しく思います。シリセンの物性解明、実用化に向け、本助成を通し、その取り組みを一層と加速したく思います。本研究課題を採択して下さった公益財団法人日本科学協会に心より感謝申し上げます。また、本研究を進めるにあたり多くのご助言を頂きました主指導教員の高村由起子准教授、アントワーヌ・フロランス講師、研究室のメンバー及びスタッフの方々にも深く感謝致します。
令和元年5月10日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2019/05/10-1.html学生の鈴木さんが応用物理学会北陸・信越支部において発表奨励賞を受賞
学生の鈴木 友康さん(博士前期課程1年、環境・エネルギー領域・大平研究室)が、平成30年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
「応用物理学会」は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。またこの賞は、応用物理学会北陸・信越支部の学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手会員に対し「北陸・信越支部発表奨励賞」を授与し、その功績を称えることを目的としています。
■受賞年月日
平成30年12月1日
■講演題目
「n型フロントエミッター型太陽電池モジュールの電圧誘起劣化におけるSiO₂膜の効果」
■講演概要
近年、大規模太陽光発電所などで、太陽電池モジュールのアルミフレームとセル間の電位差に起因して性能が劣化する電圧誘起劣化(PID)が問題となっている。本研究では、今後の普及が期待される、基板にn型結晶Siを用い、光入射側にp型エミッター層があるn型フロントエミッター型(n-FE)結晶Si太陽電池モジュールに関し、セル中のSiO₂膜がPIDにおよぼす影響を、SiO₂膜がないn-FEセルを用いたモジュールへのPID試験との比較により検証した。SiO₂膜の無いモジュールでは、表面の窒化Si膜への正電荷蓄積に起因する初期の劣化が確認できなかったが、Na+侵入に起因するその後の劣化に関しては、劣化の程度が大きく、発現する時間も早まった。以上のことから、n-FEモジュールのSiO₂膜は、窒化Siに蓄積する正電荷のSi側への放出を抑止するため初期のPIDを引き起こす一方、Na+侵入によるPIDを遅延する効果があると考察した。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。ご指導いただいた、産業技術総合研究所増田淳様、大平圭介教授、D3山口世力氏ならびに研究室のメンバーには厚く御礼申し上げます。また、今回の実験を行うに当たり、n-FEセルを作製いただいた、豊田工業大学の中村京太郎教授にも厚く御礼申し上げます。今後もこれを励みにし、研究に精一杯取り組んでいきたいと思います。

平成30年12月12日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2018/12/12-1.html学生の石川さんが平成29年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞
学生の石川 達也さん(博士前期課程1年、応用物理学領域・村田研究室)が平成29年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス,新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的としています。
■受賞年月日
平成29年12月9日
■講演題目
フレキシブル有機圧力センサの作製
■講演概要
有機圧力センサは人の体や曲面にフィットするようなフレキシブルセンサとして期待されています。その中で有機電界効果トランジスタ(OFET)を用いたアクティブ型有機圧力センサはヘルスケア分野などへの応用を目指して活発に研究が進められています。圧力センサでは低電圧駆動と大きな圧力応答の両立が実用化に向けた課題でしたが、我々はガラス基板上に低電圧駆動OFETを作製し、感圧部と組み合わせるDual-gate型有機圧力センサの開発を行い、低電圧駆動と大きな圧力応答の両立を達成しました。しかし、ガラス基板では期待されるようなフレキシブルな応用ができません。そこで本研究ではPEN基板を用いたDual-gate型フレキシブル有機圧力センサの作製に取り組み、動作を確認することができました。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。研究するにあたり、ご指導頂きました村田英幸教授、酒井平祐助教、ならびに研究室のメンバーに深く御礼申し上げます。受賞を励みに、これからも研究に精一杯取り組んでいきたいと思います。

平成29年12月21日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2017/12/21-3.html磁性-プラズモンハイブリッドナノ粒子を用いて、従来分離が難しかった細胞小器官(オートファゴソームなど)の新たな分離法の開発に成功
磁性-プラズモンハイブリッドナノ粒子を用いて、従来分離が難しかった
細胞小器官(オートファゴソームなど)の新たな分離法の開発に成功
ポイント
- これまで分離が難しかった細胞小器官を磁気分離するためのプローブとして、粒径約15 nmで単分散なAg/FeCo/Agコア/シェル/シェル型磁性-プラズモンハイブリッドナノ粒子を創製した。
- ハイブリッドナノ粒子を哺乳動物細胞に取り込ませ、培養時間を変化させた際、ナノ粒子が細胞内のどの部分に局在するかということをAgコアのプラズモン散乱を利用して可視化することに成功した。
- 培養時間が30分~2時間の間でハイブリッドナノ粒子がオートファゴソームに局在することがわかったため、オートファゴソームをターゲットとして、適切な時間帯で細胞膜を破砕して磁気分離を行うことでオートファゴソームの分離に成功した。
- 単離したオートファゴソームをプロテオミクス/リピドミクス解析に供することで、オートファジーの機能欠損による疾患の創薬へと展開できる可能性がある。
- リガンド結合ハイブリッドナノ粒子を用いた汎用的かつ高選択的な細胞小器官分離技術へと拡張することで、基礎生物学上重要な発見を導く可能性があるほか、肥満や老化を防止する医療技術へと繋がることも期待される。
|
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、物質化学領域の前之園 信也 教授らは、東京大学、金沢大学ほかと共同で、独自開発の磁性-プラズモンハイブリッドナノ粒子を用いてオートファゴソームのイメージングと磁気分離に成功しました。この手法は、これまで分離が困難であった他の細胞小器官へ拡張可能なため、新たな細胞小器官分離法としての応用が期待されます。 2013年のノーベル生理学・医学賞は、「小胞輸送の分子レベルでの解析と制御メカニズムの解明」という功績に対して、米国の3名の研究者に贈られました。また、2016年のノーベル生理学・医学賞は、「オートファジー注1)の分子レベルでのメカニズムの解明」の功績に対して、東京工業大学・大隅 良典 栄誉教授に贈られたことはまだ記憶に新しいところです。これらの研究はいずれも"細胞内物質輸送"に関するものでした。細胞内物質輸送には多種多様な細胞小器官注2)が関与しており、それらの機能は細胞小器官に存在するタンパク質や脂質によって制御されています。従って、細胞小器官の機能を理解するためには、そこに存在するタンパク質/脂質を調べることが必要不可欠です。そのための有力な手段の一つとして、タンパク質/脂質が機能している小器官ごと単離して解析するという方法があります。細胞小器官の一般的な単離法には超遠心分離注3)がありますが、比重に差が無い異種の小器官の分離は困難であることに加え、分離工程が煩雑で手間がかかるほか、表在性タンパク質注4)の脱離や変性が問題となる場合もあるため、新たな分離法の開発が望まれています。 本成果は、アメリカ化学会が発行するオープンアクセスジャーナルであるACS Omega誌に2017年8月25日に掲載されました。 |
<今後の展開>
単離したオートファゴソームをプロテオミクス/リピドミクス解析に供することで、これまでとは異なる視点からオートファジーを俯瞰でき、オートファジーの機能欠損による疾患の創薬へと展開できる可能性があります。また、ハイブリッドナノ粒子表面に所望のリガンドを結合させることによって、目的の細胞小器官への受容体を介したターゲティングが可能なナノ粒子を作製し、そのリガンド結合ナノ粒子を用いて標的細胞小器官を高選択的に単離する技術を確立することで、基礎生物学上重要な発見を導く可能性があります。さらに、肥満や老化を防止する医療技術へと繋がることも期待されます。

図1 磁性-プラズモンハイブリッドナノ粒子を哺乳動物細胞にトランスフェクションした後、培養時間(図中右に行くに従って培養時間が長いことを意味する)とともにナノ粒子の局在が初期エンドソーム(early endosome)、オートファゴソーム(autophagosome)、オートファゴリソソーム(autophagolysosome)へと移行する様子をプラズモン散乱を利用した共焦点顕微鏡イメージングで確認でき、各々の時間帯で磁気分離を行うとそれぞれ異なる種類の細胞小器官を分離することが可能であることを示した図。
<論文>
| 掲載誌: | ACS Omega |
| 論文題目: | "Magnetic Separation of Autophagosomes from Mammalian Cells using Magnetic-Plasmonic Hybrid Nanobeads"(磁性-プラズモンハイブリッドナノ粒子を用いた哺乳動物細胞からのオートファゴソームの磁気分離) |
| 著者: | Mari Takahashi,1 Priyank Mohan,1 Kojiro Mukai,2 Yuichi Takeda,3 Takeo Matsumoto,4 Kazuaki Matsumura,1 Masahiro Takakura,5 Hiroyuki Arai,2 Tomohiko Taguchi,6 Shinya Maenosono1* 1北陸先端科学技術大学院大学 2東京大学大学院薬学系研究科 衛生化学教室 3大阪大学大学院医学系研究科 4金沢大学医薬保健研究域医学系 5金沢医科大学産科婦人科 6東京大学大学院薬学系研究科 疾患細胞生物学教室 |
| DOI: | 10.1021/acsomega.7b00929 |
| 掲載日: | 2017年8月25日 |
<用語解説>
注1)オートファジー
オートファジー(Autophagy)は、細胞が持っている、細胞内のタンパク質を分解するための仕組みの一つ。自食とも呼ばれる。酵母からヒトにいたるまでの真核生物に見られる機構であり、細胞内での異常なタンパク質の蓄積を防いだり、過剰にタンパク質合成したときや栄養環境が悪化したときにタンパク質のリサイクルを行ったり、細胞質内に侵入した病原微生物を排除することで生体の恒常性維持に関与している。
注2)細胞小器官
細胞の内部で特に分化した形態や機能を持つ構造の総称。細胞内器官やオルガネラとも呼ばれる。細胞小器官が高度に発達していることが、真核細胞を原核細胞から区別している特徴の一つである。
注3)超遠心分離
数万G(重力加速度)以上の遠心力をかける遠心分離法。
注4)表在性タンパク質
疎水性相互作用、静電相互作用など共有結合以外の力によって脂質二重層または内在性膜タンパク質と一時的に結合しているタンパク質。
注5)超常磁性
強磁性体やフェリ磁性体のナノ粒子に現れる。磁性ナノ粒子では磁化の向きが温度の影響でランダムに反転しうる。この反転が起こるまでの時間をネール緩和時間という。外場の無い状態で、磁性ナノ粒子の磁化測定時間がネール緩和時間よりもずっと長い時、磁化は平均してゼロであるように見える。この状態を超常磁性という。
注6)エンドサイトーシス
細胞が細胞外の物質を取り込む過程の一つ。細胞に必要な物質のあるものは極性を持ちかつ大きな分子であるため、疎水性の物質から成る細胞膜を通り抜ける事ができない、このためエンドサイトーシスにより細胞内に輸送される。
注7)オートファゴソーム
オートファジーの過程で形成される二重膜構造を有した袋状の細胞小器官。他の細胞小器官やタンパク質などを囲い込んだ後、リソソームと融合することで内容物を消化する。
注8)プラズモン
プラズマ振動の量子であり、金属中の自由電子が集団的に振動して擬似的な粒子として振る舞っている状態をいう。金属ナノ粒子ではプラズモンが表面に局在することになるので、局在表面プラズモンとも呼ばれる。
注9)トランスフェクション
人為的にDNAやウイルスなどを細胞に取り込ませる手法。
注10)プラズモン散乱イメージング
局在表面プラズモン共鳴に起因した光散乱を利用したイメージング。共焦点顕微鏡を用いたバイオイメージングでは一般的に蛍光色素が用いられるが、長時間観察では光退色が問題となる。しかし、プラズモン散乱を用いたイメージングでは光退色の心配がない。
注11)蛍光免疫染色
抗体に蛍光色素を標識しておき、抗原抗体反応の後で励起光を照射して蛍光発光させ、共焦点顕微鏡などで観察することによって本来不可視である抗原抗体反応(免疫反応)を可視化するための組織化学的手法。
注12)初期エンドソーム
初期エンドソームは、エンドサイトーシスされた物質を選別する場として機能する細胞小器官である。エンドサイトーシスによって細胞内へと取り込まれた物質は、まず細胞辺縁部に存在する初期エンドソームへと輸送される。初期エンドソームを起点として、分解される物質は分解経路へと、細胞膜で再利用される物質はリサイクリング経路へと選別されていく。
注13)オートファゴリソソーム
オートファゴソームとリソソームの融合によってできる細胞小器官。
注14)ウェスタンブロッティング
電気泳動によって分離したタンパク質を膜に転写し、任意のタンパク質に対する抗体でそのタンパク質の存在を検出する手法。
注15)LC3-II
LC3はオートファゴソームマーカーとして広く知られている。オートファジーが開始されると、LC3はプロペプチドとして発現し、直ちにC末端が切断されて細胞質型のLC3-Ⅰとなる。LC3-ⅠのC末端にホスファチジルエタノールアミンが付加され、膜結合型のLC3- IIへ変換する。LC3- IIはオートファゴソーム膜へと取り込まれて安定に結合するため、哺乳動物におけるオートファゴソーム膜のマーカーとして用いられている。
平成29年8月25日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/08/25-1.html2次元sp2炭素高分子材料の開拓に成功
![]() |
![]() |
国立大学法人 北陸先端科学技術大学院大学 大学共同利用機関法人 分子科学研究所 |
2次元sp2炭素高分子材料の開拓に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の江 東林教授らの研究グループと分子科学研究所の物質分子科学研究領域の中村 敏和准教授らの研究グループは、sp2炭素からなる2次元共役有機骨格構造体の開拓に成功した。
炭素材料は様々な機能を発現するプラットホームとして注目されている。その中でも、2次元炭素材料はその特異な化学・電子構造を有するため、近年各国で熾烈な研究開発が行われている。特に、グラフェンは、sp2炭素原子が2次元的に繋がって原子層を形成し、特異な電気伝導特性を示すことで、様々な分野で幅広く応用されている。しかしながら、化学的な手法でsp2炭素原子(あるいはsp2炭素ユニット)を規則正しく繋げてsp2炭素シートをつくりあげることが極めて困難で、2次元炭素材料はグラフェンに限られているのが現状である。
これに対して、本研究では、sp2炭素ユニットから2次元炭素材料を設計する原理を明らかにし、さらに、sp2炭素ユニットを規則正しく連結して2次元炭素材料を合成する手法を開拓した。この手法は従来不可能な2次元炭素材料の化学合成を可能にし、分子構造を思ったままに設計して2次元炭素をテーラーメイドで合成することを可能とする。今回合成された2次元炭素材料は、規則正しい分子配列構造を有し、拡張された2次元sp2炭素骨格構造を有し、π共役が2次元的に広がっている特徴を示す。高い結晶性と安定性を有するとともに、2ナノメートルサイズの1次元チャンネルが規則正しく内蔵されている。この2次元炭素材料は、ヨウ素でドーピングすると、電気伝導度は12桁も高くなり、室温で優れた半導体特性示した。興味深いことに、この2次元炭素材料は、極めて高い濃度の有機ラジカル種を共存させることができ、さらに、低温において、これらのラジカルスピンが同じ方向に配列するように転移し、強磁性体になることを突き止めた。今後は、様々な2次元炭素材料の設計と合成が可能となるに加え、その特異なπ電子構造に由来する新奇な機能の開発がより一層促進される。
本研究は、Scienceに2017年8月18日に公開された。
1.研究の成果
今回研究開発された2次元炭素高分子材料は2次元高分子注1)である。2次元高分子は、規則正しい分子骨格構造を有し、無数の細孔が並んでいるため、二酸化炭素吸着、触媒、エネルギー変換、半導体、エネルギー貯蔵など様々な分野で活躍し、新しい機能性材料として大いに注目されている。江教授らは、世界に先駆けて基礎から応用まで幅広い研究を展開し、この分野を先導してきた。
これまでの2次元合成高分子は、分子骨格に他の元素(例えば、ホウ素、酸素、窒素などの原子)が入っていて、sp2炭素からなる2次元炭素高分子は合成できなかった。これまでの合成手法では、sp2炭素ユニットからなる高分子を合成できるものの、アモルファス系の無秩序構造を与え、規則正しい2次元原子層及び積層構造をつくることはできなかった。今回、江教授らは、可逆的なC=C結合反応を開発し、C=C結合でsp2炭素ユニットを規則正しく繋げて、結晶性の高い2次元sp2炭素高分子の合成に成功した(図1A)。この原理は様々なトポロジーを有する2次元sp2炭素高分子を設計することができる点が特徴的である。今回合成されたsp2c-COFは、2次元sp2炭素原子層を有し(図1B)、積層することによって頂点に位置するピレンπ-カラムアレイと規則正しく並んだ1次元ナノチャンネルが生成される(図1C)。2次元sp2炭素原子層の中では、xとy方向に沿ってπ電子共役が伸びており、拡張された2次元電子系を形成する(図1D)。また、積層構造では、ピレン(丸い点)ユニットが縦方向でスタックして特異なπカラムアレイ構造と1次元ナノチャンネル構造を形成している(図1E)。X線構造解析から、2次元sp2炭素高分子は、規則正しい配列構造を有することが明らかになった。

図1.A)sp2炭素ユニットからなる2次元炭素高分子の合成。B) 2次元炭素原子層の構造。C)積層された2次元炭素構造。D)2次元炭素の網目モデル構造、xとy方向にπ共役が広がっている。E) 積層された2次元炭素の網目モデル構造。
この2次元sp2炭素高分子は空気中、様々な有機溶媒、水、酸、および塩基下においても安定である。また、熱的にも極めて安定であり、窒素下で400°Cまで加熱しても分解しない。この2次元sp2炭素高分子は酸化還元活性であり、有機半導体の特性を示す。エネルギーギャップは1.9 eVであり、ヨウ素でドーピングすると、電気伝導度が12桁も向上する。
電子スピン共鳴スペクトルを用いて、ヨウ素でのドーピング過程を追跡したところ、有機ラジカル種がドーピング時間とともに増えてくることが分かった。これらのラジカル種はピレンに位置し、互いに会合してバイポラロンを形成することができない。したがって、2次元炭素高分子系内では、極めて高いラジカル密度を保つことができる。超電導量子干渉計を用いた測定から、ピレンあたりのラジカル種は0.7個であることが分かった。これに対して、類似構造を有する1次元高分子および3次元アモルファス高分子系では、ラジカル密度が極めて低かった。すなわち、2次元 sp2炭素高分子はバルクの磁石であることが示唆された。
磁化率と磁場強度との関係を検討したところ、温度を下げていくと、これらのラジカル種が同じ方向に向くようになり、2次元炭素高分子は強磁性体注2)に転移することを見いだした。すなわち、隣り合うラジカル種のスピンが同じ方向に揃うことによって、スピン間のコヒーレンスが生まれる。これらの特異なスピン挙動は1次元や3次元アモルファス炭素材料には見られない。
本研究成果は、このような高度なスピンアレイを用いた超高密度データー貯蔵システムや超高密度エネルギー貯蔵システムの開拓に新しい道を開くものである。
2.今後の展開
今回の研究成果は、化学合成から2次元炭素高分子材料の新しい設計原理を確立した。また、合成アプローチも確保されており、様々な2次元炭素高分子材料の誕生に繋がるものと期待される。今後、これらの特異な2次元炭素構造をベースに、様々な革新的な材料の開発がより一層促進される。
3.用語解説
注1)2次元高分子
共有結合で有機ユニットを連結し、2次元に規定して成長した多孔性高分子シートの結晶化により積層される共有結合性有機構造体。
注2)強磁性体
隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質を指す。そのため、外部磁場が無くても自発磁化を示す。
4.論文情報
掲載誌:Science
論文タイトル:Two-dimensional sp2 carbon-conjugated covalent organic frameworks(2次元sp2炭素共役共有結合性有機骨格構造体)
著者:金 恩泉(北陸先端科学技術大学院大学研究員)、浅田 瑞枝(分子科学研究所特任助教)、徐 慶(北陸先端科学技術大学院大学特別研究学生)、Sasanka Dalapati(北陸先端科学技術大学院大学研究員、日本学術振興会外国人特別研究員)、Matthew A. Addicoat (イギリス ノッティンガム・トレント大学助教)、 Michael A. Brady(アメリカ ローレンス・バークレー国立研究所 研究員)、徐 宏(北陸先端科学技術大学院大学研究員)、中村 敏和(分子科学研究所准教授)、Thomas Heine (ドイツ ライプツィヒ大学教授)、陳 秋紅(北陸先端科学技術大学院大学研究員)、江 東林(北陸先端科学技術大学院大学教授)
掲載日:8月18日にオンライン掲載。 DOI: 10.1126/science.aan0202.
5.研究助成
この研究は科学研究費助成金 基盤研究(A)(17H01218)、ENEOS水素信託基金、および小笠原科学技術振興財団によって助成された。
平成29年8月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/08/21-1.html学生の乾さんが第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞
学生の乾京介さん(博士前期課程1年、環境・エネルギー領域・下田研究室)が第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けております。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的としています。
■受賞年月日
平成28年12月10日
■講演題目
「感光型シルセスキオキサンを用いたTFT用ゲート絶縁膜の低温形成」
■講演概要
二段階UV照射という方法を考案し、優れた絶縁膜として知られる熱酸化SiO2膜に相当する絶縁性を持つ膜の低温形成に成功した。さらに、その絶縁膜をTFTの絶縁膜に用いることで低リーク特性の低温酸化物TFTの作製にも成功した。この成果により高絶縁性膜の低温形成が可能となり、フレキシブルな基板への高絶縁膜の応用が可能となった。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。本研究を進めるにあたり材料を提供いただきましたメルク株式会社様に深く感謝いたします。また、ご指導頂きました下田達也教授、井上特任教授、ならびに研究室のメンバー及びスタッフの方々にも深く感謝いたします。

平成28年12月19日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2016/12/19-1.html学生の重松さんが第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞
学生の重松沙樹さん(博士前期課程1年、応用物理学領域・村田研究室)が第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス,新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けております。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的としています。
■受賞年月日
平成28年12月10日
■講演題目
「有機EL材料のフーリエ変換イオンサイクロトロン質量分析」
■講演概要
有機EL素子は、励起状態やラジカルカチオンに起因した発光層中での化学反応の進行によって劣化すると考えられています。しかし、劣化反応による生成物の量が極めて微量であるため具体的な劣化反応の特定には至っていないのが現状です。本研究では、超高分解能の質量分析が可能なフーリエ変換イオンサイクロトロン共鳴質量計(FT-ICR-MS)を有機EL素子の劣化解析に初めて適用することで劣化反応の推定を試みました。有機EL材料を異なるイオン化方法(LDI法及びESI法)を用いて質量分析を行ったところ、異なった質量スペクトルが得られました。このイオン化方法の違いによる生成物の違いを利用することで素子中で生じる劣化反応の推定が可能になることを明らかにしました。
■受賞にあたって一言
応用物理学会・信越支部 発表奨励賞を頂けたことを大変光栄に思います。研究するにあたり、ご指導頂きました村田英幸教授、技術サービス部 技術職員 宮里朗夫様、酒井平祐助教、ならびに研究室のメンバーに深く御礼申し上げます。受賞を励みに、これからも研究に精一杯取り組んでいきたいと思います。

平成28年12月14日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2016/12/14-2.html






