研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。学生の鈴木さんが応用物理学会北陸・信越支部において発表奨励賞を受賞

学生の鈴木 友康さん(博士前期課程1年、環境・エネルギー領域・大平研究室)が、平成30年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
「応用物理学会」は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。またこの賞は、応用物理学会北陸・信越支部の学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手会員に対し「北陸・信越支部発表奨励賞」を授与し、その功績を称えることを目的としています。
■受賞年月日
平成30年12月1日
■講演題目
「n型フロントエミッター型太陽電池モジュールの電圧誘起劣化におけるSiO₂膜の効果」
■講演概要
近年、大規模太陽光発電所などで、太陽電池モジュールのアルミフレームとセル間の電位差に起因して性能が劣化する電圧誘起劣化(PID)が問題となっている。本研究では、今後の普及が期待される、基板にn型結晶Siを用い、光入射側にp型エミッター層があるn型フロントエミッター型(n-FE)結晶Si太陽電池モジュールに関し、セル中のSiO₂膜がPIDにおよぼす影響を、SiO₂膜がないn-FEセルを用いたモジュールへのPID試験との比較により検証した。SiO₂膜の無いモジュールでは、表面の窒化Si膜への正電荷蓄積に起因する初期の劣化が確認できなかったが、Na+侵入に起因するその後の劣化に関しては、劣化の程度が大きく、発現する時間も早まった。以上のことから、n-FEモジュールのSiO₂膜は、窒化Siに蓄積する正電荷のSi側への放出を抑止するため初期のPIDを引き起こす一方、Na+侵入によるPIDを遅延する効果があると考察した。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。ご指導いただいた、産業技術総合研究所増田淳様、大平圭介教授、D3山口世力氏ならびに研究室のメンバーには厚く御礼申し上げます。また、今回の実験を行うに当たり、n-FEセルを作製いただいた、豊田工業大学の中村京太郎教授にも厚く御礼申し上げます。今後もこれを励みにし、研究に精一杯取り組んでいきたいと思います。
平成30年12月12日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2018/12/12-1.html学生の石川さんが平成29年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞

学生の石川 達也さん(博士前期課程1年、応用物理学領域・村田研究室)が平成29年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス,新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的としています。
■受賞年月日
平成29年12月9日
■講演題目
フレキシブル有機圧力センサの作製
■講演概要
有機圧力センサは人の体や曲面にフィットするようなフレキシブルセンサとして期待されています。その中で有機電界効果トランジスタ(OFET)を用いたアクティブ型有機圧力センサはヘルスケア分野などへの応用を目指して活発に研究が進められています。圧力センサでは低電圧駆動と大きな圧力応答の両立が実用化に向けた課題でしたが、我々はガラス基板上に低電圧駆動OFETを作製し、感圧部と組み合わせるDual-gate型有機圧力センサの開発を行い、低電圧駆動と大きな圧力応答の両立を達成しました。しかし、ガラス基板では期待されるようなフレキシブルな応用ができません。そこで本研究ではPEN基板を用いたDual-gate型フレキシブル有機圧力センサの作製に取り組み、動作を確認することができました。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。研究するにあたり、ご指導頂きました村田英幸教授、酒井平祐助教、ならびに研究室のメンバーに深く御礼申し上げます。受賞を励みに、これからも研究に精一杯取り組んでいきたいと思います。
平成29年12月21日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2017/12/21-3.html磁性-プラズモンハイブリッドナノ粒子を用いて、従来分離が難しかった細胞小器官(オートファゴソームなど)の新たな分離法の開発に成功

磁性-プラズモンハイブリッドナノ粒子を用いて、従来分離が難しかった
細胞小器官(オートファゴソームなど)の新たな分離法の開発に成功
ポイント
- これまで分離が難しかった細胞小器官を磁気分離するためのプローブとして、粒径約15 nmで単分散なAg/FeCo/Agコア/シェル/シェル型磁性-プラズモンハイブリッドナノ粒子を創製した。
- ハイブリッドナノ粒子を哺乳動物細胞に取り込ませ、培養時間を変化させた際、ナノ粒子が細胞内のどの部分に局在するかということをAgコアのプラズモン散乱を利用して可視化することに成功した。
- 培養時間が30分~2時間の間でハイブリッドナノ粒子がオートファゴソームに局在することがわかったため、オートファゴソームをターゲットとして、適切な時間帯で細胞膜を破砕して磁気分離を行うことでオートファゴソームの分離に成功した。
- 単離したオートファゴソームをプロテオミクス/リピドミクス解析に供することで、オートファジーの機能欠損による疾患の創薬へと展開できる可能性がある。
- リガンド結合ハイブリッドナノ粒子を用いた汎用的かつ高選択的な細胞小器官分離技術へと拡張することで、基礎生物学上重要な発見を導く可能性があるほか、肥満や老化を防止する医療技術へと繋がることも期待される。
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、物質化学領域の前之園 信也 教授らは、東京大学、金沢大学ほかと共同で、独自開発の磁性-プラズモンハイブリッドナノ粒子を用いてオートファゴソームのイメージングと磁気分離に成功しました。この手法は、これまで分離が困難であった他の細胞小器官へ拡張可能なため、新たな細胞小器官分離法としての応用が期待されます。 2013年のノーベル生理学・医学賞は、「小胞輸送の分子レベルでの解析と制御メカニズムの解明」という功績に対して、米国の3名の研究者に贈られました。また、2016年のノーベル生理学・医学賞は、「オートファジー注1)の分子レベルでのメカニズムの解明」の功績に対して、東京工業大学・大隅 良典 栄誉教授に贈られたことはまだ記憶に新しいところです。これらの研究はいずれも"細胞内物質輸送"に関するものでした。細胞内物質輸送には多種多様な細胞小器官注2)が関与しており、それらの機能は細胞小器官に存在するタンパク質や脂質によって制御されています。従って、細胞小器官の機能を理解するためには、そこに存在するタンパク質/脂質を調べることが必要不可欠です。そのための有力な手段の一つとして、タンパク質/脂質が機能している小器官ごと単離して解析するという方法があります。細胞小器官の一般的な単離法には超遠心分離注3)がありますが、比重に差が無い異種の小器官の分離は困難であることに加え、分離工程が煩雑で手間がかかるほか、表在性タンパク質注4)の脱離や変性が問題となる場合もあるため、新たな分離法の開発が望まれています。 本成果は、アメリカ化学会が発行するオープンアクセスジャーナルであるACS Omega誌に2017年8月25日に掲載されました。 |
<今後の展開>
単離したオートファゴソームをプロテオミクス/リピドミクス解析に供することで、これまでとは異なる視点からオートファジーを俯瞰でき、オートファジーの機能欠損による疾患の創薬へと展開できる可能性があります。また、ハイブリッドナノ粒子表面に所望のリガンドを結合させることによって、目的の細胞小器官への受容体を介したターゲティングが可能なナノ粒子を作製し、そのリガンド結合ナノ粒子を用いて標的細胞小器官を高選択的に単離する技術を確立することで、基礎生物学上重要な発見を導く可能性があります。さらに、肥満や老化を防止する医療技術へと繋がることも期待されます。
図1 磁性-プラズモンハイブリッドナノ粒子を哺乳動物細胞にトランスフェクションした後、培養時間(図中右に行くに従って培養時間が長いことを意味する)とともにナノ粒子の局在が初期エンドソーム(early endosome)、オートファゴソーム(autophagosome)、オートファゴリソソーム(autophagolysosome)へと移行する様子をプラズモン散乱を利用した共焦点顕微鏡イメージングで確認でき、各々の時間帯で磁気分離を行うとそれぞれ異なる種類の細胞小器官を分離することが可能であることを示した図。
<論文>
掲載誌: | ACS Omega |
論文題目: | "Magnetic Separation of Autophagosomes from Mammalian Cells using Magnetic-Plasmonic Hybrid Nanobeads"(磁性-プラズモンハイブリッドナノ粒子を用いた哺乳動物細胞からのオートファゴソームの磁気分離) |
著者: | Mari Takahashi,1 Priyank Mohan,1 Kojiro Mukai,2 Yuichi Takeda,3 Takeo Matsumoto,4 Kazuaki Matsumura,1 Masahiro Takakura,5 Hiroyuki Arai,2 Tomohiko Taguchi,6 Shinya Maenosono1* 1北陸先端科学技術大学院大学 2東京大学大学院薬学系研究科 衛生化学教室 3大阪大学大学院医学系研究科 4金沢大学医薬保健研究域医学系 5金沢医科大学産科婦人科 6東京大学大学院薬学系研究科 疾患細胞生物学教室 |
DOI: | 10.1021/acsomega.7b00929 |
掲載日: | 2017年8月25日 |
<用語解説>
注1)オートファジー
オートファジー(Autophagy)は、細胞が持っている、細胞内のタンパク質を分解するための仕組みの一つ。自食とも呼ばれる。酵母からヒトにいたるまでの真核生物に見られる機構であり、細胞内での異常なタンパク質の蓄積を防いだり、過剰にタンパク質合成したときや栄養環境が悪化したときにタンパク質のリサイクルを行ったり、細胞質内に侵入した病原微生物を排除することで生体の恒常性維持に関与している。
注2)細胞小器官
細胞の内部で特に分化した形態や機能を持つ構造の総称。細胞内器官やオルガネラとも呼ばれる。細胞小器官が高度に発達していることが、真核細胞を原核細胞から区別している特徴の一つである。
注3)超遠心分離
数万G(重力加速度)以上の遠心力をかける遠心分離法。
注4)表在性タンパク質
疎水性相互作用、静電相互作用など共有結合以外の力によって脂質二重層または内在性膜タンパク質と一時的に結合しているタンパク質。
注5)超常磁性
強磁性体やフェリ磁性体のナノ粒子に現れる。磁性ナノ粒子では磁化の向きが温度の影響でランダムに反転しうる。この反転が起こるまでの時間をネール緩和時間という。外場の無い状態で、磁性ナノ粒子の磁化測定時間がネール緩和時間よりもずっと長い時、磁化は平均してゼロであるように見える。この状態を超常磁性という。
注6)エンドサイトーシス
細胞が細胞外の物質を取り込む過程の一つ。細胞に必要な物質のあるものは極性を持ちかつ大きな分子であるため、疎水性の物質から成る細胞膜を通り抜ける事ができない、このためエンドサイトーシスにより細胞内に輸送される。
注7)オートファゴソーム
オートファジーの過程で形成される二重膜構造を有した袋状の細胞小器官。他の細胞小器官やタンパク質などを囲い込んだ後、リソソームと融合することで内容物を消化する。
注8)プラズモン
プラズマ振動の量子であり、金属中の自由電子が集団的に振動して擬似的な粒子として振る舞っている状態をいう。金属ナノ粒子ではプラズモンが表面に局在することになるので、局在表面プラズモンとも呼ばれる。
注9)トランスフェクション
人為的にDNAやウイルスなどを細胞に取り込ませる手法。
注10)プラズモン散乱イメージング
局在表面プラズモン共鳴に起因した光散乱を利用したイメージング。共焦点顕微鏡を用いたバイオイメージングでは一般的に蛍光色素が用いられるが、長時間観察では光退色が問題となる。しかし、プラズモン散乱を用いたイメージングでは光退色の心配がない。
注11)蛍光免疫染色
抗体に蛍光色素を標識しておき、抗原抗体反応の後で励起光を照射して蛍光発光させ、共焦点顕微鏡などで観察することによって本来不可視である抗原抗体反応(免疫反応)を可視化するための組織化学的手法。
注12)初期エンドソーム
初期エンドソームは、エンドサイトーシスされた物質を選別する場として機能する細胞小器官である。エンドサイトーシスによって細胞内へと取り込まれた物質は、まず細胞辺縁部に存在する初期エンドソームへと輸送される。初期エンドソームを起点として、分解される物質は分解経路へと、細胞膜で再利用される物質はリサイクリング経路へと選別されていく。
注13)オートファゴリソソーム
オートファゴソームとリソソームの融合によってできる細胞小器官。
注14)ウェスタンブロッティング
電気泳動によって分離したタンパク質を膜に転写し、任意のタンパク質に対する抗体でそのタンパク質の存在を検出する手法。
注15)LC3-II
LC3はオートファゴソームマーカーとして広く知られている。オートファジーが開始されると、LC3はプロペプチドとして発現し、直ちにC末端が切断されて細胞質型のLC3-Ⅰとなる。LC3-ⅠのC末端にホスファチジルエタノールアミンが付加され、膜結合型のLC3- IIへ変換する。LC3- IIはオートファゴソーム膜へと取り込まれて安定に結合するため、哺乳動物におけるオートファゴソーム膜のマーカーとして用いられている。
平成29年8月25日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/08/25-1.html2次元sp2炭素高分子材料の開拓に成功
![]() |
![]() |
国立大学法人 北陸先端科学技術大学院大学 大学共同利用機関法人 分子科学研究所 |
2次元sp2炭素高分子材料の開拓に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の江 東林教授らの研究グループと分子科学研究所の物質分子科学研究領域の中村 敏和准教授らの研究グループは、sp2炭素からなる2次元共役有機骨格構造体の開拓に成功した。
炭素材料は様々な機能を発現するプラットホームとして注目されている。その中でも、2次元炭素材料はその特異な化学・電子構造を有するため、近年各国で熾烈な研究開発が行われている。特に、グラフェンは、sp2炭素原子が2次元的に繋がって原子層を形成し、特異な電気伝導特性を示すことで、様々な分野で幅広く応用されている。しかしながら、化学的な手法でsp2炭素原子(あるいはsp2炭素ユニット)を規則正しく繋げてsp2炭素シートをつくりあげることが極めて困難で、2次元炭素材料はグラフェンに限られているのが現状である。
これに対して、本研究では、sp2炭素ユニットから2次元炭素材料を設計する原理を明らかにし、さらに、sp2炭素ユニットを規則正しく連結して2次元炭素材料を合成する手法を開拓した。この手法は従来不可能な2次元炭素材料の化学合成を可能にし、分子構造を思ったままに設計して2次元炭素をテーラーメイドで合成することを可能とする。今回合成された2次元炭素材料は、規則正しい分子配列構造を有し、拡張された2次元sp2炭素骨格構造を有し、π共役が2次元的に広がっている特徴を示す。高い結晶性と安定性を有するとともに、2ナノメートルサイズの1次元チャンネルが規則正しく内蔵されている。この2次元炭素材料は、ヨウ素でドーピングすると、電気伝導度は12桁も高くなり、室温で優れた半導体特性示した。興味深いことに、この2次元炭素材料は、極めて高い濃度の有機ラジカル種を共存させることができ、さらに、低温において、これらのラジカルスピンが同じ方向に配列するように転移し、強磁性体になることを突き止めた。今後は、様々な2次元炭素材料の設計と合成が可能となるに加え、その特異なπ電子構造に由来する新奇な機能の開発がより一層促進される。
本研究は、Scienceに2017年8月18日に公開された。
1.研究の成果
今回研究開発された2次元炭素高分子材料は2次元高分子注1)である。2次元高分子は、規則正しい分子骨格構造を有し、無数の細孔が並んでいるため、二酸化炭素吸着、触媒、エネルギー変換、半導体、エネルギー貯蔵など様々な分野で活躍し、新しい機能性材料として大いに注目されている。江教授らは、世界に先駆けて基礎から応用まで幅広い研究を展開し、この分野を先導してきた。
これまでの2次元合成高分子は、分子骨格に他の元素(例えば、ホウ素、酸素、窒素などの原子)が入っていて、sp2炭素からなる2次元炭素高分子は合成できなかった。これまでの合成手法では、sp2炭素ユニットからなる高分子を合成できるものの、アモルファス系の無秩序構造を与え、規則正しい2次元原子層及び積層構造をつくることはできなかった。今回、江教授らは、可逆的なC=C結合反応を開発し、C=C結合でsp2炭素ユニットを規則正しく繋げて、結晶性の高い2次元sp2炭素高分子の合成に成功した(図1A)。この原理は様々なトポロジーを有する2次元sp2炭素高分子を設計することができる点が特徴的である。今回合成されたsp2c-COFは、2次元sp2炭素原子層を有し(図1B)、積層することによって頂点に位置するピレンπ-カラムアレイと規則正しく並んだ1次元ナノチャンネルが生成される(図1C)。2次元sp2炭素原子層の中では、xとy方向に沿ってπ電子共役が伸びており、拡張された2次元電子系を形成する(図1D)。また、積層構造では、ピレン(丸い点)ユニットが縦方向でスタックして特異なπカラムアレイ構造と1次元ナノチャンネル構造を形成している(図1E)。X線構造解析から、2次元sp2炭素高分子は、規則正しい配列構造を有することが明らかになった。
図1.A)sp2炭素ユニットからなる2次元炭素高分子の合成。B) 2次元炭素原子層の構造。C)積層された2次元炭素構造。D)2次元炭素の網目モデル構造、xとy方向にπ共役が広がっている。E) 積層された2次元炭素の網目モデル構造。
この2次元sp2炭素高分子は空気中、様々な有機溶媒、水、酸、および塩基下においても安定である。また、熱的にも極めて安定であり、窒素下で400°Cまで加熱しても分解しない。この2次元sp2炭素高分子は酸化還元活性であり、有機半導体の特性を示す。エネルギーギャップは1.9 eVであり、ヨウ素でドーピングすると、電気伝導度が12桁も向上する。
電子スピン共鳴スペクトルを用いて、ヨウ素でのドーピング過程を追跡したところ、有機ラジカル種がドーピング時間とともに増えてくることが分かった。これらのラジカル種はピレンに位置し、互いに会合してバイポラロンを形成することができない。したがって、2次元炭素高分子系内では、極めて高いラジカル密度を保つことができる。超電導量子干渉計を用いた測定から、ピレンあたりのラジカル種は0.7個であることが分かった。これに対して、類似構造を有する1次元高分子および3次元アモルファス高分子系では、ラジカル密度が極めて低かった。すなわち、2次元 sp2炭素高分子はバルクの磁石であることが示唆された。
磁化率と磁場強度との関係を検討したところ、温度を下げていくと、これらのラジカル種が同じ方向に向くようになり、2次元炭素高分子は強磁性体注2)に転移することを見いだした。すなわち、隣り合うラジカル種のスピンが同じ方向に揃うことによって、スピン間のコヒーレンスが生まれる。これらの特異なスピン挙動は1次元や3次元アモルファス炭素材料には見られない。
本研究成果は、このような高度なスピンアレイを用いた超高密度データー貯蔵システムや超高密度エネルギー貯蔵システムの開拓に新しい道を開くものである。
2.今後の展開
今回の研究成果は、化学合成から2次元炭素高分子材料の新しい設計原理を確立した。また、合成アプローチも確保されており、様々な2次元炭素高分子材料の誕生に繋がるものと期待される。今後、これらの特異な2次元炭素構造をベースに、様々な革新的な材料の開発がより一層促進される。
3.用語解説
注1)2次元高分子
共有結合で有機ユニットを連結し、2次元に規定して成長した多孔性高分子シートの結晶化により積層される共有結合性有機構造体。
注2)強磁性体
隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質を指す。そのため、外部磁場が無くても自発磁化を示す。
4.論文情報
掲載誌:Science
論文タイトル:Two-dimensional sp2 carbon-conjugated covalent organic frameworks(2次元sp2炭素共役共有結合性有機骨格構造体)
著者:金 恩泉(北陸先端科学技術大学院大学研究員)、浅田 瑞枝(分子科学研究所特任助教)、徐 慶(北陸先端科学技術大学院大学特別研究学生)、Sasanka Dalapati(北陸先端科学技術大学院大学研究員、日本学術振興会外国人特別研究員)、Matthew A. Addicoat (イギリス ノッティンガム・トレント大学助教)、 Michael A. Brady(アメリカ ローレンス・バークレー国立研究所 研究員)、徐 宏(北陸先端科学技術大学院大学研究員)、中村 敏和(分子科学研究所准教授)、Thomas Heine (ドイツ ライプツィヒ大学教授)、陳 秋紅(北陸先端科学技術大学院大学研究員)、江 東林(北陸先端科学技術大学院大学教授)
掲載日:8月18日にオンライン掲載。 DOI: 10.1126/science.aan0202.
5.研究助成
この研究は科学研究費助成金 基盤研究(A)(17H01218)、ENEOS水素信託基金、および小笠原科学技術振興財団によって助成された。
平成29年8月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/08/21-1.html学生の乾さんが第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞
学生の乾京介さん(博士前期課程1年、環境・エネルギー領域・下田研究室)が第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けております。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的としています。
■受賞年月日
平成28年12月10日
■講演題目
「感光型シルセスキオキサンを用いたTFT用ゲート絶縁膜の低温形成」
■講演概要
二段階UV照射という方法を考案し、優れた絶縁膜として知られる熱酸化SiO2膜に相当する絶縁性を持つ膜の低温形成に成功した。さらに、その絶縁膜をTFTの絶縁膜に用いることで低リーク特性の低温酸化物TFTの作製にも成功した。この成果により高絶縁性膜の低温形成が可能となり、フレキシブルな基板への高絶縁膜の応用が可能となった。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。本研究を進めるにあたり材料を提供いただきましたメルク株式会社様に深く感謝いたします。また、ご指導頂きました下田達也教授、井上特任教授、ならびに研究室のメンバー及びスタッフの方々にも深く感謝いたします。
平成28年12月19日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2016/12/19-1.html学生の重松さんが第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞

学生の重松沙樹さん(博士前期課程1年、応用物理学領域・村田研究室)が第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス,新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けております。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的としています。
■受賞年月日
平成28年12月10日
■講演題目
「有機EL材料のフーリエ変換イオンサイクロトロン質量分析」
■講演概要
有機EL素子は、励起状態やラジカルカチオンに起因した発光層中での化学反応の進行によって劣化すると考えられています。しかし、劣化反応による生成物の量が極めて微量であるため具体的な劣化反応の特定には至っていないのが現状です。本研究では、超高分解能の質量分析が可能なフーリエ変換イオンサイクロトロン共鳴質量計(FT-ICR-MS)を有機EL素子の劣化解析に初めて適用することで劣化反応の推定を試みました。有機EL材料を異なるイオン化方法(LDI法及びESI法)を用いて質量分析を行ったところ、異なった質量スペクトルが得られました。このイオン化方法の違いによる生成物の違いを利用することで素子中で生じる劣化反応の推定が可能になることを明らかにしました。
■受賞にあたって一言
応用物理学会・信越支部 発表奨励賞を頂けたことを大変光栄に思います。研究するにあたり、ご指導頂きました村田英幸教授、技術サービス部 技術職員 宮里朗夫様、酒井平祐助教、ならびに研究室のメンバーに深く御礼申し上げます。受賞を励みに、これからも研究に精一杯取り組んでいきたいと思います。
平成28年12月14日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2016/12/14-2.html