研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。エネルギー変換の最先端 ―未利用廃熱の高効率回収―


エネルギー変換の最先端 ―未利用廃熱の高効率回収―
R7年10月以降に入学する学生の受け入れは行いません
小矢野研究室 KOYANO Laboratory
教授:小矢野 幹夫(KOYANO Mikio)
E-mail:
[研究分野]
固体物性、熱電変換
[キーワード]
物理・実験系、低次元伝導体、熱電変換の物理、熱電材料、エネルギーの有効利用、エネルギーハーベスティング
研究を始めるのに必要な知識・能力
物理の実験系の研究室ですが、出身分野にはこだわりません。今までにも物理系、電子・電気系、機械系、化学系の学生が本研究室に来て活躍しています。JAISTに入学してから、応用物性数学、量子力学、固体物理学など自然科学系の講義を受講してもらうことをお願いしています。
この研究で身につく能力
物理系のみならず多様な分野から来た学生が、総合的な科学技術としての熱電変換の研究を行うことにより、修了後に企業や研究機関で社会に貢献することを目指しています。私たちの研究室で身につけられる能力は、具体的には以下のとおりです。
- 実際に手を動かしてものを作る面白さを知ること。
- 先端的な実験機器を用いた物理研究と実験手法の習得。
- 物理的または科学的な考え方の習得、ものごとを定量的に捉える力の獲得。
- プレゼンテーション能力、科学的な論文(主として日本語)の作成の方法。
【就職先企業・職種】 製造業ほか
研究内容

テトラヘドライト

硫化物熱電材料

ポストグラフェン材料
ゼーベック効果やペルチェ効果などを利用した『熱電変換技術』を使うと、熱エネルギーと電気エネルギーの相互変換が出来るため、廃熱から直接発電を行う『熱電発電』が可能となります。私たちの研究室では、【はかる】【つくる】【さがす】という3本の柱で熱電変換に関する研究を行っています。
【はかる】微小スケールの熱電性能の測定
「はかる」とは熱電材料の特性をはかるための評価手法の開発という意味です。近年、微細な構造を持った新規熱電素子が開発されていますが、システム自体が小さく測定が難しいため、新しい評価手法の開発が望まれています。
私たちの研究室では、3ω法(スリーオメガ法)と呼ばれる熱伝導率測定法を改良して、Bi-Te 系熱電ナノ粒子凝集体の熱伝導率を測定することに成功しました。さらにこの3ω法を改良することにより、遷移金属トリカルコゲナイドナノワイヤーの熱伝導率測定にもチャレンジしています。またポイントコンタクト型局所熱電性能測定法も開発しており、将来的にはグラフェンやポストグラフェンなど先端材料のフォノン物性を解明することを目指しています。
【つくる】インクジェット技術を用いた新規熱電モジュールの開発
実際に熱電発電を行うためには、Bi-Te 系熱電素子を多数配列させた熱電モジュールを作製しなければなりません。われわれは、LCD 用カラーフィルターの製造に利用されているインクジェット技術を熱電モジュール作製に応用するという、新たな製造プロセスの開発を行いました。
インクジェット印刷を用いることにより、従来作製が難しかった微小サイズモジュールや、ポリイミドをはじめとするフレキシブルな基板を用いたモジュールの試作に成功しました。今後は、焼成後の素子の密度と粒子配向性の向上といった課題を解決し、既存の分野およびエネルギーハーベスティングなど新しい分野への応用展開を図ることを予定しています。
【さがす】新しい熱電変換材料の創製
現在実用化されている熱電材料(Bi-Te 系材料)は、構成元素のTe が希少・高価であるという問題を抱えています。この問題を解決するため、私たちはTe の代替元素として硫黄(S)を用いた化合物、すなわち新しい硫化物熱電材料の開発を行っています。
最近、私たちはテトラヘドライトと呼ばれる熱電鉱物Cu12Sb4S13が、実用化されている材料と比べても遜色ない性能を示すことを発見しました。この材料は母体のままでも良好な熱電性能を示しますが、さらに、Cu サイトをNi で置換することにより熱電性能を約1.4倍向上させることに成功しました。
これ以外にも、多様な硫化物の低次元伝導体や、熱電材料と磁性体のハイブリッド材料の合成・開発を行い、その基礎物性や熱電性能を調査しています。
主な研究業績
- Development of thermal conductivity measurement system using the 3ω method and application to thermoelectric particles, S. Nishino, K. Suekuni, K. Ohdaira, and M. Koyano, Journal of Electronic Materials (2014), DOI: 10.1007/s11664-014-2993-9.
- High-performance thermoelectric mineral Cu12-xNixSb4S13 tetrahedrite, K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, Journal of Applied Physics 113, 043712 (2013)
- 廃熱も電気に変える熱電発電,小矢野幹夫,Ohm Bulletin, 2014年 VOL.49 冬号(通巻200号)pp. 02.
使用装置
物理特性測定装置 PPMS(熱電性能、電気伝導の測定)
ラマン散乱分光装置(固体中の素励起のエネルギー分析)
管状電気炉・マッフル炉(無機材料の合成)
ホットプレス装置(粉体試料の加圧焼結・配向制御)
研究室の指導方針
『多様な物性に多様な価値観で挑む』をモットーに、今まで誰も知らなかった新しい現象を発見したり、新規材料を創製することを目指しています。小矢野研は『エネルギーに興味がある人』『無機材料を自分で作ってみたい人』『科学や物理が好きな人』 を歓迎します!
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/kotai/koyano/index.html
なぜ実用熱電材料の熱伝導率は低いのか?レーザーラマン散乱分光が出した答えは? ~実用熱電モジュールの性能向上に大きく期待~

なぜ実用熱電材料の熱伝導率は低いのか?レーザーラマン散乱分光が出した答えは?
~実用熱電モジュールの性能向上に大きく期待~
【ポイント】
- レーザーラマン散乱分光法を応用した格子振動の解析手法を、熱電材料の熱伝導率評価に適用しました。
- 実用熱電材料(ビスマス-テルル-セレン系材料)において、4次以上の高次の非調和振動はほとんど存在しないことを実証しました。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域のLiu Ruian大学院生(博士後期課程)、小矢野 幹夫教授は、レーザーラマン散乱分光法を実用熱電材料(ビスマス-テルル-セレン系材料)に適用し、4次以上の高次の非調和格子振動がほとんど存在しないことを実証しました。この成果は、なぜ実用熱電材料の熱伝導率は低いのかという問いに対して答えを与えるだけでなく、よりよい熱電材料、すなわち低い熱伝導率をもつ材料を開発するにはどうすればよいかという指針を与えるものです。 |
【研究背景と内容】
熱電変換技術は、固体素子(以下、「熱電素子」という。)のみを使って、熱エネルギーから電気エネルギーを取り出したり、電気によって熱の流れを制御する技術です。熱電変換技術のうち、熱電素子に直流電流を流すと素子の両端でそれぞれ吸発熱がおこるペルチェ効果と、素子に温度差をつけると電圧が発生するゼーベック効果があります(図1)。特に、ペルチェ効果は、インターネットや先進AI技術を支える光通信用レーザーダイオードの温度制御に使用されており、私たちの豊かな生活を陰で支えている必要不可欠なものです。
図1 一対のp型およびn型の熱電素子を組み合わせたπ型熱電モジュールの概念図。熱電モジュールに直流電流を流すと上下電極で吸発熱が起こり(左図)、温度差をつけると逆に電圧が発生する(右図)。 |
このように産業応用されている熱電素子の心臓部にはビスマス-テルル-セレン系の材料が使われています。この材料は、同じような結晶構造を持つビスマス-アンチモン-テルル系材料と組み合わせて熱電素子が製造されます。このビスマス-テルル-セレン系の熱電材料は、熱を伝えにくいという性質(低い熱伝導率*1)が特徴で、優れた熱電性能を持っています。電気の良導体であるにもかかわらず、窓ガラスのような絶縁体と同等の熱伝導率(約 1 W/mK)を示します。
低い熱伝導率の原因として、これまで格子振動の非調和項が熱の流れを阻害していることが効いているのではないかと考えられてきましたが、よくわかっていませんでした。本研究は、レーザーラマン散乱分光法をビスマス-テルル-セレン系材料に適用して、格子振動の高次の項がどのようになっているかを確かめた画期的なものです。
レーザーラマン散乱分光法は、試料に単色レーザー光を照射して、散乱してきた光(ラマン散乱光)と入射レーザー光のエネルギー差から、物質中の格子振動のエネルギーを測定する手法です。さらに散乱光ピークのピーク幅を解析することにより、格子振動の緩和時間(格子振動がどれくらいの速さで励起されて減衰するか)に関する情報が得られます。得られた振動エネルギーを、計算機でシミュレーションした結果と比較することにより、どの振動パターンがどのようなエネルギーを持っているかを推測することも可能です。
私たちは図2に示す温度可変ラマン散乱分光器を用いて、ビスマス-テルル-セレン系材料のラマン散乱スペクトルを広い温度範囲で測定し、その変化を詳細に解析しました。スペクトルは図3に示すように3本のピーク(一つ一つが格子振動のエネルギーに対応します)からなっており、その半値幅を温度に対してプロットすると、温度の上昇とともにほとんど直線的に増加しています(図4)。この温度変化をBalkanskiモデル*4を使って解析すると、「格子振動には非調和成分が存在するが、それは3次までの振動であり、4次以上の非調和振動*2*3は存在しない」ということが明らかになりました。4次の非調和振動は近似的には大きな振幅をもった格子振動に対応するため、この結果は、「大振動振幅が熱の流れを阻害することは、ビスマス-テルル-セレン系材料の低熱伝導率の原因ではない」ということを示しており、むしろ構成元素が重元素であることが主な理由であることを明確に表しています。
図2 レーザーラマン散乱分光実験の様子。温度可変チェンバー内のアルミ基板上に設置された試料に、光学窓を通してレーザー光を照射する。散乱されたラマン光は顕微鏡の接眼レンズを通して分光器で分光される。 |
図3 実測された熱電材料Bi2Te3のラマンスペクトルの一例。特徴的な3本のピーク(A1gおよびEgモード)が観測される。黒点が測定値、赤線はフィッテイング曲線である。 |
図4 ラマンピークの半値幅の温度依存性の一例。温度の上昇とともに、ほとんど直線的に半値幅が広くなっていることが分かる。4次の非調和項が含まれる場合は、この振る舞いが下凸の曲線となる。 |
これらの情報は、なぜ実用熱電材料の熱伝導率は低いのかという問いに対して答えを与えるだけでなく、よりよい熱電材料、すなわち低い熱伝導率をもつ材料を開発するにはどうすればよいかという指針を与えるものです。さらにレーザーラマン散乱分光法が物質の熱の伝わり方を解析する一つの有効な手法として提示されたため、今後、他の材料の熱測定にも同様の手法が応用されることが期待されます。
本成果は、2024年11月25日に科学雑誌「Physical Review B」に掲載されました。なお、本研究は、科学研究費助成事業基盤研究(C)20K05343の支援のもと行われたものです。
【論文情報】
掲載誌 | Physical Review B 110, 174310(2024) |
論文題目 | Investigation of phonon anharmonicity in Se-doped Bi2Te3 via temperature-dependent Raman spectroscopy |
著者 | Ruian Liu, and Mikio Koyano |
掲載日 | 2024年11月25日 |
DOI | 10.1103/PhysRevB.110.174310 |
【用語説明】
熱の伝わりやすさを示す指標。固体の場合、単位温度差を付けた場合に単位時間内に流れる、単位長さ単位断面積当たりの熱量で定義される(単位: W/mK)。一般に熱伝導率が高い物質(金属等)は熱をよく伝え、電気を流さない絶縁体は熱を伝えにくい。熱電変換材料の場合は、高い伝導率と低い伝導率という相反する物性が要求される。
物質中では原子の熱振動を通じて熱エネルギーが高温側から低温側に伝わっていく。このときの状態は、原子がバネで規則的につながれたモデルで記述することができる。フックの法則に従う理想的なバネで構成されていれば、原子が振動したとき、この連成振動系の固有振動のみが安定なエネルギーを持つ。この振動状態を調和振動と呼ぶ。
調和振動のみでは固体の熱膨張が説明できないため、実際の固体物質を構成しているバネは非線形バネである。非線形バネは、調和振動に加えて3次や4次の高次の非調和項を持っている(図5)。3次の項は振動の平衡位置のずれ、4次の項は大振幅振動に近似的に対応する。非調和項が存在すると音波同士の衝突が可能となるため、より減衰が速くなり熱エネルギーの伝播が阻害される。
音波とのアナロジーで考えると、調和振動は基準音(純音)に、非調和項は倍音に対応する。
物質の振動特性を解析するための理論モデルで、特にラマン散乱分光法のデータを解析する際に用いる。このモデルが提唱する半値幅の温度依存性を用いることにより、格子振動の非調和項を次数ごとに分離することができる。
図5 格子振動の調和項(調和振動)と非調和項の概念図。
令和7年1月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/01/06-1.html大聖寺高等学校の生徒さんが来学
7月25日(木)、加賀市にある大聖寺高等学校の1年生36名の皆さんが来学し、3つの講義を受講しました。
1つ目は、サスティナブルイノベーション研究領域の小矢野幹夫教授による「『熱から発電、電気で熱を操る』近未来のテクノロジー『熱電変換技術』とは?」について、温度差によって電圧が発生する原理「ゼーベック効果」に関する説明があり、その後、生徒たちはこの原理を利用して動く熱電ミニカーを作り、より速く走らせることに熱心に取り組んでいました。
2つ目は、人間情報学研究領域の長谷川忍教授が「AIと人間の学習の違いを学ぼう」と題して、AIと人間の学習プロセスの共通点と違いについて解説し、生徒たちは長谷川研究室が作成したコンピュータゲームを通して、AIを学習させる方法を学びました。
3つ目は、創造社会デザイン研究領域の謝浩然准教授が「生成AIの仕組み」について、生徒たちからのリクエストに応じて画像を生成するなど実演を交えて説明しました。グループワークにおいて、生徒たちは「2050年の世界」をイメージして画像を生成し、その創作意図を発表しました。
続く施設見学では、ナノマテリアルテクノロジーセンターの透過電子顕微鏡や情報社会基盤研究センターの大規模並列計算機「KAGAYAKI」を興味深く見ていました。
今回の訪問が科学技術に興味を持つきっかけになれば幸いです。

小矢野教授の講義
「『熱から発電、電気で熱を操る』近未来の
テクノロジー『熱電変換技術』とは?」

長谷川教授の講義
「AIと人間の学習の違いを学ぼう」

謝准教授の講義
「生成AIの仕組み」

透過電子顕微鏡の見学
令和6年7月30日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/07/30-1.html学生のLIUさんがICT/ECT 2024においてThe ICT2024 Outstanding Poster Prizeを受賞
学生のLIU, Ruianさん(博士後期課程3年、サスティナブルイノベーション研究領域、小矢野研究室)が40th International & 20th European Conference on Thermoelectrics (ICT/ECT 2024)においてThe ICT2024 Outstanding Poster Prizeを受賞しました。
国際熱電学会とヨーロッパ熱電学会が後援するICT/ECT 2024は、第40回国際熱電会議と第20回ヨーロッパ熱電会議の合同会議で、AGHクラクフ大学が主催し、ポーランド(クラクフ)にて令和6年6月30日~7月4日にかけて5日間にわたり開催されました。
国際熱電会議(ICT)は、理論とモデリング、物理現象、新素材、測定技術、熱電デバイス、システム、アプリケーションなどあらゆる側面を網羅するトピックを取り扱う、熱電変換技術に関する最も主要な国際会議であり、化学、物理学、材料科学の分野における新しいアイデアや発見、また熱電変換の進歩に寄与する産業およびエネルギー分野における実用的な応用について議論する場を提供しています。
ICT/ECT 2024では約300件のポスター発表があり、その中から優れた発表を行った8件の発表者に対してThe ICT2024 Outstanding Poster Prizeが授与されました。
参考:ICT/ECT2024
ICT/ECT2024参加レポート
■受賞年月日
令和6年7月3日
■研究題目、論文タイトル等
Investigation of lattice anharmonicity in Se-doped Bi2Te3 based on temperature-dependent Raman spectroscopy
■研究者、著者
劉鋭安(LIU, Ruian)、宮田全展、小矢野幹夫
■受賞対象となった研究の内容
SeドープのBi2Te3は、高性能なn型熱電材料としてインターネット光通信レーザーの温度制御などに広く応用されており、その熱電物性はよく調べられている。しかしながらこの機能性材料の低熱伝導率の原因であるフォノン散乱過程に関する実験はほとんど行われていない。私は、Seのドープ量を系統的に変化させたBi2Te3-xSex材料を合成し、ラマン散乱ピークの半値幅の温度依存性の解析から、結晶歪みやSe置換量による格子の非調和振動の変化を詳細に調べた。その結果、3次の非調和項の寄与が支配的である一方、4次以上の非線形的な非調和振動項はほとんど寄与しないことを明らかにした。いままでこの物質の低い熱伝導率は高次の非調和格子振動によるものと考えられていたが、私の実験結果はその考え方に修正をもたらすものであり、より現実的な低熱伝導率の原因の解明につながる重要な成果である。
■受賞にあたって一言
この度は、国際熱電会議よりThe ICT2024 Outstanding Poster Prizeを拝受しましたこと、誠に光栄に存じます。この表彰は私個人の力だけではなく、日々ご指導を賜りました小矢野幹夫教授、宮田全展講師(現産業技術総合研究所)をはじめ、研究室の皆様のお陰です。この場をお借りして心より深く感謝を申し上げます。また、渡航諸費用にご支援を頂いた丸文財団にも厚く御礼申し上げます。


令和6年7月26日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/07/26-1.html学生の坪原さんが世界農業遺産国際スタディ・プログラムに参加
学生の坪原真旺さん(博士前期課程2年、サスティナブルイノベーション研究領域、小矢野・宮田研究室)が石川県主催の世界農業遺産国際スタディ・プログラムに参加しました。
令和5年度より、石川県内の大学生を対象に、県と国連大学が共同で開始した同プログラムは、「能登の里山里海」が世界農業遺産(GIAHS)に認定され、その認定効果が地域活性化に結び付いており、「石川モデル」として国内外から高い評価を受ける同県の特徴を活かし、世界農業遺産をテーマに国際的な視点で学習し、学生それぞれが自身の専攻分野の知識を活かして石川県の地域活性化等についての提案を検討し、成果発表としてプレゼンテーションするという研修プログラムです。これにより、国際的な視点を持って地域に貢献する若者を輩出するとともに、県内で学ぶことの魅力向上を図るもので、坪原さんは書類および面接選考を通過し、プログラムのメンバーに選ばれました。
同プログラムは7月~10月にかけて実施され、国連大学職員による、世界農業遺産や能登の里山里海に関する講義の受講や、能登地域の方々から、さまざまな取り組みや現状の課題などについてお話を伺う能登視察研修に参加し、その後、イタリアにある世界農業遺産の認定機関である国連食糧農業機関(FAO)の本部を訪問、能登についての紹介や、学生が考案した能登地域の活性化策などについて、英語でプレゼンテーションを行ったほか、関連機関である国連世界食糧計画(WFP)、国際農業開発基金(IFAD)の本部や、イタリアの世界農業遺産認定地を訪問し、さらに学習を深めました。また、プログラムの最後には成果発表会が開かれ、これまでの学習成果や、それをもとに考えた能登地域の活性化についての提案を発表し、世界農業遺産を活用した地域活性化策などについて意見交換を行いました。
■坪原さんより一言
普段、入ることができない国連の敷地や職員さんと話すことによって、環境問題やSDGsなどを肌で感じ、考えるきっかけができました。また、英語を実践的に使うことによって、プレゼンの能力向上や実力を試すことができたので、今後の研究に活かしたいと思います。
※詳しくは、石川県ホームページ「世界農業遺産国際スタディ・プログラム」をご覧ください。

国連でプレゼンテーションをしている様子
令和5年11月16日
サスティナブルイノベーション研究領域の宮田講師が日本熱電学会の進歩賞を受賞

サスティナブルイノベーション研究領域の宮田全展講師が一般社団法人日本熱電学会の進歩賞を受賞しました。
日本熱電学会では、熱電工学、熱電科学、及び熱電技術、並びに関連分野における発明、発見、研究と開発、並びに同学会の発展に顕著な功績があったと認められる同学会会員に対して、その功績を讃え表彰を行っています。
本研究では、実験とスーパーコンピューターを活用したシミュレーションを協奏的に行うことで、希少元素を含まない新しい硫化物・リン化物熱電材料の創製と、革新的な材料設計指針を確立することに成功しました。それら一連の研究成果が、同学会において、熱電工学、熱電科学、及び熱電技術、関連分野における発見、研究と開発、並びに同学会の発展に顕著な功績であったことが認められ、この度の受賞となりました。
※参考:日本熱電学会
■受賞年月日
令和5年9月25日
■研究題目
実験と第一原理計算による新奇硫化物・リン化物熱電材料のマテリアルデザイン
■研究者、著者
宮田全展
■受賞対象となった研究の内容
本研究では、実験とスーパーコンピューターを駆使したシミュレーション計算により、高い性能(出力因子)を示す新しい硫化物熱電材料を創製し、そのメカニズムを明らかにしました。さらに、JAIST生まれのシミュレーション計算コードOpenMXと、電子輸送計算コードBoltzTraPをつなぐ汎用インターフェースプログラムを開発し、世界に先駆けて800種類を超える硫化物熱電材料の大規模計算を行うことで、熱電性能を最大化する設計指針を確立しました。本研究で開発されたインターフェースプログラムはOpenMXの公式計算オプションとして実装されています。
(OpenMX Ver. 3.9 ユーザーマニュアル)
実験とスーパーコンピューターによる高精度なシミュレーション計算により、新しい高性能熱電材料の候補物質群として、リン化物が高いポテンシャルを持つことを詳細に明らかにし、中でもAg(銀)-P(リン)化合物中のAg原子が特殊な振動をすることで、熱伝導を大きく抑制し、極めて低い格子熱伝導率を示すメカニズムを明らかにしました。そして、リン化物のみならず、広く無機材料について、熱伝導において重要なフォノン(原子振動の伝搬を仮想の粒子の運動として取り扱う概念)において、比熱・音速・緩和時間に相関関係があることを発見し、フォノンの観点から熱電材料の新しい評価指針を確立しました。
株式会社白山、石川県工業試験場を中心とした産官学連携により、Mg(マグネシウム)とSi(シリコン)を主成分とした環境にやさしい熱電材料の高性能化の材料設計指針を、実験とスーパーコンピューターによるシミュレーションより確立し、材料の高性能化に貢献しました。
■受賞にあたって一言
この度は、日本熱電学会の優秀ポスター賞、優秀講演賞に続き、進歩賞を賜りまして誠に光栄でございます。これも本学の小矢野幹夫教授、東大物性研の尾崎泰助教授、石川県工業試験場の豊田丈紫氏、株式会社白山の内田健太郎氏をはじめとした、数えきれないほどの共同研究者の先生方との研究・ディスカッションのお陰でございます。また、本研究は科研費(若手研究JP20K15021)をはじめとした数々の研究助成、本学の大規模計算機KAGAYAKIによって実施されました。この場を借りて、深く感謝御礼申し上げます。今後も学術・社会により一層の貢献ができるよう、研究・教育活動に邁進いたします。
令和5年10月16日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2023/10/16-1.htmlサスティナブルイノベーション研究領域の小矢野教授らが国立天文台「金属3Dプリンタを用いた、初の電波天文用の受信機部品の製作」に協力
国立天文台は、アルマ望遠鏡のバンド1受信機に搭載する部品「コルゲートホーン」を、金属3Dプリンタを用いて製作することに成功しました。電波天文観測において、金属3Dプリンタで製作した初めての部品を組み込んだ受信機が誕生します。
本部品の開発・製作には本学からサスティナブルイノベーション研究領域の小矢野幹夫教授及び宮田全展講師が熱伝導や電気伝導の測定等において協力しました。
詳細については、関連情報をご覧ください。
[関連情報]
国立天文台プレスリリース(令和4年10月26日)
https://www.nao.ac.jp/news/topics/2022/20221026-alma.html
令和4年10月31日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/10/31-1.htmlサイエンスヒルズこまつで子ども向け科学教室 「JAISTサイエンス&テクノロジー教室」を開催
3月6日(日)、サイエンスヒルズこまつにおいて、「JAISTサイエンス&テクノロジー教室」を開催しました。同教室は、小松市との包括連携協定に基づく青少年の理科離れ解消に向けた取組のひとつであり、サイエンスヒルズこまつがJR小松駅前に開館して以来、毎年実施しているものです。
今年度の第2回目「お湯と氷で車が走る!?熱電ミニカーを作ろう!」には、10名の子どもが参加しました。はじめに先端科学技術研究科(環境・エネルギー領域)の小矢野 幹夫教授から、温度差によって電圧が発生する原理についての説明がありました。その後、子どもたちはこの原理を利用して動く熱電ミニカーを作り、より速く走らせることに熱心に取り組んでいました。




令和4年3月8日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/03/08-1.html環境・エネルギー領域の小矢野教授がSSH指定校の福島高校でオンライン講演会を実施
9月24日(金)、環境・エネルギー領域の小矢野 幹夫教授が、文部科学省「SSH(スーパーサイエンスハイスクール)」指定校である福島市の県立福島高等学校において、SS(スーパーサイエンス)部の1学年26名を対象に、オンラインによる講演会を行いました。
文部科学省のホームページはこちら
福島高校のSSHニュースはこちら
今回の講演は、「熱電変換の物理と最先端のエネルギー変換の研究」というテーマで行われました。
導入部分では、SDGsの観点から、熱電変換の研究がエネルギー問題にどのように貢献できるかについての説明がありました。続いて、物質の両端に温度差を与えると電位差が生じる「ゼーベック効果」を利用して、熱を電気エネルギーに変換する技術について、解説が行われました。
生徒の皆さんは、熱電材料の金属組成を変えることで、より高い変換効率を目指す研究開発が盛んに行われてきたことを学ぶとともに、有毒または希少な元素を含まない、環境に優しい次世代の熱電材料の開発の重要性についても理解を深めました。
また、身の周りにある熱を"収穫(ハーベスト)"して電気エネルギーに変換する「エネルギーハーベスティング」の考え方にも触れ、エネルギーの捉え方に新たな視点を持ったようでした。
最後に、小矢野教授から生徒の皆さんに向けて、「自身の知的好奇心と向き合い、ぜひ大学院進学というキャリアプランも考えてみてほしい」とメッセージを送りました。
講演後には質疑応答が活発に行われ、生徒の皆さんからは、「講義の中で化学物質がたくさん出てきたので、化学の分野ももっと勉強してみたい」、「効率を改善する方法がいくつも研究されており、自分の研究でも一つで満足しないようにしたい」、「学者の交友関係、進路の考え方、研究への向き合い方を学ぶことができた」といった前向きな感想があり、向学心の高さがうかがえる講演会となりました。
![]() 講演を行う小矢野教授 |
![]() 受講の様子(写真:福島高校提供) |
![]() 質疑応答の様子 |
令和3年9月29日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/09/29-2.html学生のCHIEWさんが10th International Conference on Materials for Advanced Technologies (ICMAT)において最優秀ポスター賞を受賞
学生のCHIEW, Yi Lingさん (博士後期課程2年、応用物理学領域、大島研究室)が, シンガポールで開催された国際会議 10th International Conference on Materials for Advanced Technologies (ICMAT)(参加者約3,000人)において最優秀ポスター賞を受賞しました。
本成果は小矢野研究室(環境・エネルギー領域)との共同研究によるものです。
■受賞年月日
令和元年6月28日
■論文タイトル
Unravelling Planar Distribution of Intercalated Fe Atoms in TiS2 Layered Structure Using Transmission Electron Diffraction
■著者
Y. CHIEW, S. ABE, M. MIYATA, M. KOYANO, Y. OSHIMA
■論文概要
The discovery of new functions by intercalating guest atoms into host layered materials have attracted attention due to the wide possibilities of applications achievable. These intercalated 2-dimensional materials are known to form complex superlattices, which are difficult to analyze. For example, the material in this study, FexTiS2, has been reported to form 2a×2a or √3a×√3a superlattices for x = 1/4 or 1/3, respectively (a is the lattice constant of the TiS2 layer) where the Fe atoms occupy octahedral sites. However, in our study, a new, larger superlattice is proposed for FexTiS2 (grown with nominal content x = 0.33), based on the transmission electron diffraction (TED) pattern. TED is a powerful method that can be used to clarify two-dimensional atomic structures such as the Si (111) 7×7 reconstruction. Using the Patterson map constructed from TED pattern, the superlattice is observed to have P3 symmetry with unit lengths of √43 a× √43 a, rotated at an angle of 7.5888°. Further analysis of the TED pattern and its Patterson map also allowed the determination of the planar distribution of Fe atoms. Nine Fe atoms are found to be present in the unit cell and the Fe atoms occupy not only octahedral sites, as reported previously, but in tetrahedral sites as well.
■受賞にあたっての一言
It is a great honor to receive this award from the conference. I am extremely grateful to Prof. Yoshifumi Oshima, Prof. Mikio Koyano and Assistant Prof. Masanobu Miyata for the constant guidance. I would also like to thank the staff of Nanotechnology Platform in JAIST for their support with my sample preparation and characterization. And last by not least, I would like to thank all my lab members and friends for always being there for me.
令和元年7月3日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/07/03-1.htmlサイエンスヒルズこまつで子ども向け科学教室 「JAISTサイエンス&テクノロジー教室」を開催
7月28日(土)、サイエンスヒルズこまつにおいて、「JAISTサイエンス&テクノロジー教室」を開催しました。同教室は、小松市との包括連携協定に基づく青少年の理科離れ解消に向けた取組のひとつであり、サイエンスヒルズこまつがJR小松駅前に開館して以来、毎年実施しているものです。
今年度の第1回目「お湯と氷で車が走る!?熱電ミニカーを作ろう!」には6名の子どもが参加しました。先端科学技術研究科(環境・エネルギー領域)の小矢野 幹夫教授から、氷やお湯を使い温度差を調整することで電気が発生することを学び、熱電ミニカーをより遠くへ走らせることに取り組みました。




平成30年8月1日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2018/08/01-1.html環境・エネルギー領域の小矢野教授の研究室が高性能多孔質熱電材料の創製に寄与
環境・エネルギー領域の小矢野幹夫教授の研究グループは、NEDOの「未利用熱エネルギーの革新的活用技術研究開発」プロジェクトにおいて株式会社白山(本社:金沢市)、石川県工業試験場(金沢市)と共同研究を行い、従来のn型熱電材料に対し6割以上の出力因子の性能を有する多孔質p型マグネシウムシリサイド系熱電材料の創製に世界で初めて成功しました。
この研究過程で、同研究室の宮田全展助教は、密度汎関数理論・最適化擬原子基底関数に基づく第一原理ソフトウェアパッケージOpenMXと電子輸送計算コードBoltzTraPを用いて、詳細な電子構造計算に基づく物性予測を行い、当該高性能材料の性能最適化への重要な指針を与えました。またJAISTの恵まれた計算環境と評価装置群を活用し、計算機シミュレーションによる熱流解析や多孔質構造の分析も行いました。
今回開発された新規熱電材料は、今後、自動車エンジンの排熱や産業分野における300~400℃の未利用熱エネルギーを電力に変換する低コスト・高耐久性熱電変換モジュールへ応用されることが期待されています。
「熱電変換技術」はゼーペック効果やペルチェ効果を用いて、熱エネルギーと電気エネルギーを相互に変換する技術です。小矢野研究室では熱電変換技術のキーテクノロジーとなる、新しい熱電材料の開発、熱電現象の計測、およびプリンティング熱電モジュール開発などの研究を行っています。今般は、地殻埋蔵量の多い元素で構成された環境に優しい新材料「多孔質Mg-Sn-Si」の開発に、研究室の資産を活用することができたことを喜んでいます。これからも熱電変換技術を中心として、省エネルギー・持続可能な社会の構築へ寄与していきたいと考えています。
NEDO プレスリリース
http://www.nedo.go.jp/news/press/AA5_100876.html
平成29年11月22日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2017/11/22-2.html金沢大学・本学 共同シンポジウム「エネルギー創製デバイスの将来展望」開催
共同シンポジウムでは、特別講演者に太陽電池に関する最新の技術と研究動向を紹介していただきます。また、金沢大学と本学においてエネルギー創製デバイスに関する研究を行っている研究者からは、これまでにないエネルギーデバイスの将来展望と最新技術についてご発表いただきます。
日 時 | 平成28年12月14日(水)13:30~17:00 | ||||||||||||
場 所 | しいのき迎賓館 2Fガーデンルーム ※駐車場はご用意しておりませんので公共交通機関でご来場ください。 |
||||||||||||
プログラム |
|
||||||||||||
参加費 | 入場無料 参加登録は不要ですので、当日会場までお越しください。 |
●詳細は、こちらのポスターをご覧ください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2016/11/28-2.html