研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。ポリマー1分子の直視熱ゆらぎで駆動する分子マシンの創製


ポリマー1分子の直視
熱ゆらぎで駆動する分子マシンの創製
ナノ高分子化学研究室 Laboratory on Nano-Polymer Chemistry
准教授:篠原 健一(SHINOHARA Ken-ichi)
E-mail:
[研究分野]
高分子化学、分子マシン
[キーワード]
機能性高分子合成、1分子イメージング、人工生命機能、高速AFM
研究を始めるのに必要な知識・能力
機能性高分子の合成研究を希望する学生は、有機化学と高分子化学の基礎的な知識が必要です。また、高分子鎖一本の構造を解析する1分子イメージング研究を希望する学生は、顕微鏡装置のしくみを理解し使いこなす必要がありますので、物理学的なものの考え方が求められます。
この研究で身につく能力
【高分子合成】新しい機能性高分子を合成しますので、有機合成化学的手法や高分子機能設計についての研究能力が鍛えられます。【1分子イメージング】有機溶媒中の高分子鎖一本の構造ダイナミクスを高速AFMイメージングし動態を解析しますので、装置原理や当該解析法のしくみ、また一連の考察をとおして高分子の本質についての理解が深化します。【シミュレーション】スーパーコンピューターを活用して分子動力学(MD)計算による高分子鎖一本のダイナミクスをシミュレーションし、高速AFMイメージングの結果を理解してモデルを構築しますので、コンピューターシミュレーションの基礎と応用が身につきます。【分子マシン創製】多様な高分子鎖の運動機能を探索し分子マシンの創製へ展開しますので、現象の本質を見抜く洞察力、創造力が鍛えられます。
【就職先企業・職種】 化学系企業、半導体関連企業、食品関連企業、化粧品会社、公務員(教員)など
研究内容

Fig. Single Molecular Unidirectional Processive Movement along a Helical Polymer Chain in a Non-aqueous Media
篠原研究室では、ポリマー1分子を研究対象とした基礎研究を進めています。最近の研究で、分子レベルではポリマーにも生物のようなしなやかな動きがあることが実証されました。一方、生物物理学では生体高分子であるタンパク質の機能発現の機構や動作原理が明らかになりつつあります。この概念を合成高分子の設計に適用すれば、刺激や負荷などの環境変化に柔軟に対応して特性を自在に制御できるしなやかな合成高分子~分子マシン~を開発できると考えています。また同時に、1分子イメージング技術の特許化(国際出願)そして共同研究を通じて企業への技術移転を進めています。
【ポリマー1分子の直視】
ポリマーは、非常に優れた特性を持つ有用な物質であり文明を維持するために無くてはならない材料です。しかしながら、ポリマーは一般にその構造が多様で非常に複雑であるために、構造と機能の相関関係を分子レベルで議論することが難しいのです。すなわち、「ポリマーのどの様な構造が、如何なる機能を発揮しているのか?」という本質的な問いに対して、多数分子の平均値を議論する従来の研究手法を踏襲する以上、明確に分子レベルで答えることは難しいという問題があります。これが原因となり、より優れた機能を有する高分子を合成しようとする際に、どの様な分子設計を行えば良いのかが不明確である、という障壁が機能性高分子の構造設計において立ちはだかっています。そこで、高分子鎖一本の構造と機能の実時間・実空間同時観測系が確立されれば、推論や仮定なしに、明確に分子構造と機能との関係を直接議論できるのではないかと考えました。
ポリマー1分子の直接観測で世界に先駆けた研究に挑戦し続けています。例えば、合成高分子鎖一本のらせん構造が形成する高次構造の解明を世界で初めて走査トンネル顕微鏡観測で達成し、米国サイエンス誌の依頼を受け成果の一部が掲載された等の成果を挙げています。また液中でゆらぐπ共役ポリマーの1分子蛍光イメージングと1分子分光に成功しています。さらに高速AFMによるらせん高分子鎖一本の運動を直接観測して、これがブラウン運動であることを解析で証明しました。また超分子ポリマーの研究では、国際学術誌の表紙を飾っています。
【分子マシンの開発】
生体を構成しているタンパク質などの生体高分子にはさまざまな機能があることがわかっていますが、取り出すと高次構造が崩れ機能が失われてしまうため、材料として利用することが難しいという問題がありました。その点、合成高分子は耐久性があり、材料には適しています。もし、しなやかな高次構造を形成し、さまざまな機能をもつ合成高分子を作ることができれば、現在の機械のしくみを根底からくつがえす、画期的な材料を作れると期待しています。篠原研究室では、モータータンパク質など生体分子マシンの構造や機能に学び、これを超える新しい機能を持った合成高分子による分子マシンの実現を目指しています。
主な研究業績
- K. Shinohara, S. Yasuda, G. Kato, M. Fujita, H. Shigekawa: Direct observation of the chiral quaternary structure in a π-conjugated polymer at room temperature, J. Am. Chem. Soc. 123, 3619-3620 (2001); Editors’ Choice, Science 292, 15 (2001).
- K. Shinohara, Y. Makida, T. Oohashi, and R. Hori: Single-Molecule Unidirectional Processive Movement along a Helical Polymer Chain in Non-aqueous Medium, Langmuir, 38 (40), 12173-12178 (2022).
- K. Cheng, K. Shinohara, O. Notoya, M. Teraguchi, T. Kaneko, T. Aoki Synthesis and Direct Observation of Molecules of 2D Polymers: With High Molecular Weights, Large Areas, Small Micropores, Solubility, Membrane Forming Ability, and High Oxygen Permselectivity, Small, 202308050 (2023).
使用装置
高速原子間力顕微鏡(高速AFM)
単一分子蛍光・分光顕微鏡(TIRFM)
高分子鎖構造/蛍光同時観測装置(AFM/TIRFM複合)
スーパーコンピューター(分子動力学計算)
各種機器分析装置(NMR, IR, UV/Vis.等)
研究室の指導方針
研究テーマを学生が教員から与えられたものとして受動的に研究するのではなく、一日も早く自らのものとして研究テーマを捉えることができるよう指導します。具体的には、学生とのコミュニケーションを積極的にとり、学生の能力に応じて可能な限り意思を尊重して自主的に実験を遂行させ、自ら問題を見つけてこれを解決する能力を養わせる方針です。これら一連の過程を繰り返すことにより、研究とは如何なるものなのか等の基本的かつ重要な問の答えが各々学生なりに得られ、ひいては将来の優れた研究者・技術者としての自覚につながるものと期待しています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/shinohara/
文部科学省マテリアル先端リサーチインフラ(ARIM)第3回公開講座「原子間力顕微鏡の原理と応用」

日 時 | 令和7年3月25日(火)13:00~17:00 |
場 所 | JAISTナノマテリアルテクノロジーセンター 2F会議室 マテリアルサイエンス系研究棟Ⅳ 4F(M4-45) |
受講料 | 5,200 円(税込) |
定 員 | 5名(先着順、定員になり次第締め切らせていただきます) |
申込み | 以下の情報を記入し、マテリアル先端リサーチインフラ事務局(arim@ml.jaist.ac.jp)までメールでお送りください。 • 氏名(ふりがな) • 勤務先・職名 • 受講の目的 • 本講座に期待すること • 書類送付先 • 電話番号 • メールアドレス 下記URLからもお申し込みいただけます。 URL: https://forms.gle/AbzSsQmPKp4nLPXx5 |
テーマ | 原子間力顕微鏡の原理と応用 |
講 師 | 安 東秀 ナノマテリアル・デバイス研究領域 准教授 伊藤 暢晃 ナノマテリアルテクノロジーセンター 技術専門職員 |
概 要 | 近年ではブラックボックスとなってしまったAFM装置の原理を基礎から学びます。 そのうえで、JAISTのAFM設備を用いて標準的な観察と応用観察の実習を行います。 |
液体から高機能性材料を創成し、生体・環境の見える化へ


液体から高機能性材料を創成し、生体・環境の見える化へ
プリンテッドバイオセンサー研究室
Laboratory on Printed Biosensors
講師:廣瀬 大亮(HIROSE Daisuke)
E-mail:
[研究分野]
酸化物、バイオセンサー、液体プロセス
[キーワード]
MOD法、薄膜トランジスタ、生体分子検出、バイオチップ、プリンテッドエレクトロニクス
研究を始めるのに必要な知識・能力
分野に囚われない研究を行うための好奇心・挑戦心、未解明の謎を楽しむ心。
専門知識は基礎から指導しますので、知識は問いません。どの分野からも歓迎します。一緒に頑張りましょう!
この研究で身につく能力
研究では様々な実験をすることになります。それによって分野に囚われない研究の着眼点や発想が身につきます。また、課題を解決するための論理的思考やタスクをこなす力も身につきます。学会やゼミの発表を通して、発表力・発信力も身につきます。
【就職先企業・職種】 半導体製造機器メーカー、電子部品会社、計測機器メーカー
研究内容
有機金属分解(MOD)法を基礎とした、モノづくりを行っています。この手法は“ 液体” から石(酸化物)を作製する技術であり、様々な電気的特性を示す酸化物を作り出せます。
さらに私たちはこのMOD法で作製した酸化物や中間体にこれまでにない特異的な特徴があることを発見しました。その特徴と半導体プロセスとを組み合わせることで、新たなセンシングデバイスやパターニング手法の研究・開発をしています。そして、なぜ特異的な特徴が現れるかの物性解析による解明も同時に進めています。
・高感度 - 酸化物センシングデバイス
コロナウイルスの感染拡大が世界的な問題となったことから、PCRやイムノクロマトに代わる迅速で高感度な菌・ウイルスの検査手法の需要が急速に高まってきています。
私たちは迅速で高感度に測定可能な酸化物薄膜トランジスタ型核酸センサーの研究・開発を進めています。図に、これまで作製したセンサーを示しています。この技術は核酸のみならず、多様な分子に適用可能であり、環境・衛生・農業・医療などの分野への応用も目指しています。
・MOD中間体の特性を生かしたパターニング
センサーなどの電子デバイスを作製するには、酸化物の精度の良いパターニングが必要となります。私たちはMOD法から酸化物を作製する際の中間体が変形性を示すことを発見しました。この特性を利用し、型押し成型による低エネルギー・低コストの酸化物の直接プリンティング手法を開発しました。この技術によって、簡単にサブミクロンスケールのパターンの作製が可能になりました。示した図は作製した酸化物パターンと、酸化物を積層した薄膜トランジスタアレイです。このように様々な酸化物の精度のよいパターンが作製できることがわかります。
主な研究業績
- Submicron titania pattern fabrication via thermal nanoimprint printing and Microstructural analysis of printable titania gels, D. Hirose, H. Yamada, T. Jochi, K. Ohara and Y. Takamura, Ceramics International, online,(2024)
- Rapid and Highly Sensitive Detection of Leishmania by Combining Recombinase Polymerase Amplification and Solution-Processed Oxide Thin-Film Transistor Technology, W. Wu, M. Biyani, D. Hirose and Y. Takamura, Biosensors, vol. 13, 8, p. 765,(2023).
- Origin of the thermal plasticity property of zirconium oxide gels for use in direct thermal nanoimprinting, D. Hirose, J. Li, Y. Murakami, S. Kohara and T. Shimoda, Ceramics International, vol.44, p. 17602,(2018).
使用装置
電子デバイス作製装置(フォトリソグラフィ装置、スパッタ装置ナノインプリント)、電気特性評価装置(半導体パラメータアナライザ、インピーダンスアナライザ)、形状評価装置(走査型電子顕微鏡、原子間力顕微鏡)、材料物性評価装置(TG-DTA、FT-IR,UV-vis、XRD、XPS、接触角計)
研究室の指導方針
本研究室では液体から機能性酸化物をつくるMOD技術を基礎にして、生体・環境の見える化を目指しています。身の回りのあらゆる分子をターゲットとして、社会や生活へ応用を目指しています。今まさに大きく成長している段階です。みなさんのアイデアと私たちの技術を組み合わせ、新たな見える化センサーを創成しましょう!!
研究では、個々の興味に沿ったテーマを設定します。目標に向け、課題を一つずつクリアできるように指導いたします。生活や就職活動についての不安を取り除きながら、これからの壁を乗り越える力を身につけられるようサポートします。
“量子スピンのダイナミクス”を計測・制御して応用へ繋げる


“量子スピンのダイナミクス”を
計測・制御して応用へ繋げる
量子センシング・イメージング研究室
Laboratory on Quantum Sensing and Imaging
准教授:安 東秀(AN, Toshu)
E-mail:
[研究分野]
量子スピンセンシング・イメージング、ナノMRI
[キーワード]
量子技術、ダイヤモンドNV中心、スピントロニクス、スピン波、プローブ顕微鏡、マイクロ波、共焦点顕微鏡
研究を始めるのに必要な知識・能力
固体物理、材料物性の基礎知識を習得していることが望ましいです。基礎を身につける勤勉さと新しいことにチャレンジする意欲。
この研究で身につく能力
研究活動を通して、自分で問題を設定し、これを解決し、他人や社会に成果を発信する能力を身につけます。このために、先ず、簡単な実験を通して自分で実験データの取得、装置の改良、解析、データのまとめ、研究発表ができる能力を育成します。その後、自分で新しくチャレンジングなテーマを設定し、これを解決してゆくことに取り組みます。その際には、他人と協調して研究を行うこと、英語文献の読解力や英語によるコミュニケーション力が必要で、これらの能力を身に付けることも重視します。
【就職先企業・職種】
研究内容

図1.電子や原子核の持つスピン自由度、電子スピン共鳴、スピン流

図2.ダイヤモンド中のNV中心と磁気共鳴スペクトル
電子の内部自由度であるスピンのダイナミクスを利用した新しい現象を探索し、これを応用したデバイスやセンサーを実現することを目指します。そのための基礎となるスピンダイナミクスの高感度センシングと高分解能イメージングの計測技術を重視して研究に取り組んでいます(図1)。
①ダイヤモンドNV中心を用いたナノ磁気センシング

図3.表面スピン波とダイヤモンドNV中心のスピン変換

図4.走査ダイヤモンドNV中心スピン顕微鏡
近年、ダイヤモンド中の窒素-空孔複合体中心(NV 中心)に存在する単一スピンは、高性能なスピンセンサーとして有用であることが判り(図2)、NV中心を利用したナノスピン(磁気)センシング(図3)・イメージング(図4)が注目されています。この NV 中心を走査プローブとした高感度・高分解能スピンセンサーを開発し、単一電子スピン、単一核スピンのダイナミクスをセンシングすることを目指します。
主な研究業績
- Yuta Kainuma, Kunitaka Hayashi, Chiyaka Tachioka, Mayumi Ito, Toshiharu Makino, Norikazu Mizuochi, and Toshu An "Scanning diamond NV center magnetometer probe fabricated by laser cutting and focused ion beam milling" Journal of Applied Physics 130, 243903 (2021)
- Dwi Prananto, Yuta Kainuma, Kunitaka Hayashi, Norikazu Mizuochi, Ken-ichi Uchida, and Toshu An "Probing Thermal Magnon Current Mediated by Coherent Magnon via Nitrogen-Vacancy Centers in Diamond" Phys. Rev. Applied 16, 064058 (2021).
- D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, T. An, Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves, Applied Physics Express, 10, 103004 1-4 (2017).
使用装置
磁気共鳴計測・制御装置(自作)、FPGA、LabVIEWによる電子制御
走査マイクロ波顕微鏡(自作)
共焦点光学的磁気共鳴顕微鏡(自作)
水晶振動子型AFMプローブ顕微鏡(自作)
超高真空・極低温走査スピン顕微鏡(自作)
研究室の指導方針
本研究室では、スピンのダイナミクスを利用してセンサーやデバイスへの応用へ繋げることを目標に、材料物性の基礎を理解し(“確かな知識”)、課題を自ら設定し(“自由な発想力”)、解決してゆく能力を育成します。毎日の研究において議論の場を多く設定し、コミュニケーション能力を高めます。課題を解決する手段としての新規計測手法の開発と工学的技術の取得にも取り組みます。意欲溢れる皆さんが研究に参加し、“わくわくする”研究の醍醐味に触れ、将来の活躍の基礎を確立する場を提供したいと考えています。
[研究室HP] URL: https://www.jaist.ac.jp/ms/labs/toshuan-www/index.html
先端材料でエネルギー社会をリードする


先端材料でエネルギー社会をリードする
エネルギーナノ材料研究室 Laboratory on Energy Nanomaterials
教授:長尾 祐樹(NAGAO Yuki)
E-mail:
[研究分野]
プロトニクス(高分子、無機化学、錯体化学、物理化学)
[キーワード]
水素社会、燃料電池、蓄電池、エネルギー関連材料
研究を始めるのに必要な知識・能力
多様なバックグラウンドを歓迎します。今までに修めた学問を大事にしながら、新しいことに取り組む意欲を持ち続ける力が求められます。
この研究で身につく能力
週2回のゼミ(英語で行います、具体的には研究相談と文献紹介)を通して、教員や先輩の助けを借りながら、自ら調べ、考える力を身に着けていきます。英語の会話スキルの向上が期待できます。実践の場として、高分子化学、表面化学、電気化学、錯体化学等に関連した研究を行うことで次のスキルが身に付きます。1.問題発見と解決方法。2.材料合成や各種分析方法の習得。3.論理的思考に基づいたデータの解釈方法と性格やセンスに帰着させない基本的なプレゼンテーション技術。
【就職先企業・職種】 電力関連、エネルギー関連、材料メーカー、精密機器関連など(企業名はwebに記載)
研究内容
資源の少ない日本が持続的な発展をするためには、多様なエネルギー資源を確保することが喫緊の課題です。ありふれた水から水素や酸素を作り出し、二酸化炭素を資源と見立てて炭素材料を作り出すことは人類の夢です。世界で急速に進む脱炭素社会には水素社会が必要です。我々は水素社会を支える燃料電池、蓄電池、センサーやプロトンスイッチなどに応用可能なイオン伝導性高分子材料、無機材料、有機無機ハイブリッド材料の研究を行っています。我々と共に水素社会に貢献しましょう。
研究テーマ例
- 燃料電池、リチウムイオン電池の性能向上の研究
電池反応場の界面近傍の構造とイオン輸送を調べる基礎研究と、反応界面をデザインして電池の性能を向上させる応用研究をしています。 - 充電可能な水素電池の開発
プロトンを使った次世代蓄電池の開発をしています。 - イオン輸送を利用した触力覚センサの研究
五感やロボットへの応用研究として、ヒトの皮膚のように力にイオン輸送が応答する高分子組織構造を研究しています。 - 外場印加によるイオンスイッチの研究
青木助教が主体的に取り組んでいる、光などの外場によってイオン伝導のオン・オフを制御する研究です。
主な研究業績
- T.Honbo, Y. Ono, K. Suetsugu, M. Hara, A. Taborosi, K. Aoki, S. Nagano, M. Koyama, Y. Nagao, Effects of Alkyl Side Chain Length on the Structural Organization and Proton Conductivity of Sulfonated Polyimide Thin Films, ACS Appl. Polym. Mater., 6, 13217 - 13227 (2024).
- Y. Nagao, Proton-Conducting Polymers: Key to Next-Generation Fuel Cells, Electrolyzers, Batteries, Actuators, and Sensors (Review), ChemElectroChem, 11, e202300846 (2024).
- Y. Nagao, Advancing Sustainable Energy: Structurally Organized Proton and Hydroxide Ion-Conductive Polymers (Review), Curr. Opin. Electrochem., 44, 101464 (2024).
使用装置
材料分析装置 (IR, UV-Vis, NMR, GPC, XRD, TG-DTA)
電気化学装置(LCR, CV, in situ QCM, fuel cell, battery test system)
表面分析装置 (XPS, in situ GIXRS, XRR, white interference, AFM)
分子配向分析装置 (IR, pMAIRS, polarized microscope)
外部の放射光や中性子実験施設
研究室の指導方針
研究室への参加にあたり、平日は研究活動に専念し、セミナーへの出席をお願いします。フレキシブルですが、9時から17時の間でメリハリのある研究時間を推奨します。英語のセミナーや留学生との会話を通じ、英語力の向上を目指しましょう。研究テーマは指導教員との相談で決め、皆さんの研究への情熱を全力でサポートします。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/nagao-www/
超分子ポリマーの新しい構造解析法の発明

超分子ポリマーの新しい構造解析法の発明
【ポイント】
- 従来不可能であった超分子ポリマーの構造と機能を同時に観察する新たな構造解析法の発明
- 環状分子のシクロデキストリンが包接したポリエチレングリコール鎖の構造解析に成功
- 高速原子間力顕微鏡による超分子ポリマーの両端がエンドキャッピングされた構造の解明
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の堀諒雅大学院生(博士後期課程)、篠原健一准教授は、高速原子間力顕微鏡(高速AFM)を用いた固液界面における一分子イメージングにより、従来不可能であった超分子1ポリマー2の構造解析に成功しました。この成果は、超分子材料のさらなる機能解明に繋がるものであり、将来の分子マシンの開発に一石投じる発見です。 |
【研究背景と内容】
ポリマー分子の構造解析法は、ポリマー材料のさらなる機能化のため必要な技術です。中でも超分子ポリマーは単一分子内に動きを伴うため、そのダイナミクスを解明することが重要となります。
従来の超分子ポリマーの構造解析には、核磁気共鳴分析(NMR)による分光法や顕微鏡法が主に用いられてきました。しかし、これらの手法では構造あるいは機能のいずれかしか確認できず、それらを同時に観察することは困難でした。特に今回観察した分子ネックレス構造3は水中で不安定であり、さらに溶解性が低いことが問題となり、その詳細な構造と機能を観察することが難しいとされてきました。
今回、高速原子間力顕微鏡(高速AFM)を用いたことにより、従来不可能であった超分子ポリマーの構造と機能を同時観察する新たな手法を発明することができました。本手法では、1ミリリットル当たり1マイクログラム未満という低濃度の溶液を用いて超分子ポリマーを基板に固定することで、これまでの問題点を解決しました。
具体的には、シクロデキストリンという環状分子がポリエチレングリコールという長鎖分子に包接した、いわゆる分子ネックレス構造を高速AFMを用いて直接観察し、その分子の構造とダイナミクスを確認することに成功しました(図1)。なお、この分子の構造とダイナミクスは、全原子動力学(全原子MD)シミュレーションによって再現され、実験結果とも整合性が確認されています。本研究成果は、超分子材料の構造特性や機能解明に大きく貢献するものであり、特に分子レベルでの精密な構造制御が求められている次世代の分子マシンの開発に一石を投じる発見です。今後、本手法を応用することで、超分子ポリマーの新たな設計の可能性を拓かれることが期待されます。
図 1 高速AFMで観察された分子ネックレスの構造とそのダイナミクス、および全原子MDシミュレーションを用いたダイナミクスの再現。 |
本研究成果は、高分子化学のトップジャーナルであるアメリカ化学会のMacromolecules誌に掲載されました。なお、本研究は、日本学術振興会 科学研究費助成事業基盤研究(C)「23K04520」、JST次世代研究者挑戦的研究プログラム「JPMJSP2102」の支援を受けたものです。
【論文情報】
掲載誌 | Macromolecules |
論文題目 | Direct Observation of "End-Capping Effect" of a PEG@α-CD Polypseudorotaxane in Aqueous Media |
著者 | Ryoga Hori, and Ken-ichi Shinohara |
掲載日 | 2025年3月4日 |
DOI | https://pubs.acs.org/doi/10.1021/acs.macromol.4c02491 |
【用語説明】
令和7年3月11日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/11-1.htmlダイヤモンド中に10兆分の1秒で瞬く磁化を観測 ~超高速時間分解磁気センシング実現に期待~

![]() ![]() ![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド中に10兆分の1秒で瞬く磁化を観測
~超高速時間分解磁気センシング実現に期待~
磁石や電流が発する磁気の大きさと向きを検出するデバイスや装置を磁気センサーと呼びます。現在では、生体中における微弱な磁気から電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの応用分野が広がりつつあります。磁気センサーの中で最も高感度を誇るのが、超伝導量子干渉素子(SQUID)で、1 nT(ナノテスラ、ナノは10億分の1)以下まで検出可能です。また、ダイヤモンドの点欠陥である窒素−空孔(NV)センターと走査型プローブ顕微鏡(SPM)技術を組み合わせることで、数十nm(ナノメートル)の空間分解能を持つ量子センシングが可能になると期待されています。 このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきましたが、時間分解能はマイクロ秒(マイクロは100万分の1)の範囲にとどまっています。このため、磁場を高い時間分解能で測定できる新しい磁気センシング技術の開発が望まれていました。 本研究では、表面近傍にNVセンターを導入したダイヤモンド単結晶に超短光パルスを照射し、それにより10兆分の1秒で瞬く結晶中の磁化を検出することに成功しました。検出感度を見積もると、約35 mT(ミリテスラ、ミリは1000分の1)となりました。また、計測の時間分解能は、超短光パルスにより磁化を発生させたことにより、約100フェムト秒(フェムトは1000兆分の1)となりました。 本研究成果により、NVセンターでは従来困難だった高速に時間変化する磁気のセンシングも可能であることが示され、高い時間分解能と空間分解能を兼ね備えた新たな磁気センシングの開拓につながることが期待されます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀准教授
【研究の背景】
磁石や電流が発する磁気の大きさと向きを検出するのが磁気センサーです。現在では、生体中における微弱な磁気から、電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの研究開発が進んでいます。磁気センサーには、比較的簡便なトンネル磁気抵抗素子注1)によるものや、超伝導体のリングを貫く磁束の変化を電流で読み取る超伝導量子干渉素子(SQUID)注2)などがあります。その中でも最高感度を誇るのがSQUIDで、1 nT(ナノテスラ)以下の磁場をも検出できるほどです。しかし、超伝導体を用いるSQUIDは電気回路や極低温などの高度な取扱いを要します。このため、近年では、ダイヤモンドの点欠陥である窒素−空孔(NV)センター注3)を用いた磁気センサーの開発が進んでいます。特に、負に帯電したNVスピン状態を利用した全光読み出しシステムが、室温でも動作する量子磁力計として注目されています。また、NVセンターの利用と、走査型プローブ顕微鏡(SPM)注4)技術を組み合わせることで、数十nmの空間分解能注5)で量子センシング注6)を行うことが可能になります。
このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきました。その一方で、時間分解能注7)はマイクロ秒の範囲にとどまっています。このため、磁場をより高い時間分解能で測定できる新しい量子センシング技術の開発が望まれていました。
そうした中、NVセンターを高濃度に含むダイヤモンド単結晶膜において、入射された連続発振レーザーの直線偏光が回転することが分かり、ダイヤモンドにおける磁気光学効果が実証されました。NVセンターに関連する集団的な電子スピンが磁化として機能することが示唆されていますが、この手法では時間分解能を高めることができません。他方、逆磁気光学効果、すなわち光パルスで磁気を作り出すという光磁気効果に対するダイヤモンドNVセンターの研究については、行われてきませんでした。しかし、この光磁気効果を開拓することは、ダイヤモンドの非線形フォトニクスの新しい機能性を追求する上で非常に重要です。また、ダイヤモンドNVセンターのスピンを用いた非接触かつ室温動作の量子センシング技術を、高い時間分解能という観点でさらに発展させるためにも、光磁気効果の開拓が必要だと考えられます。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注8)を円偏光にして、NVセンターを導入した高純度ダイヤモンド単結晶に照射し、結晶中に発生した超高速で生成・消滅する磁化を検出することに成功しました。
実験ではまず、波長800nmの近赤外パルスレーザー光をλ/4波長板により円偏光に変換し、NVセンターを導入した高純度ダイヤモンド単結晶に励起光として照射しました。その結果、磁気光学効果の逆過程(光磁気効果)である逆ファラデー効果注9)により、ダイヤモンド中に磁化を発生できることを見いだしました(参考図1挿入図)。この磁化が生じている極短時間の間に直線偏光のプローブ光を照射すると、磁化の大きさに比例してプローブ光の偏光ベクトルが回転します。これを磁気光学カー回転と呼びます。磁気光学カー回転の時間変化はポンプープローブ分光法で測定しました(図1)。測定の結果、逆ファラデー効果で生じるダイヤモンド中の磁化は、約100フェムト秒の応答として誘起されることが確かめられました(図2左)。NVセンターを導入していないダイヤモンドでも磁化は発生しますが、導入すると、発生する磁化が増幅されることも明らかになりました(図2右)。
次に、励起レーザーの偏光状態を直線偏光から右回り円偏光、そして直線偏光に戻り、次に左回り円偏光と逐次変化させることで、波長板の角度とカー回転角(θ )の関係を調べました。すると、NVセンターを導入する前の高純度ダイヤモンド単結晶では、逆ファラデー効果を示すsin 2θ 成分および非線形屈折率変化である光カー効果を示す sin 4θ 成分のみが観測されました。一方、NVセンターを導入したダイヤモンドでは、それらの成分に加えて、新規にsin 6θ の成分を持つことが明らかになりました(図3a)。さらに、励起光強度を変化させながら各成分を解析したところ、sin 2θ 成分およびsin 4θ 成分は励起光強度に対して一乗で増加しますが(図3b,c)、新規のsin 6θ の成分の大きさは励起光強度に対して二乗で変化することが分かりました(図3d)。これらのことから、 sin 6θ の成分は、NVセンターが有するスピンが駆動力となり、ダイヤモンド結晶中に発生した非線形な磁化(逆コットン・ムートン効果注10))であることが示唆されました。また、この付加的で非線形な磁化により、図2で観測された磁化の増幅が説明できました。この非線形な磁化による磁場検出感度を見積もると、約35 mT(ミリテスラ)となりました。SQUIDの検出感度には及びませんが、本手法では約100フェムト秒という高い時間分解能が得られることが示されたといえます。
【今後の展開】
本研究チームは、今回観測に成功した光磁気効果を用いた量子センシング技術をさらに高感度化し、ダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングに深化させることを目指して研究を進めていきます。今後は、ダイヤモンドNVセンターが駆動力となった逆コットン・ムートン効果を磁気センシングに応用することで、先端材料の局所磁場やスピン流を高空間・高時間分解能で測定することが可能となります。さらに、パワーデバイス、トポロジカル材料・回路、ナノバイオ材料など実際のデバイスの動作条件下で、例えば磁壁のダイナミクスや磁化反転などデバイス中に生じるダイナミックな変化を、フェムト秒の時間分解能で観察できることになり、先端デバイスの高速化や高性能化への貢献が期待されます。
【参考図】
図1 本研究に用いた実験手法 パルスレーザーから出たフェムト秒レーザー光はビームスプリッタでポンプ光とプローブ光に分割され、それぞれ波長板と偏光子を通過した後、ポンプ光は光学遅延回路を経由した後レンズで試料に照射される。プローブ光も同様に試料に照射された後、偏光ビームスプリッタにより分割されて二つの検出器で光電流に変換される。その後、電流増幅された後、デジタルオシロスコープで信号積算される。右上の挿入図は、逆ファラデー効果の模式図を示し、右回り(σ+)または左回り(σ-)の円偏光励起パルスによりダイヤモンド結晶中に上向き(H+)または下向きの磁化(H-)が生じる。なおデジタルオシロスコープでは、下向きの磁化が観測されている。 |
図2 高純度ダイヤモンド(NVなし)およびNVセンターを導入したダイヤモンド(NVあり)における時間分解カー回転測定の結果。赤色および青色の実線はそれぞれ、右回り円偏光、左回り円偏光により励起した実験結果を示す。 |
図3 NVセンターを導入したダイヤモンドにおけるカー回転の解析結果 (a) 下図(青丸)はカー回転角の波長板の角度(θ )に対するプロットである。黒い実線はCsin 2θ + Lsin 4θ による最小二乗回帰曲線(フィット)を示す。上図(赤丸)は下図の最小二乗回帰の残差を示す。太い実線はFsin 6θ による最小二乗回帰曲線(フィット)を示す。また最上部は偏光状態の変化(直線偏光→右回り円偏光→直線偏光→左回り円偏光→直線偏光)を表す。(b) Csin 2θ の振幅Cを励起フルエンスに対してプロットした図。 (c) Lsin 4θ の振幅Lを励起フルエンスに対してプロットした図。(d) Fsin 6θ の振幅Fを励起フルエンスに対してプロットした図。(b)と(c)の実線は一次関数によるフィットを示し、(d) の実線は二次関数によるフィットを示す。 |
【用語解説】
注1)トンネル磁気抵抗素子
2枚の磁性体の間に非常に薄い絶縁体を挟んだ構造(磁性体/絶縁体/磁性体)からなる素子。磁性体は金属であり、電圧を加えると、薄いポテンシャル障壁を通り抜けるという量子力学的なトンネル効果により絶縁体を介したトンネル電流が流れる。各磁性体の磁化の向きが平行な場合と反平行な場合で、素子の電気抵抗が大きく変化する。これをトンネル磁気抵抗効果という。よって、この効果を原理とした素子をトンネル磁気抵抗素子と呼ぶ。
注2)超伝導量子干渉素子(QUID)
超伝導体のリングにジョセフソン接合(二つの超伝導体間にトンネル効果によって超伝導電流が流れるようにした接合のこと)を含む素子を、超伝導量子干渉素子(SQUID)と呼ぶ。リングを貫く磁束が変化すると、ジョセフソン接合を流れるトンネル電流が変化するため、高感度の磁気センサーとして用いられる。
注3)窒素−空孔(NV)センター
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)センター」はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となる。NVセンターには、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。
注4)走査型プローブ顕微鏡(SPM)
微小な探針(プローブ)で試料表面をなぞることにより、試料の凹凸を観察する顕微鏡の総称である。細胞やデバイスなどにおいて、分子や原子などナノメートルの構造を観察するのに用いられる。代表的なものに原子間力顕微鏡(AFM)などがある。
注5)空間分解能
近い距離にある2つの物体を区別できる最小の距離である。この距離が小さいほど空間分解能が高く、微細な画像データの測定が可能になる。
注6)量子センシング
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
注7)時間分解能
観測するデータに識別可能な変化を生じさせる最小の時間変化量である。最小時間変化量が小さいほど時間分解能が高く、高速で変化する画像などのデータ識別が可能となる。
注8)超短パルスレーザー
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注9)逆ファラデー効果
ファラデー効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは平行である。逆ファラデー効果はこれとは逆に、円偏光したレーザー光を物質に入射することで、入射した方向に平行に磁化が生じる現象のことをいう。磁性体に限らず、あらゆる物質で生じる非線形光学過程である。
注10)逆コットン・ムートン効果
コットン・ムートン効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に、光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは垂直である。逆コットン・ムートン効果は、逆に、磁界が印可された物質に直線偏光のレーザー光を入射した際に、入射した方向に垂直に磁化が生じる現象であり、磁性体などで生じる高次の非線形光学過程である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング(JPMJCR1875)」(研究代表者:長谷 宗明)、および独立行政法人 日本学術振興会 科学研究費補助金「サブサイクル時間分解走査トンネル顕微鏡法の開発と応用」(研究代表者:重川 秀実)による支援を受けて実施されました。
【掲載論文】
題 目 | Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals. (ダイヤモンド結晶中の窒素空孔センターが誘起する超高速光磁気効果) |
著者名 | Ryosuke Sakurai, Yuta Kainuma, Toshu An, Hidemi Shigekawa, and Muneaki Hase |
掲載誌 | APL Photonics |
掲載日 | 2022年6月15日(現地時間) |
DOI | 10.1063/5.0081507 |
令和4年6月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/06/16-1.html世界初!個々の原子間の結合強度の測定に成功 ―強くて伸びる白金原子の鎖状物質―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 金沢大学 |
世界初! 個々の原子間の結合強度の測定に成功
―強くて伸びる白金原子の鎖状物質―
ポイント
- 個々の原子の並びを見ながら、その結合強度を測る手法(顕微メカニクス計測法)の開発
- 白金原子が一列に並んだ鎖状物質を作製し、その結合強度を測定
- 結合強度が高く、よく伸びる白金原子の鎖状物質
- 原子スケールで制御された機能性物質探索への期待
北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の大島 義文教授、富取 正彦教授、張家奇 大学院生(博士後期課程)、石塚慧介 大学院生(博士後期課程)、環境・エネルギー領域の前園 涼教授、本郷 研太准教授、及び金沢大学・理工研究域 数物科学系の新井 豊子教授は、International School for Advanced Studies (SISSA)のErio Tosatti教授との共同研究で、物質を構成する個々の原子の並びを観察しながら、その結合強度を計測できる顕微メカニクス計測法を開発した。この手法を使って、白金原子が一列に並んだ鎖状物質が強い結合強度を持つとともに、白金の塊(バルク)と比較してかなり大きく引き伸ばしても破断しないという特異な性質を持つことを発見した。実験結果を第一原理計算で解析したところ、この鎖状物質は、エネルギーが最小になる安定構造を取っているわけではなく、その形成に必要な張力が極小な構造であることを突きとめた。この鎖状物質がもつこの特有な性質の解明は、今後ますます期待される原子スケールで制御された機能性物質の創製に指針を与える大きな成果である。 本研究成果は、2021年4月29日(米国東部標準時間)に科学雑誌「Nano Letters」誌のオンライン版で公開された。なお、本研究は、日本学術振興会(JSPS)科研費, 18H01825, 18H03879、笹川科学研究助成, 2020-2006、ERC ULTRADISS Contract No. 834402, the Italian Ministry of University and Research through PRIN UTFROM N. 20178PZCB5の助成を受けて行われた。 |
原子が鎖状に並んだ1次元物質の力学的性質は、同じ組成や構造を持つバルク物質と大きく異なることが理論計算によって予想されていた。しかし、1次元物質の性質はわずかな原子の変位にも敏感に変化するため測定例が少なく、解明が進んでいない。原子配列構造とその力学的性質の相関を明らかにできれば、1次元物質などの性質を決めるメカニズムの解明に繋がる。このメカニズムこそが、1次元物質を活用した新しい原理で動作する電子デバイスやセンサー開発の指針となる。
最近、私たちは、原子配列を直接観察できる透過型電子顕微鏡(TEM)のホルダーに細長い水晶振動子を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする顕微メカニクス計測法を世界で初めて開発した(図1)。この手法では、水晶振動子の共振周波数が、物質との接触で相互作用を感じることによって変化することを利用する。共振周波数の変化量は物質の等価バネ定数に対応するので、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)で、TEMによる原子像がぼやけることはない。この手法は、従来の手法(小さなSi製テコを利用してその変位から力を計測する手法、TEM-AFM法[*1])では困難だった結合強度の高精度測定を実現している。
本研究では、このTEMホルダー内部で白金原子鎖を150個作製してその特性を詳細に調べ、白金原子鎖における原子結合強度が25 N/mであることを突きとめた。この値は、白金のバルク結晶の原子結合強度20 N/mよりも25%高い。また、原子間結合の長さ(0.25 nm)は最大0.06 nmも延びることが分かった。これは原子結合の最大弾性ひずみが24%になることを示しており、バルク結晶の値(5%以下)と比較して著しく高い(図2)。さらに、第一原理計算の結果を合わせて考察することで、このような特異な原子結合の性質は、白金原子鎖がエネルギー的に最安定な構造ではなく、形成に必要な張力が極小となる構造を取ることによって生まれることがわかった。
本研究は、1次元物質がもつ特異な原子結合に関わる性質を明らかにし、理論計算と組み合わせることによって形成メカニズムを突きとめた点に大きな成果がある。今後ますます期待される原子スケールで制御された機能性物質の創製に指針を与える大きな成果である。
図1.個々の原子の並びを観察しながら、原子間の結合強度を計測する顕微メカニクス計測法。透過型電子顕微鏡(TEM)を用いてナノ物質の構造観察をしながら、長辺振動水晶振動子(LER)を用いて物質の結合強度を計測できる。この測定によって、赤矢印で示す部位の白金原子鎖の原子間結合強度が25 N/mであることがわかった。
図2. 左上は透過型電子顕微鏡(TEM)像、左下はそのシミュレーション像である。原子4個からなる原子鎖が得られている。その観察時に測定された電気伝導(コンダクタンス量子単位G0でプロット)とばね定数の時間変化を、それぞれ右上と右下に示す。赤い矢印で示す領域は形成した原子鎖を破断することなく引っ張ることができた時間帯である。毎秒0.08 nmの速度で引っ張っており、白金原子鎖は破断なく約0.1 nm伸びた。
【論文情報】
雑誌名 | Nano Letters |
題名 | Peculiar Atomic Bond Nature in Platinum Monatomic Chains |
著者名 | Jiaqi Zhang, Keisuke Ishizuka, Masahiko Tomitori, Toyoko Arai, Kenta Hongo, Ryo Maezono, Erio Tosatti, Yoshifumi Oshima* |
掲載日 | 2021年4月29日(米国東部標準時間)にオンライン版に掲載 |
DOI | 10.1021/acs.nanolett.1c00564 |
【用語解説】
[*1] TEM-AFM法(透過型電子顕微鏡と原子間力顕微鏡を組み合わせた測定法)
従来の測定法の一つ。ナノ物質に接触したSiカンチレバーを引っ張ると、Siカンチレバーがたわむ(変位する)。このたわみ(変位)から、ナノ物質に負荷されている力を求める。一方、この負荷された力によって変形したナノ物質を透過型電子顕微鏡によって計測することで、このナノ物質の機械的強度を得る。ただし、10 nm以下のサイズをもつナノ物質は1Åしか変形しない(原子間距離は2-3Åである)。このような変形を高い精度で測定することは難しく、ナノ物質の強度測定にばらつきが出てしまうという課題があった。
令和3年4月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/04/30-1.html「低密度ポリエチレン長鎖分岐の構造を明らかに」 -汎用ポリマーの高性能化に道-
「低密度ポリエチレン長鎖分岐の構造を明らかに」
-汎用ポリマーの高性能化に道-
ポイント
- ポリマーの物性に影響を及ぼす長鎖分岐の構造を世界で初めて直接計測
- ポリマーの合成・構造・物性の相関を解明し高性能化を実現する道を拓いた
北陸先端科学技術大学院大学(JAIST)(学長・浅野哲夫、石川県能美市)の先端科学技術研究科物質化学領域の篠原健一准教授と住友化学(株)先端材料開発研究所の柳澤正弘主任研究員は、ポリエチレンの長鎖分岐(LCB)の構造を液中高速原子間力顕微鏡(高速AFM)イメージング法によって世界で初めて明らかにした。
ポリマー材料の物性は高分子鎖の構造と強く相関しており、分岐構造を有する場合では分岐鎖長や分岐数などの微細構造によって材料物性は大きく変化する。しかしながら、高分子の構造が複雑であることと同時に分析法の限界から、とくにポリエチレンの長鎖分岐の微細構造は未解明であった。 今回篠原研究室と住友化学(株)の産学連携グループは、高圧法ポリエチレンのうちチューブラープロセスで製造された低密度ポリエチレン(LDPE)の高分子鎖の構造を高速AFMで1分子イメージングしたところ、低密度ポリエチレンの長鎖分岐の鎖長や分岐点間隔などの計測に成功した。その結果、162 nmの主鎖に3本のLCBが確認され、各LCBの長さは10, 31, 18 nmと計測された。また各LCBの位置は主鎖末端から33, 70, 78 nmにあった。 このようにポリマー鎖の構造を計測・数値化できた意義は大きく、これまで不明確であった重合反応条件と生成ポリマーの分子構造との関係、さらにポリマー材料物性とポリマー分子構造との関係を明確化する新しい研究開発手法が確立された。ポリマーの合成・分子構造・物性の相関を明らかにすることで、より高性能なポリマー材料の開発を実現する明確な分子設計指針を与える。 本成果は英国Scientific Reports誌(インパクトファクター 4.525)に7月5日(金)に公開された。 |
図(A)世界で初めて捉えたポリエチレンの長鎖分岐構造(AFM像)サイズ横278 nm、縦209 nm、高さ18 nm。(B)分子鎖長の計測結果。(C)ワイヤーモデル(赤色は主鎖、黒色は3本の各LCBを示す)。
<今後の展開>
今回開発された長鎖分岐構造の直接計測法を用いて、他のグレードのポリマーについても分岐鎖を直接計測することで、材料物性との相関関係をパラメータ化と同時に序列化する。これによって、ポリマー分岐構造と物性の分子レベルでの関係が体系化され、従来経験に頼っていた材料開発が効率化・加速化する。そして究極的には、望む特性の材料が製造できる「夢のオーダーメイド材料開発」が実現する。
<用語解説>
*1 ポリエチレン
世界で最も生産されているポリマー。略称はPE。エチレン(CH2=CH2)の重合反応によって得られるポリマー(高分子)。高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、超高分子量ポリエチレンなど種々のPEが製造されている。容器や包装用フィルムをはじめ様々な用途があり、人工股関節に使用される耐摩耗性のPEもある。
*2 長鎖分岐
炭素数が6以上からなる分子鎖を言う。一方、炭素数6未満の分子鎖は短鎖分岐と言う。長鎖分岐の長さや本数などの違いでポリマー材料の性質が大きく左右される重要な高分子の構造。
*3 高速AFM
一秒間に数枚以上の顕微鏡像を取得出来る原子間力顕微鏡(AFM)。ナノメートルスケールの空間分解能を有するのでポリマー鎖一本の構造やさらにその動きもリアルタイムで撮影できる最先端の顕微鏡。
*4 チューブラープロセス
管型(チューブラー)の重合反応器を用いる製造方法。PEの製造においてはフィルム用途に適する性質のポリマーを与える。
*5 低密度ポリエチレン
略称はLDPE。原料のエチレンを触媒と共に高温・高圧条件下で重合して得られるPE。単純な直鎖状高分子とはならず分子中に幾つもの短鎖分岐と長鎖分岐を有する。
<論文>
掲載誌 | Scientific Reports |
論文題目 | Direct Observation of Long-Chain Branches in a Low-Density Polyethylene |
著者 | Ken-ichi Shinohara, Masahiro Yanagisawa, Yuu Makida |
https://www.nature.com/articles/s41598-019-46035-9 |
令和元年7月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/07/09-1.html応用物理学領域の富取教授らの研究成果が国際学術誌Advanced Materials Interfaces 誌のInside Back Coverに採択

応用物理学領域の富取 正彦教授、高村 由起子准教授、アントワーヌ・フロランス講師らの研究成果が国際学術誌Advanced Materials Interfaces に掲載され、フロランス講師による図がInside Back Cover(裏表紙内面)に採択されました。
この論文は、本学博士後期課程の修了生・野上真さんが実施した「副テーマ研究」が基になりました。副テーマ研究は本学が創設以来行ってきた制度です。学生が所属する主研究室を越えて他研究室で活動し、経験や研究の枠を広げるとともに、科学技術の融合を図ろうというものです。この成果はその良い一例と言えるでしょう。
■掲載誌
Advanced Materials Interfaces
■著者
Makoto Nogami, Antoine Fleurence, Yukiko Yamada‐Takamura, Masahiko Tomitori
■論文タイトル
Nanomechanical Properties of Epitaxial Silicene Revealed by Noncontact Atomic Force Microscopy
■論文概要
本研究では、原子レベルの分解能を持つ非接触原子間力顕微鏡(nc-AFM)を用いて、2次元材料として注目を集めているシリセン(シリコンの同素体)のナノスケールでの力学特性の解明に挑みました。nc-AFMが持つ力学的散逸エネルギーの測定能力も活用し、エピタキシャル成長したシリセンが示す特異な柔軟性・原子の変位挙動、周期的縞状構造の歪み分布に関する新たな知見を得ました。この成果は、ナノスケールの新奇デバイス作製の基盤となることが期待されます。
論文詳細:https://doi.org/10.1002/admi.201801278
Inside Back Cover詳細: https://doi.org/10.1002/admi.201970014
平成31年2月1日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2019/02/01-3.html応用物理学領域の富取教授と修了生の野上さんらが応用物理学会において優秀論文賞を受賞
応用物理学領域の富取 正彦教授と修了生の野上 真さん(平成28年6月博士後期課程修了)らが応用物理学会において優秀論文賞を受賞しました。
応用物理学会は、応用物理学および関連学術分野の研究の促進ならびに成果の普及に関する事業を行い、もって社会の発展に寄与することを目的として設立された日本の学会です。70年以上の歴史があり、会員数は2万人を越えています。
優秀論文賞は、応用物理学会が刊行する学術誌において発表された応用物理学の進歩向上に寄与する優秀な原著論文に与えられる賞です。
■受賞年月日
平成30年9月18日
■著者
Makoto Nogami, Akira Sasahara, Toyoko Arai and Masahiko Tomitori
■論文タイトル
Atomic-scale electric capacitive change detected with a charge amplifier installed in a non-contact atomic force microscope
■受賞理由
本論文は、非接触原子間力顕微鏡(nc-AFM) にチャージアンプ(CA) を導入することによって、探針-試料間の静電容量(CTS) と接触電位差(CPD) を起源とした電荷移動を計測する、という著者らが独自に提案した手法について述べたものである。同手法の導入により、走査型プローブ顕微鏡(SPM)が持つ原子レベルの高い空間分解能を生かしながら表面電子状態を解析することが可能となるものと期待される。特にCAは、電荷量の変化に対して高い感度を持つと同時に通常の電流増幅アンプと比べて非常に高速に応答することから、SPMの走査速度を落とすことなく、CTSやCPDの変化を計測できるものと考えられる。実際、CAを利用することで原子像に対応したCPD像の獲得に成功しており、原子レベルの空間分解能像を有する計測にCAが利用できることを本論文が初めて実証した。 また、CAによる電荷計測は、nc-AFMだけではなく、他のSPM計測法にも導入できることから、その利用が広がる可能性は高く、本研究の成果は、表面・界面の電子トンネル現象、各種相互作用力や電荷移動現象などの統合的な評価手法の発展に寄与するものと期待される。
■受賞にあたって一言
40年も続いている歴史ある論文賞を頂くことができ、大変光栄です。これを励みに、今後とも物理的センスを核に、開拓者精神を忘れずに教育研究に努めたいと思います。
平成30年9月26日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2018/09/26-1.htmlダイヤモンド量子イメージングプローブの新規作製法を開発 -ナノ量子イメージングに道-

ダイヤモンド量子イメージングプローブの新規作製法を開発
-ナノ量子イメージングに道-
ポイント
- レーザー加工と集束イオンビーム加工を用いた走査ダイヤモンド量子イメージングプローブの作製法の開発に成功
- 高性能化へ向けた加工自由度の高いナノ量子センシング・イメージングプローブ作製法として期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 応用物理学領域の貝沼 雄太大学院生(博士後期課程)、安 東秀准教授らは、京都大学、産業技術総合研究所と共同で、レーザー加工と集束イオンビーム加工注1)によりダイヤモンド中の窒素-空孔複合体中心(NV中心(図1[右]))注2)と呼ばれる極小な量子センサーをプローブ先端に含有するナノ量子イメージングプローブ(図1[左])の新規作製法の開発に成功しました。 |
【背景と経緯】
近年、新しいデバイスやセンサーの創出による環境・エネルギー問題の解決、安心安全な社会の実現、これらによる人類社会の持続的繁栄への貢献が求められています。この中で量子計測・センシング技術は、量子力学を原理とした従来とは異なる革新的な技術を提供する分野であり、将来の社会基盤を支えるしくみを一新すると期待されています(量子技術イノベーション)。その中でも、ダイヤモンド中の欠陥構造であるNV中心を用いた量子計測技術は、室温・大気中で動作可能なこと、センサーサイズがナノスケールであることより注目を集めており、特に、NV中心を走査プローブとして用いた際にはナノスケールの量子イメージングの実現が期待されています。
従来、走査NV中心プローブの作製にはフォトリソグラフィーと電子線リソグラフィーを用いたリソグラフィー法が用いられていましたが、この方法ではプロセスが複雑であること、再加工ができないという課題がありました。今回の研究では、レーザー加工と集束イオンビーム加工(FIB)による加工自由度の高い走査NV中心プローブの作製法を開発し、さらに磁気イメージングの動作を実証しました。
【研究の内容】
図2に示すように、まず、表面下約40ナノメートルにNV中心を有するダイヤモンド結晶の板を、レーザー加工によりロッド状の小片に加工した上で、水晶振動子型の原子間力顕微鏡の先端に取り付けました。続いて、FIB加工においてドーナツ型の加工形状を用いることで、当該小片の中心位置に存在するNV中心の加工ダメージを回避して走査ダイヤモンドNV中心プローブを作製しました。このNV中心プローブを走査しながら磁気テープ上に記録された磁気構造からの漏洩磁場を光学的磁気共鳴検出法(ODMR)注3)により計測し、磁気構造のイメージングに成功しました(図3)。
本研究成果は、2021年12月28日(米国東部標準時間)に米国物理学協会の学術誌「Journal of Applied Physics」のオンライン版に掲載されました。
【今後の展開】
本研究では、レーザー加工とFIB加工による加工自由度の高い走査NV中心プローブの作製法の開発に成功しました。今後、プローブの形状や表面状態を最適化することで、より高性能な走査ダイヤモンドNV中心プローブを作製し量子イメージング分野に貢献することが期待されます。
図1 ダイヤモンド中の窒素(N)-空孔(V)複合体中心(NV中心)[右]と、
走査ダイヤモンドNV中心プローブ[左]
図2 レーザー加工とFIB加工による走査ダイヤモンドNV中心プローブの作製
図3 走査ダイヤモンドNV中心プローブによる磁気テープの磁気構造イメージング
【論文情報】
掲載誌 | Journal of Applied Physics |
論文題目 | Scanning diamond NV center magnetometor probe fabricated by laser cutting and focused ion beam milling |
著者 | Yuta Kainuma, Kunitaka Hayashi, Chiyaka Tachioka, Mayumi Ito, Toshiharu Makino, Norikazu Mizuochi, and Toshu An |
掲載日 | 2021年12月28日(米国東部標準時間) |
DOI | 10.1063/5.0072973 |
【研究助成費】
本研究の一部は、次の事業の支援を受けて実施されました。
・科学技術振興機構(JST)戦略的創造研究推進事業CREST (JPMJCR1875)、
次世代研究者挑戦的研究プログラム(未来創造イノベーション研究者支援プログラム)(JPMJSP2102)
・澁谷学術文化スポーツ振興財団
・日本学術振興会(JSPS)科研費 基盤研究(C) (21K04878)
・文部科学省 光・量子飛躍フラッグシッププログラム(Q-LEAP, JPMXS0118067395)
【用語解説】
注1)集束イオンビーム加工(Focused Ion Beam, FIB)
イオンビームにより材料をナノスケールで加工する加工法。本研究では、ガリウム(Ga)イオンを用いてダイヤモンド片をプローブ形状に加工した。
注2)NV中心
ダイヤモンド中の窒素(N)不純物と空孔(V)が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定的にスピン量子状態が存在する。
注3)光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
令和4年1月5日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/01/05-1.html「日本固有資源"サクラン"の細胞を並べる機能を発見」を開発 -細胞組織工学へ新たな道-
「日本固有資源"サクラン"の細胞を並べる機能を発見」を開発
-細胞組織工学へ新たな道-
北陸先端科学技術大学院大学(JAIST、学長・浅野 哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の金子研究室らは、日本固有種微生物スイゼンジノリから抽出される超高分子サクラン(発見者:岡島麻衣子研究員)の新しい機能を発見しました。3Dプリンターで凹凸にパターン化したポリスチレン基板(武藤工業株式会社作成)の上でサクランゲルを作成することで、このパターンが転写されたゲルを得ました。ゲル内部の分子配列は特殊であり凹部のみでサクラン分子鎖が配向し、細胞をその上に播種すると細胞のほとんどがそれに沿って伸展することが見いだされました。
スイゼンジノリは日本固有種の食用藻類で福岡県、熊本県の一部で地下水を利用し養殖されています。このスイゼンジノリの主成分であるサクランは、2006年本学の岡島らによって発見され、天然分子の中で最も大きな分子量を持ち、高い保水能力(ヒアルロン酸の5倍~10倍)と抗炎症効果を持つ新機能物質として注目され、現在では化粧品を中心に幅広く用いられています。研究チームは昨年このサクランの高い保水能力に着目し、サクラン・レーヨン混紡繊維"サク・レ"を作製するなど、人体に接触する材料としての研究を進めてきました。並行してサクランが作るゲルの細胞適合性などを系統的に研究する中で、今回の発見に至りました。 このゲルは極めて低濃度で液晶構造を形成するサクラン分子鎖の自己配向性を巧みに利用した例であり、サクランがポリスチレン基板に張り付きながら乾燥していく際に、凸部から凹部に向かって重力に伴う延伸張力が働き分子配向すると考えられます。これにより膜自身にも分子配向の方向に筋状のマイクロ構造が形成され、その方向を細胞が認識して配向伸展したと考えています。これが細胞を並べるメカニズムです。また、サクランは光合成を行うラン藻(スイゼンジノリ)が作る物質であるため、空気と水と日光さえあれば作ることが可能であり、生産時に大気の二酸化炭素(CO2)削減に貢献する究極にエコな物質といえます。 ![]() 写真 パターン化サクランゲル(左:ゲル,右:ゲル上の伸展細胞) 本成果はアメリカ化学会誌 [ACS Applied Materials & Interfaces(インパクトファクター8.1)] でオンライン公開され近く印刷公開予定です。 |
<開発の背景と経緯>
藻類などの植物体に含まれる分子を用いて得られるバイオマス注1)材料の中には、材料中にCO2を長期間固定できるため、持続的低炭素社会の構築に有効であるとされています。北陸先端科学技術大学院大学の研究チームはこれまで、淡水性の藍藻であるスイゼンジノリから高保湿力を持つ繊維質である超高分子「サクランTM」注2)を開発してきました。
近年、iPS細胞の発見に端を発し、細胞組織工学の分野が活発化してきています。しかし、細胞を配向させる技術が無いと人工臓器も単なる分化細胞の塊にすぎません。そこで、細胞を適所で配向させる技術が待たれています。
<作製方法>
3Dプリンタで作成したマイクロプラスチック棒のアレイの上にサクランをキャストした。得られたフィルムはプラスチック棒の間でサクランが棒に対して垂直に配向することが分かりました(図1)。
<今回の成果>
このゲルは極めて低濃度で液晶構造を形成するサクラン分子鎖の自己配向性を巧みに利用した例であり、サクランがポリスチレン基板に張り付きながら乾燥していく際に、凸部から凹部に向かって重力に伴う延伸張力が働き分子配向すると考えられます。これにより膜自身にも分子配向の方向に筋状のマイクロ構造が形成され、その方向を細胞が認識して配向伸展したと考えています。この上に、L929マウス線維芽細胞を播種した所、細胞はサクランの配向に応じてパターン化した配向性を示すことが分かりました(図2)。
<今後の展開>
ほとんど全ての臓器は配向しており細胞を配向させるこの技術は組織工学に極めて有用と考えられる。サクランは元来緊急時の火傷治療膜、臓器癒着防止膜、湿布剤に応用できると報告してきましたが、今回人工血管、人工皮膚など、組織工学用基板へ応用展開も期待できます。
<参考図> | ||
![]() |
![]() |
![]() |
図1 3Dプリンタで作成した基板上でキャストしたサクランの偏光顕微鏡注3)写真(530nmの鋭敏色板使用) 左2つは上からの観察、右は横からの観察 | ||
![]() |
||
図2 播種した細胞の写真(ほぼすべての細胞が左右に伸展している) |
<用語説明>
注1)バイオマス(例 スイゼンジノリ)
生物資源(bio)の量(mass)を表す概念で、一般的には「再生可能な、生物由来の有機性資源で化石資源を除いたもの」をバイオマスと呼ぶ。本研究で取り扱ったスイゼンジノリ(ラン藻の一種であり学名はAphanothece sacrum)は日本固有のバイオマスの一種であり、世界でも極めて希な食用ラン藻である。また、スイゼンジノリは江戸時代から健康維持のために食され、当時は細川藩および秋月藩における幕府への献上品とされてきた。大量養殖法が確立されている。
注2)サクラン
スイゼンジノリが作る寒天質の主成分である。硫酸化多糖類の一つでスイゼンジノリから水酸化ナトリウム水溶液により抽出される。サクランの重量平均絶対分子量は静的光散乱法で2.0 x 107 g/mol と見積もられている。現実的には原子間力顕微鏡によりサクラン分子が 13 μm の長さを持つことが直接観察されている。天然分子で 10 μm 以上の長さにも達するものを直接観察した例はこれが初めてとされる。サクランという名称はスイゼンジノリの種名の語尾を多糖類の意味の "-an" という接尾後に変換したもので、北陸先端科学技術大学院大学の岡島らによって発見され名付けられた。現在もその金属吸着性や高保水性などに関する研究が進められており、吸水高分子として応用が進められている。
注3)偏光顕微鏡
光学顕微鏡の一種。試料に偏光を照射し、偏光および複屈折特性を観察するために用いられる。偏光特性は結晶構造や分子構造と密接な関係があるため、鉱物学や結晶学の研究で多く用いられる。他、高分子繊維の研究などにも用いられる。一般には特定方向に偏波させることのできる二枚のフィルター(偏光板)をお互いに直交させて使用する。これにより光は通らなくなるが、屈折率に方向依存性のある高分子繊維などが二枚の偏光板の間に存在すると、この高分子繊維だけが観察可能となる。さらに、特殊なカラーフィルターを組み合わせることで高分子繊維内部の分子配向の方向を色調変化により判定することが可能となる。
平成31年1月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/01/21-1.html「天然繊維に新風、保湿性抜群 超!しっとり新繊維"サク・レ"」を開発 -日本固有バイオマスからの新機能繊維-
「天然繊維に新風、保湿性抜群 超!しっとり新繊維"サク・レ"」を開発
-日本固有バイオマスからの新機能繊維-
ポイント
- 従来の機能性繊維には乾燥肌には痒みを与えるなどの問題点があった
- 独自の技術でサクランとレーヨンを混合紡糸することに成功
- 新繊維は従来のレーヨン繊維の抱水率を遥かに上回る抱水性・保湿性を示すことが分かった
- サクランの導入によりレーヨンの表面構造が変化することを発見
- 新機能繊維として高い保湿性能を持つ「しっとり」とした下着やベビー服の実用化へ期待
北陸先端科学技術大学院大学(JAIST、学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の金子達雄教授らは、グリーンサイエンスマテリアル株式会社(GSM、社長金子慎一郎、熊本県熊本市)およびオーミケンシ株式会社(社長石原美秀、大阪市中央区)とともに、レーヨンに日本固有種微生物スイゼンジノリから抽出される超高分子サクラン(発見者:岡島麻衣子研究員)を練り込む独自技術を開発し、従来のレーヨンより抱水性を26%も向上させる新素材の作製に成功しました。伊藤忠商事子会社の株式会社ロイネ(社長・木下昌彦、大阪府箕面市)が主に乾燥肌・ベビー向け下着として製品化・販売を目指します。 ![]() ![]() 写真 サク・レ(左:実体像、右:走査型電子顕微鏡像「レーヨンのスムーズな表面がサクランでおおわれている」) そこで、衣料品製造販売会社のロイネがこのサク・レ30%と綿混紡ベア天竺を試作したところ、その吸放湿性は綿ベア天竺よりも20%高まることが分かりました。この吸放湿性は肌と衣服間の保湿性と関係するため、サク・レを用いることで高い保湿性能を持つ「しっとり」とした下着やベビー服の実用化を目指します。肌と接触する衣類の保湿性は快適な着心地の実現のため非常に重要であるため、サク・レは、今後特に乾燥肌や肌の弱い乳幼児の中でニーズが高まると期待されます。 |
<開発の背景と経緯>
藻類などの植物体に含まれる分子を用いて得られるバイオマス注1)材料の中には、材料中にCO2を長期間固定できるため、持続的低炭素社会の構築に有効であるとされています。北陸先端科学技術大学院大学の研究チームはこれまで、淡水性の藍藻であるスイゼンジノリから高保湿力を持つ繊維質である超高分子「サクランTM」注2)を開発してきました。
近年、従来化学繊維を改良することで開発される新機能繊維が注目され我々のQOL向上に役立っています。しかし化学繊維は敏感肌や乾燥肌の痒みの原因となる場合もあり天然素材、例えば綿やレーヨン注3)、シルク等の優れた保湿性能が見直されています。しかし、従来のレーヨンの保湿力は限界があり、これが下着や裏地に使用された場合、乾燥肌や敏感肌の方々に更に心地よく着用してもらうためには保湿力向上の改善が望まれています。
<作製方法>
「セルロースをビスコース法で溶解した原液に独自技術でサクランを混合し、レーヨン繊維にサクランを練り込みます。
<今回の成果>
レーヨン繊維にサクランを練り込む条件の最適化を行い混紡糸を作製しました。これにより、レーヨン繊維の表面構造がサクランの導入により変化し、ナノスケールの凹凸が発生していることが走査型電子顕微鏡注4)により分かりました(参考図1)。これから、もともとスムーズであったレーヨンの表面にサクランが存在していることが確認できます。さらに、このサク・レ(0.1%)に水を少量添加したところ水を2.78倍程度吸収することが偏光顕微鏡注5)観察により分かりました。この値はレーヨンのみの観察結果2.16倍と比較すると、サクラン添加により28%程度吸水量が向上したということとなります(参考図2)。
実際に、従来のレーヨン繊維の抱水率を遥かに上回る抱水性・保湿性を持つことが分かりました。またサクランはレーヨン繊維中に練り込まれているためレーヨン繊維の持つ独特なソフトな風合いは損なわれず、かつサクランの超保水機能によって、従来品より遥かにしっとりとした感触が付与され、洗濯耐久性も維持されました。そこで、衣料品製造販売会社のロイネがこのサク・レ30%と綿混紡ベア天竺を混編したところ、その吸放湿性はベア天竺よりも20%高まることが分かりました。
<今後の展開>
この吸放湿性は肌と衣服間の保湿性と関係するため、サク・レを用いることで高い保湿性能を持つ「しっとり」とした下着やベビー服の実用化を目指します。肌と接触する衣類の保湿性は快適な着心地の実現のため非常に重要であるため、サク・レは、今後特に乾燥肌や肌の弱い乳幼児の中でニーズが高まると期待されます。
<参考図>
![]() |
サク・レの実体像 |
従来レーヨン | 0.1% サクラン+レーヨン |
![]() |
![]() |
図1 サク・レの走査型電子顕微鏡像 レーヨンのスムーズな表面(左図)がサクランでおおわれている(右図)
![]() |
![]() |
図2 サク・レの偏光顕微鏡像 水添加により繊維の直径が平均約15ミクロン(左図)から平均約25ミクロン(右図)に増加したことが分かる。また、水添加後も分子配向による繊維の着色が維持されていることが分かる。
<用語説明>
注1)バイオマス(例 スイゼンジノリ)
生物資源(bio)の量(mass)を表す概念で、一般的には「再生可能な、生物由来の有機性資源で化石資源を除いたもの」をバイオマスと呼ぶ。本研究で取り扱ったスイゼンジノリ(ラン藻の一種であり学名はAphanothece sacrum)は日本固有のバイオマスの一種であり、世界でも極めて希な食用ラン藻である。また、スイゼンジノリは江戸時代から健康維持のために食され、当時は細川藩および秋月藩における幕府への献上品とされてきた。大量養殖法が確立されている。
注2)サクラン
スイゼンジノリが作る寒天質の主成分である。硫酸化多糖類の一つでスイゼンジノリから水酸化ナトリウム水溶液により抽出される。サクランの重量平均絶対分子量は静的光散乱法で2.0 x 107 g/mol と見積もられている。現実的には原子間力顕微鏡によりサクラン分子が13μm の長さを持つことが直接観察されている。天然分子で10μm 以上の長さにも達するものを直接観察した例はこれが初めてとされる。サクランという名称はスイゼンジノリの種名の語尾を多糖類の意味の "-an" という接尾後に変換したもので、北陸先端科学技術大学院大学の岡島麻衣子によって発見され名付けられた。現在もその金属吸着性や高保水性などに関する研究が進められており、吸水高分子として応用が進められている。
注3)レーヨン
絹に似せて作った再生繊維であり光線(英:ray)と綿 (cotton) を組み合わせた言葉である。パルプなどのセルロースを水酸化ナトリウムなどのアルカリと二硫化炭素に溶かしてビスコースにし、酸の中で紡糸(湿式紡糸)して製造する。ポリエステルなど石油を原料とした化学繊維と異なり、加工処理したあと埋めると土に還る。そのため、レーヨン自体は環境に負荷をかけない繊維とされる。絹に似た光沢・手触りが特徴。洋服の裏地などに用いられる。
注4)走査型電子顕微鏡
電子顕微鏡の一種。電子線を絞って電子ビームとしてサンプルに照射し、そこから放出される二次電子、反射電子等を検出する事でサンプルの表面の構造を微細に観察できる。細い電子線で試料を走査(scan)し、電子線を当てた座標の情報から像を構築して表示する。観察試料は高真空中(10-3Pa以上)に置かれ、この表面を電界や磁界で絞った電子線(焦点直径1-100nm程度)で走査する。走査は直線的だが、走査軸を順次ずらしていくことで試料表面全体の情報を得る。
注5)偏光顕微鏡
光学顕微鏡の一種。試料に偏光を照射し、偏光および複屈折特性を観察するために用いられる。偏光特性は結晶構造や分子構造と密接な関係があるため、鉱物学や結晶学の研究で多く用いられる。他、高分子繊維の研究などにも用いられる。一般には特定方向に偏波させることのできる二枚のフィルター(偏光板)をお互いに直交させて使用する。これにより光は通らなくなるが、屈折率に方向依存性のある高分子繊維などが二枚の偏光板の間に存在すると、この高分子繊維だけが観察可能となる。さらに、特殊なカラーフィルターを組み合わせることで高分子繊維内部の分子配向の方向を色調変化により判定することが可能となる。
平成29年7月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/07/07-1.html応用物理学領域の安准教授が村田学術振興財団の研究助成を採択
応用物理学領域の安東秀准教授が公益財団法人村田学術振興財団の研究助成を採択しました。
公益財団法人村田学術振興財団は、エレクトロニクスを中心とした科学技術の向上発展、及び国際化にともなう人文・社会科学的諸問題の解決に寄与するため、学術の研究に対する助成、学術的国際交流への助成等の諸事業を行い、わが国の学術研究の発展に寄与しようとするものです。
■採択期間
平成28年7月-平成29年7月
■研究課題
「NV中心ダイヤモンドロッドを用いた走査スピンプローブセンサーの開発」
■研究課題概要
ダイヤモンド中に存在する窒素-空孔複合体中心(NV中心)を走査型の磁場センサーとして用い、ナノスケールで磁気イメージングが可能な装置を開発する。特に、ダイヤモンドをレーザーカッティングの手法を用いて簡便に切り出す手法を考案すること。これを原子間力顕微鏡のプローブ先端に取り付け、共焦点顕微鏡と複合化し、簡便、且つ、高性能な装置を実現する。
■採択にあたって一言
この度は本研究助成に採択頂き、大変光栄です。村田学術振興財団および選考委員の皆様に御礼申し上げます。また、研究に貢献してくれている研究室メンバーに感謝いたします。
平成28年6月13日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2016/06/13-1.html原子層材料グラフェンを用いたナノセンサー素子で二酸化炭素分子一個の検出に成功

原子層材料グラフェンを用いたナノセンサー素子で二酸化炭素分子一個の検出に成功
- 超高感度・超小型パーソナル環境センシング応用に期待 -
ポイント | |||
|
|||
|
|||
|
<開発の背景と経緯> | |||
原子層材料であるグラフェンは、その優れた電気的特性に加え、シリコンと比べて1桁以上高いヤング率(材料の弾性係数)と、引っ張り応力に対して約20%の格子変形にも耐える機械的特性も有していることから、ナノ電子機械システム(NEMS)への応用が期待されています。さらに表面対体積比率が極めて高いことから、高感度センサーの材料としても大きな期待が寄せられています。水田らのグループは、グラフェンNEMS複合機能素子の研究にいち早く着手し、科学研究費助成事業・基盤研究(S)において、超高感度・環境センサーとパワーマネジメント素子を融合したオートノマス・複合機能センサーの開発に取り組んできました。近年、シックハウス症候群に代表される個人の生活空間レベルでの空気汚染に起因する健康障害が深刻な問題となっていますが、建材やインテリア素材、家具などから発生する化学分子ガスは一般に濃度がppbレベルと非常に希薄で、既存のガスセンサー技術で検出することは極めて困難です。今回の単一CO2分子検出成功は、グループが世界に先駆けて構築してきたグラフェンNEMS素子に関するリーディング技術と、吸着分子とグラフェン間に生じる相互作用を原子レベルで明らかにするシミュレーション技術を融合させて初めて実現できた成果です。 |
|||
<今回の成果> | |||
グラフェンNEMS作製技術を用いて、半導体基板上に2層グラフェン膜の両持ち梁を作製した後、下部の金電極に電圧を印加することで、グラフェン梁を電極上に引き寄せて付着させ、グラフェン斜め梁を形成しました(図1参照)。非常に希薄なCO2ガスを導入し、グラフェン斜め梁の電気抵抗を時間的にモニターしましたが、この状態では分子吸着に伴う信号は検出されません(図2(b)内の黒点データ)。しかし、半導体基板に電圧を加えて電界を発生させると、グラフェン梁の電気抵抗に、CO2分子一個一個がグラフェン梁表面に吸着・離脱したことを示す量子化された変化(一定の値で抵抗が増減すること)が観測されました(図2(b)内の青点とピンク点データ)。これは、基板から印加した電界によってCO2分子内にわずかな分極が生じ、それと基板からの電界の相互作用によってCO2分子がグラフェン梁表面に引き寄せられるからです(図3参照)。 |
|||
<今後の展開> | |||
今回の実験では、分子内の分極がゼロで電気的な検出が困難と考えられていたCO2分子を用いましたが、今後はシックハウス症候群の原因となっているホルムアルデヒドやベンゼンなど揮発性有機化合物ガスを用いた検証実験を進めていきます(図4参照)。また、グラフェン梁の幅をシングルナノメートル(10ナノメートル未満)に超微細化することで検出感度を更に向上させるとともに、基板から印加する電界の強度とグラフェンNEMS構造のデザインを最適化することで検出速度の向上を図ります。さらに、本プロジェクト内で並行して開発を進めているグラフェンNEMSスイッチを、本センサー回路のパワーゲーティング素子として集積化することで、センサーシステムの待機時消費電力をシャットアウトし、バッテリーの寿命を飛躍的に延ばすことを試みます。 |
|||
<用語説明> | |||
|
<参考図> |
![]() 図1 (a)作製した2層グラフェンNEMSセンサーの構造、(b)斜めグラフェン梁の模式図、(c)実際に作製した素子の原子間力顕微鏡写真 |
![]() 図2 (a)吸着したCO2分子によるグラフェン梁電気抵抗変化を説明する模式図、(b)実際に観測された電気抵抗変化の時間依存性(黒点:基板電圧オフの場合、青点:基板に正電圧印加の場合、ピンク点:基板に負電圧印加の場合)、(c)電気抵抗変化の統計分布。'抵抗変化の量子化'を示している。 |
![]() 図3 斜め2層グラフェン梁の表面に物理吸着するCO2分子の様子を分子動力学でシミュレーションしている途中経過(左)。2層グラフェン表面付近での静電ポテンシャル分布。ポテンシャルの高い領域(黒い部分)に吸着CO2分子がトラップされる様子を示している(右上)。基板電界をオフにした場合、CO2分子が離れて行く軌跡を示している(右下)。 |
![]() 図4 シックハウス症候群、シックカー症候群などの原因となる揮発性有機化合物ガス分子の一例。表中の数字は、WHOから示されている8時間での限界濃度値で一桁のppbレベルでの検出精度が要求されることを示している。 |
![]() 図5 本研究成果に対するイメージ図 |
平成28年4月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/04/18-1.html