研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。高密度なイオン液体構造を持つ新高分子材料の創出

高密度なイオン液体構造を持つ新高分子材料の創出
ポイント
- バイオベース化合物であるポリフマル酸の高分子反応により、高密度にイオン液体構造を有する高分子化イオン液体の合成に成功しました。
- 作製したアノード型ハーフセルは、リチウムイオン二次電池における1Cにおいて297 mAhg-1、ナトリウムイオン二次電池において60 mAg-1で250 mAhg-1の放電容量を示しました。
- いずれの電池系も高い耐久性を示し、リチウムイオン二次電池では750サイクル後に80%、ナトリウムイオン二次電池においては200サイクル後に96%の容量維持率を示しました。
- 高密度イオン液体構造を有するバインダーは、リチウムイオン二次電池系の急速充放電能において適性を示し、5CにおいてPVDF系の約2倍の85 mAhg-1を示しました。
- また、同バインダーは、ナトリウムイオン二次電池のハードカーボン負極バインダーとして、ナトリウムイオンの負極における拡散を改善しつつ、PVDF系の約2倍の放電容量を発現させました。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の松見紀佳教授、Amarshi Patra大学院生(博士後期課程)は、バイオベースポリマーであるポリフマル酸から高密度にイオン液体構造を有する新たな高分子化イオン液体を開発しました。開発した本高分子材料をリチウムイオン二次電池[*1]用グラファイト負極バインダーとして適用することにより、急速充放電能が促されました。また、ナトリウムイオン二次電池[*2]用ハードカーボン負極バインダーとして適用することにより、PVDFバインダー系の2倍の放電容量を観測しました。これらは、いずれも本バインダーが負極内における円滑な金属カチオンの拡散を促した結果です。また、構築した電池系はいずれも高い耐久性を示しました。 高分子化イオン液体は極めて多様な応用範囲を有する材料群であり、高密度なイオン液体構造を有する新材料の創出は、多様な分野における研究を活性化させる可能性を有しています。 |
【研究背景と内容】
今日、高分子化イオン液体は、各種エネルギーデバイス向けの材料や生医学用材料、センシング用材料、環境応答性材料、触媒の担持体等の広範な分野で、極めて活発に研究されている重要な機能性材料となっています。
本研究では、バイオベースポリマー[*4]であるポリフマル酸の高分子反応によって、高密度にイオン液体構造を有する新たな高分子化イオン液体を合成しました。また、得られた材料をリチウムイオン二次電池及びナトリウムイオン二次電池の負極バインダーとして適用しました。その結果、負極内の金属イオンの拡散が促進され、それぞれの電池系の特性の改善につながることを見出しました。
本高分子化イオン液体の合成においては(図1)、まずフマル酸[*3]エステルをAIBNを開始剤としてラジカル重合し、ポリフマル酸エステルを得ました。その後、ポリマーをKOH水溶液で100oCにおいて12時間処理し、透析を行うことでポリフマル酸を得ました。一方、アリルメチルイミダゾリウムクロリドをAmberlite樹脂によりイオン交換することで、アリルメチルイミダゾリウムヒドロキシドを調整し、これを常温でポリフマル酸と中和させることにより、高密度なイオン液体構造を有する高分子化イオン液体(PMAI)を合成しました。ポリマーの構造は、1H-、13C-NMR及びIR等により決定しました。
まず、本ポリマー(PMAI)のグラファイトとのコンポジット(PMAI/Gr)、ハードカーボンとのコンポジット(PMAI/HC)について、銅箔への接着性を引き剝がし試験により評価したところ、いずれの系もPVDFとのコンポジット系よりも大幅に改善された接着力を示しました。PMAI/Grは10.9 Nを要し、PMAI/HCは11.0 Nを要し、いずれもPVDF/Grの9.8 N、PVDF/HCの9.9 Nを上回りました。
次に、本ポリマー(PMAI)のリチウムイオン二次電池用負極バインダーとしての性能を評価しました。アノード型ハーフセル[*5]における電荷移動界面抵抗はPMAI/Grにおいて21.9Ωであり、PVDF/Gr系の125.9Ωを大幅に下回りました。これは、高密度なイオン液体構造が負極内におけるLiイオン拡散を促す結果と考えられます。また、PMAI/Gr系においてはSEI抵抗も11.08Ωと低く、PVDF/Gr系の29.97Ωよりも顕著に低いことがわかりました。(図2)。
さらにLi+拡散係数をインピーダンススペクトルにおける低周波数領域から解析したところ、PMAI/Gr系では1.03 x 10-10 cm2/s、PVDF/Grでは3.08 x 10-12 cm2/sとなり、前者において著しく低くなりました。結果として、作製したアノード型ハーフセル(図2)はリチウムイオン二次電池における1Cにおいて297 mAhg-1の放電容量を示し、750サイクル後に80%の容量維持率を示しました。また、本バインダー系は、急速充放電能において適性を示し、5CにおいてPVDF系の約2倍の85 mAhg-1を示しました。
本ポリマー(PMAI)のナトリウムイオン二次電池用負極バインダーとしての性能に関しても評価しました。アノード型ハーフセルにおける電荷移動界面抵抗はPMAI/HCにおいて31.38Ωであり、PVDF/HC系の83.09Ωを大幅に下回りました。さらにNa+拡散係数をインピーダンススペクトルにおける低周波数領域から解析したところ、PMAI/HC系では3.35 x 10-13 cm2/s、PVDF/HCでは1.01 x 10-13 cm2/sとなり、前者において3倍以上の拡散性を示しました。ナトリウムイオン二次電池の負極ハーフセルにおいて、60 mAg-1で250 mAhg-1の放電容量を示し、200サイクル後に96%の容量維持率を示しました。結果としてPVDF系の約2倍の放電容量を発現させました。
また、充放電後の負極をSEM観察したところ、PVDF系と比較して大幅に負極マトリックス上のクラックが少なく、安定化している様子が観察されました。(図3)
本成果は、Advanced Energy Materials(WILEY - VCH)(IF 24.4)のオンライン版に9月12日に掲載されました。
【今後の展開】
本高分子材料においては、種々なカチオン構造の改変が可能であり、さらなる高性能化につながると期待できます。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して、将来的な社会実装を目指します。(特許出願済み)。また、高耐久性リチウムイオン二次電池、ナトリウムイオン二次電池の普及を通して、社会の低炭素化に寄与する技術への展開が期待できます。
集電体への接着力が高く、高耐久性を促すバインダー材料として、広範な蓄電デバイスへの応用展開が期待されるほか、新たな高分子化イオン液体材料として、エネルギーデバイス以外の広範な分野における応用も期待できます。
図1.高密度高分子化イオン液体の合成法
図2.PMAI/Gr、PVDF/Gr系の充放電サイクル特性(リチウムイオン二次電池、負極型ハーフセル) (a) 1C(800サイクル)(b) 5C(1000 サイクル);SEI抵抗の電圧依存性(RSEI vs. V) (c)リチウム挿入反応中の電圧 (d)リチウム脱離反応中の電圧
図3.(a)(d) PMAI/HC、PVDF/HC 系の充放電前のSEM像;(b) PMAI/HC (e) PVDF/HC系の充放電後のTop View像;(c) PMAI/HC (f) PVDF/HCの充放電後の断面像
【論文情報】
雑誌名 | Advanced Energy Materials |
題目 | Densely Imidazolium Functionalized Water Soluble Poly(ionic liquid) Binder for Enhanced Performance of Carbon Anode in Lithium/Sodium-ion Batteries |
著者 | Amarshi Patra and Noriyoshi Matsumi* |
掲載日 | 2024年9月12日 |
DOI | 10.1002/aenm.202403071 |
【用語説明】
電解質中のリチウムイオンが電気伝導を担う二次電池。従来型のニッケル水素型二次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
電解質中のナトリウムイオンが電気伝導を担う二次電池。従来型のリチウムイオン二次電池と比較して原料の調達の利便性やコスト性に優れることから、各種ポータブルデバイスや環境対応自動車への適用が期待されている。
フマル酸は無水マレイン酸(バイオベース無水マレイン酸を含む)を原料として工業的に生産されるが、糖類に糸状菌を作用させて製造することも可能である。さらに、最近ではCO2を原料とした人工光合成によりフマル酸を生産する技術も脚光を浴びている。CO2もしくは糖類、バイオベース無水マレイン酸から誘導可能なフマル酸を用いた高付加価値な化成品の製造は、カーボンニュートラルへの貢献において魅力あるアプローチといえる。
生物資源由来の原料から合成される高分子材料の総称。低炭素化技術として、その利用の拡充が期待されている。
例えば、ナトリウムイオン二次電池の場合には、アノード極/電解質/Naの構成からなる半電池を意味する。
令和6年9月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/09/17-1.html第1回 超越バイオメディカルDX研究拠点 エクセレントコアセミナー
セミナーを下記のとおり開催しますので、ご案内します。
開催日時 | 令和6年7月29日(月) 15:00~16:10 |
場 所 | JAISTイノベーションプラザ 2F シェアードオープンイノベーションルーム |
講演者 | 大阪工業大学 工学部 応用化学科 藤井 秀司 教授 |
講演題目 | 界面吸着粒子が拓く材料化学 |
参加申込 | ・参加費無料 ・要予約(定員30名) 下記の担当へ7月26日(金)までにメールにてお申し込みください。 【本件担当・予約申込先】 北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点長 松村 和明(mkazuaki@jaist.ac.jp) |
ポリビニルホスホン酸を用いたリチウムイオン2次電池におけるマイクロシリコンオキシド負極の安定化に成功

ポリビニルホスホン酸を用いたリチウムイオン2次電池における
マイクロシリコンオキシド負極の安定化に成功
ポイント
- ポリビニルホスホン酸をリチウムイオン2次電池のマイクロシリコンオキシド負極のバインダーとして適用することにより、その優れた接着性を活かして負極を安定化させることに成功した。
- 作製したアノード型ハーフセルは1000 mAg-1の電流密度において200サイクル後に650 mAhgSiO+C-1(1300 mAhgSiO-1)を維持した。
- ポリビニルホスホン酸は銅箔への接着において、ポリアクリル酸(2.03 N/m)と比較して大幅に高い接着力(3.44 N/m)を要した。
- ポリビニルホスホン酸をバインダーとした場合には、ポリアクリル酸やポリフッ化ビニリデンをバインダーとした場合とは異なり、200回の充放電サイクル後においてもSEM像において集電体からの剥離は観測されなかった。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の先端科学技術研究科 松見紀佳教授(物質化学フロンティア研究領域)、高森紀行大学院生(博士後期課程)、テジキランピンディ ジャヤクマール元大学院生、ラージャシェーカル バダム元講師(物質化学フロンティア研究領域)、丸善石油化学株式会社らのグループは、リチウムイオン2次電池*1における負極バインダーとしてのポリビニルホスホン酸がマイクロシリコンオキシド負極を高度に安定化することを見出した。 |
【研究内容と背景】
リチウムイオン2次電池の負極材開発において、マイクロシリコンオキシドはシリコンと比較して比較的穏やかな体積変化を示すため、活用が広範に検討されている。しかし、なお体積変化による負極性能の劣化を抑制できるバインダーの開発が望まれている。
本研究においては、ポリビニルホスホン酸をマイクロシリコンオキシド負極のバインダーとして活用することにより、ポリアクリル酸の場合と比較して顕著に電池のサイクル特性が向上することを見出した。
ポリビニルホスホン酸に関してDFT計算で電子構造を計算すると、LUMOレベルは-1.92 eVであり、ポリアクリル酸(-1.16 eV)やエチレンカーボネート(-0.31 eV)のそれよりも大幅に低い。負極側近傍においてエチレンカーボネートの還元分解に先立ってポリビニルホスホン酸の還元が起こることが想定され、エチレンカーボネートの過剰な分解の抑制、すなわち被膜形成の抑制と界面抵抗の抑制につながると考えられる。
ポリビニルホスホン酸(PVPA)を銅箔でサンドイッチした系の引き剥がしに要する応力を評価したところ3.44 N/mであり、ポリアクリル酸(PAA)(2.03 N/m)、ポリフッ化ビニリデン(PVDF)(0.439 N/m)と比較して大幅に高い接着力を示した(図1)。
図1.(a)ポリビニルホスホン酸、(b)ポリアクリル酸、(c) ポリフッ化ビニリデンの構造式
負極の組成をマイクロサイズSiO:グラファイト:ポリビニルホスホン酸:アセチレンブラック:カルボキシメチルセルロース=30:30:20:15:5とし、EC:DEC = 1:1(v/v)LiPF6溶液を電解液としてアノード型ハーフセル*2を構築した。
アノード型ハーフセルのサイクリックボルタモグラムでは、ポリビニルホスホン酸バインダーを用いた場合にのみ第一サイクルにおいてバインダーの還元ピークが観測された。また、本系ではLi挿入・脱挿入の可逆的な両ピークが他のバインダー系(PAA、PVDF)以上に明瞭に観測された(図2b-d)。
アノード型ハーフセルの充放電特性評価を行ったところ、ポリビニルホスホン酸バインダー系では1000 mAg-1の電流密度において200サイクル後に650 mAhgSiO+C-1以上の放電容量(1300 mAhgSiO-1以上の放電容量)を維持した(図2e)。一方、ポリアクリル酸バインダー系では、200サイクル後には300 mAhgSiO+C-1まで放電容量が低下した。また、ポリフッ化ビニリデンバインダー系の耐久性はさらに低く、200サイクル後には初期容量の20%の容量を維持するにとどまった。
グラファイトを用いずに負極におけるSiO組成を増加させた系についても検討したところ(SiO:ポリビニルホスホン酸:アセチレンブラック:カルボキシメチルセルロース=60:20:15:5)、0.21 mgSiOcm-2、0.85 mgSiOcm-2、1.84 mgSiOcm-2の活物質の塗布量においてそれぞれ100サイクル後に92.2%、90.9%、60.8%の容量維持率を示した(図2g)。
図2.(a)各アノード型ハーフセルの充放電曲線、(b)(c)(d)各アノード型ハーフセルのサイクリックボルタモグラム、(e)各アノード型ハーフセルの充放電サイクル特性、(f) 各アノード型ハーフセルの充放電レート特性、(g)各アノード型ハーフセルにおける活物質担持量の影響
200サイクルの充放電サイクル後、電池セルを分解して負極をSEM観察したところ、ポリビニルホスホン酸バインダー系においては集電体からの剥離は観測されなかった。一方、比較対象のポリアクリル酸バインダー系、ポリフッ化ビニリデンバインダー系では集電体からの剥離が観察された(図3)。
図3.各バインダーを用いた系の充放電前後の負極のSEM像及び充電後の膨張率
ポリビニルホスホン酸バインダーを用いたSiO負極とLiFePO4正極を組み合わせたフルセルも構築し、1.5 mAh以上の放電を150サイクルにわたって観測した。
本成果は、ACS Applied Energy Materials (米国化学会)のオンライン版に2024年2月8日に掲載された。
なお、本研究は、科学技術振興機構(JST)の次世代研究者挑戦的研究プログラムJPMJSP2102の支援を受けて実施した。
【今後の展開】
ポリビニルホルホン酸の優れた結着性を活用し、さらに様々なエネルギーデバイスへの適用範囲の拡充が期待される。
本材料はすでに丸善石油化学株式会社が生産技術を保有しており、国内特許、外国特許共に出願済みである(北陸先端科学技術大学院大学、丸善石油化学株式会社の共同出願)。
今後は、さらに電池製造に直接的に関わる企業との協同的取り組みへの展開を期待しており、電池製造技術を保有しつつ北陸先端科学技術大学院大学、丸善石油化学株式会社と三極的に連携できる企業の実用研究への参画を求めたい。
【論文情報】
雑誌名 | ACS Applied Energy Materials (米国化学会) |
題目 | Facile Stabilization of Microsilicon Oxide Based Li-Ion Battery Anode Using Poly(vinylphosphonic acid) |
著者 | Noriyuki Takamori, Tadashi Yamazaki, Takuro Furukawa, Tejkiran Pindi Jayakumar, Rajashekar Badam, Noriyoshi Matsumi* |
掲載日 | 2024年2月8日 |
DOI | 10.1021/acsaem.3c02127 |
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和6年2月14日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/02/14-1.htmlナノマテリアル・デバイス研究領域・物質化学フロンティア研究領域セミナー
日 時 | 令和5年12月5日(火)15:30~17:00 |
場 所 | 知識科学講義棟2階 中講義室 |
講演題目 | リチウムイオン電池電極の界面構造と機能開拓、全固体化 |
講演者 | 東京工業大学 物質理工学院 教授 平山 雅章 氏 |
言 語 | 日本語 |
お問合せ先 | 北陸先端科学技術大学院大学 共通事務管理課共通事務第三係 (E-mail:ms-secr@ml.jaist.ac.jp) |
リチウムイオン2次電池の急速充放電を実現する新しいナノシート系負極活物質の開発

リチウムイオン2次電池の急速充放電を実現する新しいナノシート系負極活物質の開発
ポイント
- リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。
- TiB2(二ホウ化チタン)粉末のH2O2による酸化処理、遠心分離、凍結乾燥により簡便に得られる二ホウ化チタンナノシートをリチウムイオン2次電池の負極活物質として適用した。
- 二ホウ化チタンナノシートを負極活物質としたアノード型ハーフセルで充放電挙動を評価した結果、比較的低い充放電レートの0.025 Ag-1では約380 mAhg-1の放電容量を示した。
- 当該アノード型ハーフセルにおいて、1 Ag-1 (充電時間約10分)の電流密度では、174 mAhg-1の放電容量を1000サイクル維持した(容量維持率89.4 %)。さらに超急速充放電条件(15~20 Ag-1)を適用すると、9秒~14秒の充電で50~60 mAhg-1の放電容量を10000サイクル維持するに至り(容量維持率80%以上)、高い安定性が確認された。
- 急速放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の先端科学技術研究科 松見紀佳教授(物質化学フロンティア研究領域)、ラージャシェーカル バダム元講師(物質化学フロンティア領域)、アカーシュ ヴァルマ元大学院生(博士前期課程修了)、東嶺孝一技術専門員らの研究グループとインド工科大学ガンディナガール校カビール ジャスジャ准教授、アシャ リザ ジェームス大学院生は、リチウムイオン2次電池*1において二ホウ化チタンナノシートの負極活物質への適用が急速充放電能の発現に有効であることを見出した。 |
【研究の内容と背景】
リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。しかしながら、その実現には固体中のリチウムイオンの拡散速度の向上や電極―電解質界面の特性、活物質の多孔性などの諸ファクターの検討を要している。これまで急速充放電用途のナノ材料系負極活物質としては、チタン酸リチウムのナノシートや酸化チタン/炭素繊維コンポジットなどが検討されてきたほか、新しい2次元(2D)材料*2への関心が広がりつつあり、グラフェン誘導体や金属カーバイド系材料にも検討が及んでいる。
本研究においては、TiB2(二ホウ化チタン)のH2O2による酸化処理、遠心分離、凍結乾燥による簡便なプロセスで作製可能なTiB2ナノシートをリチウムイオン2次電池負極活物質として適用し、アノード型ハーフセルを構築して急速充放電能について検討した。
合成は、共同研究者であるインド工科大学准教授カビール氏らが報告している手法*3に従い、TiB2粉末を過酸化水素水と脱イオン水との混合溶液に懸濁させ、24時間の攪拌後に遠心分離し、上澄みを-35oCで24時間凍結させた後に72時間凍結乾燥することにより粉末状のTiB2ナノシートを得た(図1)。得られた材料のキャラクタリゼーションは前述の手法に従い、XRD、HRTEM、FT-IR、XPS等の各測定により行った。
電池セルの作製において、負極の組成としてはTiB2ナノシートを55 wt%、アセチレンブラックを35 wt%、PVDF(ポリフッ化ビニリデン)を10 wt%を用い、NMP(N-メチルピロリドン)を溶媒とした懸濁液から銅箔集電体にコーティングした。電解液としては 1.0 M LiPF6 のEC/DEC (1:1 v/v)溶液を用い、対極にはリチウム箔を用いた。
TiB2ナノシートを負極活物質としたアノード型ハーフセル*4のサイクリックボルタモグラム(図2)においては、第一サイクルにおいてのみ0.65 V (vs Li/Li+)に電解液の分解ピークが現れたが、それ以降は消失した。リチウム脱離に相当するピークは2つ観測され、0.28 Vにおけるピークはリチウムが複数インターカレートしたTiB2からの脱リチウムピーク、0.45VにおけるピークはTiB2の再生に至る脱リチウムピークにそれぞれ相当する。約1.5 Vからの比較的高いリチウム挿入電位は、チタン酸リチウムやホウ素ドープTiO2とほぼ同様であった。
また、このアノード型ハーフセルの充放電挙動では、比較的低い充放電レートの0.025 Ag-1では約380 mAhg-1の放電容量を示した(図3)。
アノード型ハーフセルにおいて、1 Ag-1(充電時間約10分)の電流密度では、174 mAhg-1の放電容量を1000サイクル維持し、容量維持率は89.4 %を示した(図3)。さらに超急速充放電条件である15-20 Ag-1を適用すると、9秒~14秒の充電で50-60 mAhg-1の放電容量を10000サイクル維持するに至り、容量維持率は80%以上であった。
本成果は、ACS Applied Nano Materials (米国化学会)のオンライン版に9月19日に掲載された。なお、本研究は、文部科学省の「大学の世界展開力強化事業」採択プログラムに基づいた北陸先端科学技術大学院大学とインド工科大学ガンディナガール校(JAIST-IITGN)の協働教育プログラム(ダブルディグリープログラム)のもとで実施した。
【今後の展開】
TiB2ナノシートの積極的活用により、急速充放電能を有する次世代型リチウムイオン2次電池の発展に向けた多くの新たな取り組みにつながり、関連研究が活性化するものと期待される。
さらに活物質の面積あたりの担持量を向上させつつ電池セル系のスケールアップを図り、産業的応用への橋渡し的条件においても検討を継続する。
既に日本国内及びインドにおいて特許出願済みであり、今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | ACS Applied Nano Materials(米国化学会) |
題目 | Titanium Diboride-Based Hierarchical Nanosheets as Anode Material for Li-ion Batteries |
著者 | Akash Varma, Rajashekar Badam, Asha Liza James, Koichi Higashimine, Kabeer Jasuja * and Noriyoshi Matsumi* |
WEB掲載日 | 2022年9月19日 |
DOI | 10.1021/acsanm.2c03054 |
図1.TiB2ナノシートの合成とキャラクタリゼーション (a)バルクのTiB2粉末 (b)過酸化水素水(H2O2) (3% v/v)にTiB2を分散した黒色の分散液 (c) 24時間攪拌後のTiB2の溶解と遠心分離後の上澄みの使用 (d)凍結乾燥後の粉末のナノ構造 (e) FESEM像 (f) TiB2 粉末及び TiB2ナノシートのFTIRスペクトル (g)ホウ素のハニカム状平面にチタンがサンドイッチされた結晶構造 (h) Si/SiO2 ウエハに担持させたTiB2ナノシートの光学像 (i) TiB2ナノシートのHRTEM像。ポーラスなシート状構造を示す。 |
図2.TiB2ナノシートを負極活物質としたアノード型ハーフセルのサイクリックボルタモグラム (a) 電圧範囲0.01-2.5V ;掃引速度 0.1 mV/s (b) 電圧範囲0.5-2.5V ;掃引速度 0.1, 0.3, 0.5, 0.7, and 1 mV/s. |
図3.TiB2ナノシートを負極活物質としたアノード型ハーフセルの充放電挙動 (a)レート特性の検討結果 (b)充放電曲線 (c)長期サイクル特性 |
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
グラフェンや遷移金属ジカルコゲニドなどの2次元(2D)層状無機ナノ材料は、その優れた物理的および化学的特性のために最近注目されている化合物で、光触媒や太陽電池、ガスセンター、リチウムイオン電池、電界効果トランジスタ、スピントロニクスなどへの応用が期待されている。
James, Asha Liza; Lenka, Manis; Pandey, Nidhi; Ojha, Abhijeet; Kumar, Ashish; Saraswat, Rohit; Thareja, Prachi; Krishnan, Venkata; Jasuja, Kabeer
Nanoscale (2020), 12 (32), 17121-17131CODEN: NANOHL; ISSN:2040-3372. (Royal Society of Chemistry)
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和4年9月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/09/30-1.htmlナノ複合化細菌を利用したがん光診断・治療技術の開発に成功

ナノ複合化細菌を利用したがん光診断・治療技術の開発に成功
ポイント
- 機能性色素を封入したナノ粒子と天然のビフィズス菌を水溶液中で一晩混合し、洗浄するだけの簡便な方法で、高い腫瘍標的能を有し、近赤外光によって様々な機能を発現するナノ複合化細菌を創出
- 当該ナノ複合化細菌の特性と近赤外レーザー光を組み合わせた、新たながん光診断・治療技術を開発
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 物質化学領域の都 英次郎准教授とラグ シータル大学院生(博士後期課程)は、ナノ複合化細菌を使ってマウス体内のがん細胞の蛍光検出と光発熱治療を同時に可能にする技術の開発に成功した。 |
【研究背景と内容】
近年、低酸素状態の腫瘍内部で選択的に集積・生育・増殖が可能な細菌を利用したがん標的治療に注目が集まっている。なかでもビフィズス菌*1を利用するがん標的治療は、その優れた腫瘍選択性と高い安全性などの特徴から有力な微生物製剤として期待されている。しかし、ビフィズス菌に抗腫瘍作用を発現させるためには、通常、煩雑な遺伝子操作が必要である。また、ビフィズス菌を含む細菌を利用するがん標的治療は、基本的には抗がん剤の運搬という、いわゆる従来型のドラッグデリバリーシステム*2の概念を出ない。
本研究では、機能性色素のインドシアニングリーン*3を封入したポリオキシエチレンヒマシ油*4から成るナノ粒子と天然のビフィズス菌を生理食塩水中で一晩混合し、洗浄するだけで、高い腫瘍標的能を有し、生体透過性の高い近赤外レーザー光*5によって近赤外蛍光と熱を発現するナノ複合化細菌の創出に成功した(図1(a),(b))。また、当該細菌のこれらの特性を活用し近赤外レーザー光照射と組み合わせることで、体内の腫瘍を高選択的に検出し、標的部位を効果的に排除することが可能ながん光診断・治療技術を開発することに成功した(図1(c),(d))。さらに、マウスがん細胞とヒト正常細胞を用いた細胞毒性試験、ならびにマウスを用いた生体適合性試験(血液学的検査、組織学的検査など)を行った結果、いずれの検査からもナノ複合化細菌が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発した細菌の簡便なナノ複合化技術が、がん光診断・治療法の基礎に成り得ることを示すだけでなく、ナノ・マイクロテクノロジー、光学、微生物工学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、2022年2月18日にナノサイエンス・ナノテクノロジー分野のトップジャーナル「Nano Letters」誌(アメリカ化学会発行)のオンライン版に掲載された。なお、本研究は、日本学術振興会科研費(基盤研究A)と公益財団法人上原記念生命科学財団の支援のもと行われたものである。
図1.(A) ナノ複合化細菌を利用するがん細胞の蛍光検出と光発熱治療の概念
(B) 機能性色素を封入したナノ粒子との混合前後のビフィズス菌水溶液 (C) がん患部におけるナノ複合化細菌の可視化(近赤外蛍光を検出) (D) ナノ複合化細菌の抗腫瘍効果。蛍光検出されたがん患部に近赤外レーザー光を当てると、 光熱変換による効果によりがんが消失した。 |
【論文情報】
掲載誌 | Nano Letters(アメリカ化学会発行) |
論文題目 | Nanoengineered Bifidobacterium bifidum with Optical Activity for Photothermal Cancer Immunotheranostics |
著者 | Sheethal Reghu, Eijiro Miyako* |
掲載日 | 2022年2月18日にオンライン版に掲載 |
DOI | 10.1021/acs.nanolett.1c04037 |
【関連研究情報】
北陸先端科学技術大学院大学(JAIST)、先端科学技術研究科 物質化学領域の都研究室では、近赤外レーザー光により容易に発熱するナノ材料の特性(光発熱特性)に注目し、これまでに、"三種の神器"を備えた多機能性グラフェン(2020年4月23日 JAISTからプレス発表)、ナノテクノロジーと遺伝子工学のマリアージュ(2020年8月17日 JAISTからプレス発表)、がん光細菌療法の新生(2021年2月16日JAISTからプレス発表)、ナノ粒子と近赤外レーザー光でマウス体内のがんを検出・治療できる!(2021年12月21日JAISTからプレス発表)などの光がん療法を開発している。
【用語説明】
*1 ビフィズス菌
ヨーグルトでおなじみの細菌。主にヒトなどの動物の腸内の小腸下部から大腸にかけて生息する乳酸菌の一種で、いわゆる善玉菌と呼ばれる微生物のことである。整腸作用だけではなく、病原菌の感染や腐敗物を生成する菌の増殖を抑える効果があると考えられている。
*2 ドラッグデリバリーシステム
製剤技術の一つで、疾患部位に必要な薬効成分を届ける技術のこと。
*3 インドシアニングリーン
肝機能検査に用いられる緑色色素のこと。近赤外レーザー光を照射すると近赤外蛍光と熱を発することができる。
*4 ポリオキシエチレンヒマシ油
天然ヒマシ油に由来する、安全性の高い界面活性成分のこと。各種化粧品の可溶化・透明化に使用されている。
*5 近赤外レーザー光
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
令和4年2月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/21-1.htmlリチウムイオン2次電池に高容量化と耐久性を容易にもたらす新型負極活物質(β-シリコンカーバイド系複合材料)の開発

リチウムイオン2次電池に高容量化と耐久性を容易にもたらす
新型負極活物質(β-シリコンカーバイド系複合材料)の開発
ポイント
- リチウムイオン2次電池の高容量化のためシリコン系負極が注目されているが、シリコン粒子の大きな体積膨張・収縮等の問題によって、安定した充放電が困難となっている。
- リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている閃亜鉛鉱型構造を有するβ-シリコンカーバイド/窒素ドープカーボン複合材料の簡易合成法を開発し、リチウムイオン2次電池用負極活物質として検証した。
- 合成した活物質を用いたアノード型ハーフセルでは1195mAhg-1の放電容量を300サイクルまで示し、本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても、高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
- 高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)、先端科学技術研究科 物質化学領域の松見 紀佳教授、バダム ラージャシェーカル講師、並びに東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程)のグループは、リチウムイオン2次電池*1の安定な高容量充放電を可能にする新規負極活物質の開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、近年、従来型負極であるグラファイトよりも大幅に大きな理論容量を示すシリコン系負極が多大な関心を集めている。一方で、シリコン粒子は充放電時の体積膨張・収縮が極めて大きく、充放電の際の粒子の破断や界面被膜の破壊、集電体からの剥離などの多様な問題により、一般に高容量を安定に発現することが非常に困難となっている。このような状況を改善するために、特殊なバインダー材料の開発などのアプローチが本研究グループも含め国内外において検討されてきた。
【研究の内容】
本研究においては、シリコン粒子に代わり、極めて安定な充放電サイクルを汎用のバインダー材料使用時においても示すシリコンカーバイド系活物質を開発した。ダイヤモンド型構造を有するシリコンにおいては、リチウム脱挿入に伴う大幅な体積膨張・収縮は避けがたいものであるが、閃亜鉛鉱型構造の無機化合物においては、リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている。その挙動にヒントを得つつ、閃亜鉛鉱型構造を有するβ-シリコンカーバイドと窒素ドープカーボン*2との複合材料を合成し、新規リチウムイオン2次電池用負極活物質として検証した。
合成法としては、(3-アミノプロポキシ)トリエトキシシランに水溶液中でアスコルビン酸ナトリウムを加え、シリコンナノ粒子分散水溶液を作製した。その後pH8.5においてドーパミンを、引き続いてメラミンを加えてから遠心分離、乾燥し、600oCもしくは1050oCの二通りの条件で焼成した(図1)。
得られた材料について、HRTEM、HAADF-STEM、XPS、XRD、Raman分光法等により構造を確認した(図2)。HRTEMからは、炭素系マトリックスにβ-シリコンカーバイドの結晶が埋め込まれている様子が観測された。HAADF-STEM HRTEMからは、β-シリコンカーバイドの(111)面に相当する0.25 nmの面間距離が観測され、マトリックス内に指紋状に分布する様子が観測された(図2(c))。
次に、合成した活物質を用いて負極を構築し、アノード型ハーフセル*3(Li/電解液/β-SiC)を作製し各種電気化学的評価を行った。サイクリックボルタモグラム*4においては、シャープなリチウムインターカレーションのピークに加えて、シリコン負極の場合と形状は異なるものの0.58 Vのブロードなリチウム脱インターカレーションのピークを共に示した。
また、充放電挙動においては、1050oCの焼成処理により合成した活物質(MAD1050)を用いた系では1195 mAhg-1の放電容量を300サイクルまで示した(図3(b))。本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に2月16日(英国時間)に掲載された。
なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | Journal of Materials Chemistry A |
題目 | Zinc blende inspired rational design of β-SiC based resilient anode material for lithium-ion batteries |
著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
掲載日 | 2022年2月16日(英国時間) |
DOI | 10.1039/D1TA08516F |
図2.(a,b)合成した活物質(MAD1050)のTEM像
(a)β-SiC粒子のHRTEM像、(c)β-SiC粒子のHAADF-STEM像 (d,e)赤色ボックス部位のFT/IFT、(f)面間距離プロファイル (g,h)黄色ボックス部位のFT/IFT、(i,j)緑色ボックス部位のFT/IFT |
図3.合成した各負極活物質を用いたアノード型ハーフセルの充放電特性(a/b/d)
及び比較データ(c;シリコン負極) |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*3 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/18-1.html学生の貝沼さんが令和3年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞

学生の貝沼 雄太さん(博士後期課程3年、応用物理学領域、安研究室)が令和3年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
令和3年度応用物理学会北陸・信越支部学術講演会は、12月4日に信州大学工学部及びオンラインにてハイブリッド開催され、一般54名・学生78名が参加しました。
この学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対して、その功績を称えることを目的として発表奨励賞が授与されます。
■受賞年月日
令和3年12月4日
■講演題目
「走査ダイヤモンドNV中心磁気プローブによる磁気ドメインイメージング」
■研究者、著者
貝沼 雄太、林 都隆、安 東秀
■講演概要
ダイヤモンド中の格子欠陥の一種として知られている窒素-空孔(NV)中心は、室温下で優れた磁場感度と高い空間分解能を有する磁気センサとして応用されています。このNV中心を含有するダイヤモンドプローブを走査プローブへ応用することでナノメートルスケールの高い空間分解能の実現が期待されています。従来、走査NV中心プローブの作製はリソグラフィ法が主に用いられていましたが、我々は加工自由度の高い集束イオンビーム(FIB)を用いた加工に着目し、FIBを用いて走査ダイヤモンドNV中心磁気プローブを作製し、磁性試料の磁気ドメイン界面のイメージングが可能なことを実証しました。今後、FIB加工により走査NV中心プローブの形状の最適化を進めることで、磁場感度と空間分解能向上の実現が期待されます。
■受賞にあたって一言
この度は、令和3年度北陸・信越支部学術講演会で発表奨励賞をいただけたこと、講演会主催者様に深くお礼申し上げます。我々の地道な努力が今回の受賞に至ったと思っております。ご指導いただきました安東秀准教授ならびに支援くださった研究室メンバーに深くお礼申し上げます。本受賞をきっかけとして今後の研究生活の励みにしていきたいと思います。
令和3年12月23日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/12/23-2.html学生のSUWANSOONTORNさんの論文が公益社団法人電気化学会刊行のElectrochemistry 誌で最も多くダウンロードされた論文として選出

学生のSUWANSOONTORN, Athchayaさん(博士後期課程3年、物質化学領域、長尾研究室)による、公益社団法人電気化学会刊行のElectrochemistry 誌に掲載された論文 "Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations" が、2021年5・6月の間に同誌に掲載された論文の中で、最も多くダウンロードされた論文として選出されました。
この論文で発表した研究成果については、令和3年5月28日に本学から「高分子薄膜における水素イオンの界面輸送で新知見」としてプレスリリースしています。
電気化学会は、電気化学の基礎と応用に関する研究の推進と、それを基礎とする産業技術の進歩を図り、学術文化の進展と社会の発展に寄与することを目的として、1933年に設立されました。
■受賞年月日
令和3年7月20日
■選出された論文のタイトル
Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations
■著者
Athchaya Suwansoontorn, Katsuhiro Yamamoto, Shusaku Nagano, Jun Matsui, Yuki Nagao
■対象となった研究の内容
Investigation of interfacial proton transport is necessary to elucidate biological systems. As commonly found in biomaterials, the carboxylic acid group was proven to act as a proton conducting group. This study investigated the influence of carboxylic acid concentration on both interfacial and internal proton transport. Several styrene-based polymers containing the carboxylic acid group were synthesized. The amount of carboxylic acid group in the polymer chain was varied to explore the effects of weak acid concentration on polymer thin films' electrical properties. The IR p-polarized multiple-angle incidence resolution spectrometry (pMAIR) spectra show the higher ratio of the free carboxylic acid groups rather than cyclic dimers in polymers with a higher concentration of carboxylic acid group, facilitating the more hydrogen bonding networks in films. The water uptake results reveal the similar number of adsorbed water molecules per carboxylic acid group in all thin films. Remarkably, polymer thin films with high carboxylic acid concentration provide internal proton conduction because of the relative increase in the amount of the free carboxylic acid group. In contrast, interfacial proton conduction was found in low carboxylic acid concentration polymers because of the relatively large amount of cyclic dimer carboxylic acid group and poor amount of free carboxylic acid group. This study provides insight into interfacial proton transport behavior according to the weak acid concentration, which might explain proton transport in biological systems.
■選出にあたって一言
We are greatly honored to receive the award for Most Downloaded Papers for "Electrochemistry". First, I want to express my appreciation to Assoc. Prof. Katsuhiro Yamamoto, Prof. Shusaku Nagano, Prof. Jun Matsui, and Assoc. Prof. Yuki Nagao for their valuable comments and guidance. And I am also grateful to Nagao LAB members for their support. We expect that our research can contribute to developing bio-conductive materials for eco-friendly devices.


令和3年7月27日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/07/27-4.html応用物理学領域の麻生助教と環境・エネルギー領域の桶葭准教授の研究課題が旭硝子財団の研究助成に採択
公益財団法人 旭硝子財団の研究助成「物理・情報分野 研究奨励」に応用物理学領域 麻生 浩平助教、「化学・生命分野 若手継続グラント」に環境・エネルギー領域 桶葭 興資准教授の研究課題が採択されました。
旭硝子財団は、次世代社会の基盤を構築するような独創的な研究への助成事業を通じて、人類が真の豊かさを享受できる社会および文明の創造に寄与しています。
「研究奨励」プログラムでは、若手研究者による基礎的・萌芽的な研究が支援されます。また、「若手継続グラント」プログラムでは、過去3年間に同財団の「研究奨励」プログラムを終了した若手研究者の中から意欲と提案力のある将来有望な研究者が選抜され、研究が支援されます。
*詳しくは、旭硝子財団ホームページをご覧ください。
「物理・情報分野 研究奨励」
【研究者名】応用物理学領域 麻生 浩平助教
■採択期間
令和3年4月1日~令和5年3月31日
■研究課題
固体内イオン伝導の解明に向けた電子顕微鏡とデータ科学による動的解析
■研究概要
リチウムイオン電池では、充放電に伴って電池内部をリチウムイオンが移動していきます。しかし、イオンがどのように移動していくのかは未だによく分かっていません。そこで本研究では、ナノメートル程度の空間スケール、かつ従来よりも短い時間スケールでリチウムイオンのダイナミクスを可視化することを目指します。実験手法として、電池を動作させて電気特性を測定しながら電池の構造を観察する、オペランド電子顕微鏡法を用います。オペランド電子顕微鏡像は大量の画像からなる動画として得られるため、手動での解析は困難です。そこで、動画からイオンの移動に関わる情報のみを抽出するために、データ科学の手法を活用します。リチウムイオンは電池内部でどのように動いていくのかという問いに対して、これまでにない実験的な知見を与えられると期待しています。
■採択にあたって一言
旭硝子財団、ならびに選考委員の皆様に心から感謝いたします。本研究を進めるにあたり数々のご協力を頂きました研究室の方々、ナノマテリアルテクノロジーセンターの皆様、および共同研究者の皆様方に感謝申し上げます。
「化学・生命分野 若手継続グラント」
【研究者名】環境・エネルギー領域 桶葭 興資准教授
■採択期間
令和3年4月1日~令和6年3月31日
■研究課題名
多糖の非平衡環境下における時空間マター
■研究概要
ソフトマテリアルの散逸構造はシンプルな数式で表現されるが、過渡的現象の議論にとどまっており、材料化には困難を極めています。これに対し本研究では、多糖の非平衡環境下における界面現象を時空間的に解明します。これによって、生体組織の幾何学構造形成に倣ったマテリアルデザインが拓かれると同時に、高分子科学、コロイド科学、流体科学などを背景としたバイオミメティクス戦略の展開が期待できます。
■採択にあたって一言
採択頂き大変嬉しく存じます。旭硝子財団、および本助成の選考委員会の皆様に深く感謝申し上げます。また共同研究者の皆様、および研究室の皆様に深く感謝申し上げます。科学と技術の発展に貢献できる様、誠心誠意励んで参ります。
令和3年5月14日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/05/14-2.html次世代燃料電池のアニオン交換薄膜において水酸化物イオン伝導度の評価法を確立

次世代燃料電池のアニオン交換薄膜において
水酸化物イオン伝導度の評価法を確立
ポイント
- 高分子薄膜状のアニオン交換膜の水酸化物イオン伝導度と含有水分子量の評価法を確立
- サンプルの合成から評価まで、空気中の二酸化炭素の影響を排除
- 0.05 S cm-1の高い水酸化物イオン伝導性(Br-型のアニオン交換薄膜の2倍以上)
- 次世代燃料電池の性能向上への貢献が期待
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科 物質化学領域の長尾 祐樹准教授、オウ ホウホウ 大学院生(博士後期課程在籍)、ワン ドンジン 大学院生(博士前期課程修了)らは、次世代燃料電池で注目されるアニオン交換薄膜において、空気中の二酸化炭素の影響を受けない状態で、水酸化物イオン伝導度と含有水分子量の評価法を確立することに成功しました。長年求められてきたこの評価法の確立は、当該分野において世界初の成果になります。本成果により、次世代燃料電池の性能向上に関する研究の加速が期待されます。 本研究成果は、2021年4月29日(英国時間)にWiley社刊行のChemSusChem誌のオンライン版で公開されました。なお、本研究は日本学術振興会(JSPS)科研費基盤(C)、科研費基盤(B)、科研費 新学術領域研究「ハイドロジェノミクス」の支援を受けて行われました。 |
【研究背景と内容】
資源の少ない日本が脱炭素化を進めながら持続的な発展をするためには、多様なエネルギー資源を確保することが喫緊の課題です。長尾准教授らは、これまで水素社会に貢献する燃料電池の性能向上に関する研究を推進してきました。
長尾准教授らは、現在の燃料電池に利用されるプロトン交換膜に加え、次世代燃料電池で利用が検討されているアニオン交換膜における、水酸化物イオン伝導性の研究に取り組んでいます。この次世代燃料電池は、従来必要とされてきた白金などの貴金属触媒に依存せずに動作が可能であることから、世界的に研究報告例が増加しています。アニオン交換膜とは、陰イオンが膜の内部を移動可能な材料であり、特に水酸化物イオンが高速に移動する材料はこの燃料電池に欠かせません。水酸化物イオンが内部を移動するアニオン交換膜は、空気中の二酸化炭素と容易に反応する特徴があり、燃料電池の性能を低下させることが知られています。アニオン交換膜の水酸化物イオン伝導性を評価するためには、膜を水に浸漬することで空気中の二酸化炭素の影響を排除する必要がありました。しかし、実際の燃料電池では、アニオン交換膜は水に浸った状態で動作していないため、二酸化炭素の影響を排除した、より燃料電池の動作環境に近い加湿状態での評価法が求められてきました。
アニオン交換膜のもう一つの重要な役割は、燃料電池の反応場である電極触媒界面に薄膜状で存在することにより、アニオン交換膜から電極触媒へ水酸化物イオンを高速に輸送することです。しかし、これまでは水酸化物イオン型のアニオン交換薄膜の水酸化物イオン伝導性と含有水分子量を評価する方法がありませんでした。今回、長尾准教授らは、モデル高分子として合成したアニオン交換膜を基板上に薄膜化し、薄膜の作成から各種物性評価の終了までの間、空気中の二酸化炭素の影響を受けない評価方法を確立し、世界で初めてアニオン交換薄膜における水酸化物イオン伝導性と含有水分子量を明らかにしました。
研究成果として、水酸化物イオン型のアニオン交換薄膜(OH-型、図1)は、0.05 S cm-1と比較的高い水酸化物イオン伝導性を示すことや、臭化物イオン型のアニオン交換薄膜(Br-型)と比較すると約2倍のイオン伝導度を有することがわかりました(図2)。さらに、厚膜状のアニオン交換膜と270nmの厚さの薄膜では、水酸化物イオン伝導度が同程度であることも明らかにしました。この結果はプロトン交換膜で知られている、厚さが薄くなるにつれてイオン伝導度が低下する傾向と異なる知見となりました。
図1 アニオン交換膜(Poly[9,9-bis(6'-(N,N,N-trimethylammonium)-hexyl)-9H-fluorene)-alt-(1,4-benzene)] (PFB+), X = OH and Br)
図2 アニオン交換薄膜におけるイオン伝導度の比較
【今後の展開】
空気中の二酸化炭素の影響を受けない状態で、アニオン交換薄膜の水酸化物イオン伝導度と含有水分子量の相関に関する知見を得た例は世界初となります。これらの研究成果は、次世代燃料電池の反応場を設計する上で重要な知見となりえます。今後長尾准教授らは、確立した評価手法を利用して、分子構造の異なる複数のアニオン交換膜の評価を推進することで、得られた知見が普遍性を有するのかどうかを含め検討していく予定です。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(C)(JP18K05257)
・日本学術振興会(JSPS)科研費 基盤研究(B)(JP21H01997)
・日本学術振興会(JSPS)科研費 新学術領域研究「ハイドロジェノミクス」(JP21H00020)
【論文情報】
雑誌名 | ChemSusChem |
題名 | OH- Conductive Properties and Water Uptake of Anion Exchange Thin Films |
著者名 | Fangfang Wang, Dongjin Wang, and Yuki Nagao* |
掲載日 | 2021年4月29日(英国時間)にオンライン版に暫定版が掲載 |
DOI | 10.1002/cssc.202100711 |
令和3年5月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/05/07-1.html先端科学技術研究科の桶葭准教授が文部科学大臣表彰 若手科学者賞受賞
先端科学技術研究科の桶葭准教授が文部科学大臣表彰 若手科学者賞受賞
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科 環境・エネルギー領域の桶葭 興資(おけよし こうすけ)准教授が、令和3年度科学技術分野の文部科学大臣表彰 若手科学者賞を受賞することが決定し、文部科学省から4月6日に発表されました。
*文部科学省の発表はこちら
文部科学大臣表彰とは、科学技術に関する研究開発、理解増進等において顕著な成果を収めた者について、その功績を讃え贈られるものです。 今回の受賞は、桶葭准教授の下記の業績が評価されたことによります。
若手科学者賞
■受賞者 先端科学技術研究科 准教授 桶葭 興資
■業績名 「水と共生する生体模倣高分子材料に関する研究」
【業績】 持続可能な社会の構築に向けて、エネルギーやマテリアルの革新が緊急課題にある21世紀の今日、数十億年の歴史を持つ生体組織が水と歩んだ進化に学ぶものは大きい。 氏は、ネイチャーテクノロジーに根差した観点から、高分子を用いた種々の生体模倣材料を創製した。高分子網目に光エネルギー変換回路の機能分子を組み込むことで、水素生成の高効率化を実現し、水分解の光化学反応を起こす反応場として人工光合成ゲル「人工葉緑体」を提唱した。一方で、自然界の乾燥環境がつくる水の蒸発界面に着目して「界面分割現象」を発見した。これを利用し、生体高分子の多糖を再組織化させる独自技術を切り拓いた。 本研究成果は、水と共に自己組織化するマテリアルの科学技術、ひいては生物多様性を育む地球社会に貢献すると期待される。 |
【主要論文】
・「Polymeric design for electron transfer in photoinduced hydrogen generation through coil-globule transition.」Angewandte Chemie International Edition 58, 7304 (2019).
・「Emergence of polysaccharide membrane walls through macro-space partitioning via interfacial instability.」Scientific Reports 7, 5615 (2017).
令和3年4月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/04/06-1.html環境・エネルギー領域の桶葭准教授の研究課題がJST「創発的研究支援事業」に採択
環境・エネルギー領域の桶葭 興資准教授が提案した研究課題が、科学技術振興機構(JST)の2020年度「創発的研究支援事業」に採択されました。
「創発的研究支援事業」は、多様性と融合によって破壊的イノベーションにつながるシーズの創出を目指す「創発的研究」を推進するため、既存の枠組みにとらわれない自由で挑戦的・融合的な多様な研究を、研究者が研究に専念できる環境を確保しつつ原則7年間(途中ステージゲート審査を挟む、最大10年間)にわたり長期的に支援するものです。
採択後は研究者の裁量を最大限に確保し、各研究者が所属する大学等の研究機関支援の下で、創発的研究の遂行にふさわしい適切な研究環境が確保されることを目指します。また、創発的研究を促進するため、個人研究者のメンタリング等を行うプログラムオフィサーの下、個人研究者の能力や発想を組み合わせる「創発の場」を設けることで、創造的・融合的な成果に結びつける取組を推進します。
*詳しくは、JSTホームページをご覧ください。
【研究者名】
環境・エネルギー領域 桶葭 興資 准教授
■研究課題名
DRY & WET:界面分割法による多糖の再組織化技術
■研究概要
本研究では多糖の再組織化技術の確立を目指し、独自に見出した「界面分割法」によって物質拡散やエネルギーの方向制御材料を創製します。特に、水との歴史が長い生体高分子「多糖」に着目し、乾燥環境下で形成する幾何学パターンについて系統的に探求するとともに、階層的な秩序化法則を解明します。21世紀のネイチャーテクノロジーを創発するためにも、材料工学、物理、化学、および数理の観点から挑戦します。
令和3年2月3日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/02/04-1.html研究員のSINGHさんが第69回高分子討論会において優秀ポスター賞を受賞

研究員のSINGH, Apekshaさん(物質化学領域・松見研究室)が第69回高分子討論会において優秀ポスター賞を受賞しました。(ポスター発表時は本学博士前期課程2年、令和2年9月博士前期課程修了。)
高分子討論会は、高分子科学に携わる研究者・技術者が研究成果の発表を行い、発表内容に関し、参加者と充実した討論およびコミュニケーションができる場を提供することを方針とし、開催されます。今回はWEBEXを用いてオンラインで開催されました。
■受賞年月日
令和2年9月18日
■発表題目
全固体ナトリウムイオン二次電池用難燃性電解質の設計と高速充放電特性
(Design of Non-flammable Electrolyte for All-solid-state Sodium-ion Batteries and Its High-rate Performance)
■研究者、著者
Apeksha Singh,Rajashekar Badam,Noriyoshi Matsumi
■受賞対象となった研究の内容
今日、電気自動車用途をはじめとする次世代電池の創出に向けて、リチウム資源の近い将来の枯渇が予想されるなか、元素戦略的な観点からナトリウムイオン二次電池の開発の重要性が認識されている。リチウムイオン二次電池同様、その開発においては高い放電容量のみならず、高速充放電能の実現に関心が高まっている。本研究においては有機ホウ素系電解質を用いた全固体ナトリウムイオン二次電池を構築し、その特性を評価した。有機ホウ素系電解質に由来する好ましい界面被膜の特性により、高速充放電能と高い充放電サイクル耐久性が観測され、当該分野の発展にとって興味深い知見となった。
■受賞にあたって一言
Firstly, I would like to thank my supervisor Prof. Noriyoshi Matsumi, who has given me valuable suggestions, and heartfelt encouragement throughout my research project. I would like to acknowledge the important role of Dr. Rajashekar Badam, who apart from his constant motivation, has provided me with the working knowledge and practical experience of electrochemical energy storage systems. I'm thankful to MEXT and Elements Strategy Initiative for Catalysts & Batteries (ESICB) for financial support. About my research, I believe, to attain a balance between sustainable energy generation and energy consumption, efficient fast-charging batteries are imperative. We now live in a world where energy storage has become equally important due to the intermittent nature of sustainable energy sources, and thou shall continue to work on this meaningful research.
令和2年10月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/10/20-1.html学生の米澤さんの論文がWiley社刊行Surface and Interface Analysis誌でTOP DOWNLOADED PAPER(2018-2019)の1つに選出

学生の米澤 隆宏さん(2020年3月博士後期課程修了、応用物理学領域、高村研究室)による、国際学術誌Surface and Interface Analysisに掲載された論文 "Atomistic study of GaSe/Ge(111) interface formed through van der Waals epitaxy" が、2018年1月~2019年12月の間に同誌に掲載された論文の中で、オンライン掲載後12ヶ月のダウンロード数において上位10%を記録したため、掲載直後に最も多く読まれた、immediate impactのある論文の1つとして認められました。
■選出された論文のタイトル
Atomistic study of GaSe/Ge(111) interface formed through van der Waals epitaxy
■著者
Takahiro Yonezawa, Tatsuya Murakami, Koichi Higashimine, Antoine Fleurence, Yoshifumi Oshima, and Yukiko Yamada-Takamura
■対象となった研究の内容
光デバイスや電子デバイス、スピントロニクスデバイス等への応用が期待される半導体層状物質のGaSeは従来、Se原子が三角柱型に配置された単位層構造のみを有すると考えられてきました。それに対して本研究では、分子線エピタキシー法によるGe基板上へのGaSe薄膜成長時に、従来報告例のない反三角柱型のSe原子配置をもつ単位層が基板との界面に局所形成されることを断面走査透過電子顕微鏡観察により明らかにしました。
■選出にあたっての一言
本研究の遂行にあたり熱心にご指導くださった応用物理学領域の高村由起子先生、大島義文先生、アントワーヌ・フロランス先生に心より感謝いたします。また、多くの技術的なご指導をしてくださったナノマテリアルテクノロジーセンターの村上達也様、東嶺孝一様にも深く感謝いたします。今後、この新たなGaSe相の生成機構や通常のGaSe相との構造の違いに起因した特異物性が解明されることにより、本成果がGaSe薄膜の、ひいては層状物質薄膜全体の成長技術の進展と応用可能性の拡大につながることを期待します。
令和2年5月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/05/25-1.html高分子の相転移を利用した人工光合成に成功-可視光エネルギーによる高効率な水素生成を達成-

高分子の相転移を利用した人工光合成に成功
-可視光エネルギーによる高効率な水素生成を達成-
ポイント
- 実際の光合成に習った光エネルギー変換システムの構築
- 高分子の可逆的相転移挙動を利用して高効率な水素生成に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、先端科学技術研究科環境・エネルギー領域の桶葭興資講師らは東京大学大学院の吉田亮教授と共同で、電子伝達分子を持つ刺激応答性高分子を合成し、高分子の相転移によって電子伝達を加速させる人工光合成システムを構築した。
石油ショック以来、持続可能社会の実現に向けて人工光合成*1が注目を浴び、様々なシステムが考案されてきた。しかし、実際の葉緑体が持つ光合成システムにあるような、水分子との連動的な電子伝達組織の構築が未だ提案されてこなかった。これに対し本研究では、機能分子間の電子伝達に駆動力が生じるよう、高分子の相転移を利用した人工光合成システムを設計した。 まず、刺激応答性高分子*2のポリ(N-イソプロピルアクリルアミド)(poly(NIPAAm))*3に電子伝達分子ビオロゲン*4を導入すると、その酸化/還元*5状態によって高分子の相転移*6温度が異なることを見出した。この高分子poly(NIPAAm-co-Viologen) は一定温度下で酸化/還元変化により可逆的なコイル - グロビュール転移*7を伴い、加速的に電子伝達して水素を生成する。光エネルギーが与えられた際、光励起電子をビオロゲン分子が受けると、その周辺の高分子は疎水的となる。これが、界面活性剤で分散された触媒ナノ粒子近傍の疎水的な空間に潜り込み、電子を渡して水素生成する。実際、可視光エネルギーを用いた水素生成は、相転移温度付近で10%を超え、高い量子効率が達成された。 従来の溶液システムによる人工光合成では、液相中で機能性分子や触媒ナノ粒子が乱雑な分散状態のため電子伝達も乱雑となり、反応が進むにつれて分子凝集による機能低下が問題であった。これとは大きく異なり、粒子間に高分子が介在することで粒子凝集を抑制すると同時に、高分子の相転移によって電子伝達の加速が得られた。 高分子相転移現象は、ソフトアクチュエータ*8やドラッグデリバリーシステム*9の開発に広く利用されてきたが、今回の光エネルギー変換への利用は画期的である。本成果により、可視光エネルギーによる人工光合成システム「人工葉緑体」の構築が期待される。 ![]() 本成果は、4月25日付WILEY発行Angewandte Chemie International Edition (オンライン版) に掲載された。なお、本研究は科学研究費補助金などの支援を受けて行われた。 |
<今後の展開>
可視光エネルギーにより水を完全分解 (2H2O + hν → 2H2 + O2) する反応場として、高分子網目中に機能分子を配置した光エネルギー変換システムを構築することが期待される。
<論文情報>
掲載誌 | Angewandte Chemie International Edition (WILEY) |
論文題目 | Polymeric Design for Electron Transfer in Photoinduced Hydrogen Generation through a Coil-Globule Transition |
著者 | Kosuke Okeyoshi, Ryo Yoshida |
掲載日 | 2019年4月25日付、オンライン版 |
DOI | 10.1002/anie.201901666 |
<用語解説>
*1. 人工光合成
光合成を人為的に行う技術のこと。自然界での光合成は、水・二酸化炭素と、太陽光などの光エネルギーから化学エネルギーとして炭水化物などを合成するものであるが、広義の人工光合成には太陽電池を含むことがある。自然界での光合成を完全に模倣することは実現していないが、部分的には技術が確立している。
*2. 刺激応答性高分子
温度やpHなど外部刺激に応答して可逆的に親・疎水性など物理化学的性質を変化させる高分子のこと。
*3. ポリ(N-イソプロピルアクリルアミド)
この高分子水溶液は、32度付近で下限臨界温度型の相転移挙動を示す。最も広く研究されている刺激応答性高分子。
*4. ビオロゲン
4,4'-ビピリジンの窒素原子上をアルキル化したピリジニウム塩のこと。農薬の他、生物学や光触媒反応、エレクトロクロミック材料などの研究で使用されている。
*5. 酸化/還元
酸化還元反応とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のこと。
*6. 相転移
ある系の相が別の相へ変わることを指す。熱力学または統計力学的において、相はある特徴を持った系の安定な状態の集合として定義される。
*7. コイル - グロビュール転移
分子鎖が広がったランダムコイル状態から凝集したグロビュール状態をとること。またその逆の状態変化のこと。今回の場合、高分子がランダムコイル状態で親水的、グロビュール状態で疎水的な性質を持つ。
*8. ソフトアクチュエータ
軽量で柔軟な材料が変形することによりアクチュエータとして機能する材料、素子、デバイスのこと。
*9. ドラッグデリバリーシステム
体内の薬物分布を量的・空間的・時間的に制御し、コントロールする薬物伝達システムのこと。
令和元年5月15日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/05/15-1.html