研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。学生の大橋さんが第14回半導体材料・デバイスフォーラムにおいて最優秀口頭発表賞を受賞

学生の大橋亮太さん(博士前期課程2年、サスティナブルイノベーション研究領域、大平研究室)が第14回半導体材料・デバイスフォーラムにおいて最優秀口頭発表賞を受賞しました。
第14回半導体材料・デバイスフォーラムは、熊本高等専門学校が主催し、令和5年12月9日、九州工業大学にてハイブリッド開催されました。同フォーラムは半導体材料・関連デバイス研究分野に重点を置き、研究発表や討論を通じて、高専学生と大学(院)生との学生間交流を図り、高専学生の教育・研究力向上への貢献を目指しています。
最優秀口頭発表賞は、同フォーラムにおいて、半導体デバイスの発展に貢献しうる最も優秀な口頭発表をした筆頭著者に贈られるものです。
※参考:第14回半導体材料・デバイスフォーラム
■受賞年月日
令和5年12月9日
■研究題目
ベイズ最適化を適⽤したCat-CVD i-a-Si およびn-a-Siの堆積条件探索
■研究者、著者
大橋亮太、Huynh Thi Cam Tu、東嶺孝一、沓掛健太朗、大平圭介
■受賞対象となった研究の内容
現在、太陽電池市場の大部分を占めているSi系太陽電池において、特に高効率なSiヘテロ接合(SHJ)太陽電池に着目し、高効率化を目指し研究を行っている。SHJ太陽電池の作製にあたり、我々は触媒化学気相堆積(Cat-CVD)法を用いて結晶Siウエハ上に非晶質Si(a-Si)を堆積している。しかし、堆積時のパラメータが多いため、高性能なSHJ太陽電池の作製条件の探索に膨大な時間がかかる。そこで、ベイズ最適化を用いて効率よく高い性能を示す条件探索を行っている。
本講演では、ベイズ最適化を用いて真性非晶質Si(i-a-Si)層とn型非晶質Si(n-a-Si)層の堆積条件探索について発表した。i-a-Si層及びn-a-Si層の探索を、それぞれ20回、21回とかなり少ない回数で完了することができ、高いパッシベーション性能と十分な導電性を兼ね備えるa-Si膜の堆積条件を確立した。
■受賞にあたって一言
この度、第14回半導体材料・デバイスフォーラムにおいて、最優秀口頭発表賞を賜り、大変光栄に思います。高専生が多い会議でしたので、自分の研究の面白さやJAISTの良さが少しでも伝わっていれば嬉しいです。本研究の推進にあたり、ご指導、ご協力いただいた大平圭介教授、HUYNH, Tu Thi Cam特任助教をはじめとした大平研究室メンバーの皆様に、この場を借りて厚く御礼申し上げます。また、ベイズ最適化のご指導をいただいた沓掛健太朗研究員(理化学研究所)、透過型電子顕微鏡にて試料の観察をご担当いただいた技術専門員の東嶺孝一様にも、心より感謝申し上げます。
令和6年1月22日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/01/22-1.html非対称な二次元シートを利用したナノサイズの巻物構造の実現 〜高性能な触媒や発電デバイスへの応用に期待〜

![]() |
東京都公立大学法人 国立大学法人筑波大学 国立大学法人東北大学 国立大学法人東海国立大学機構 国立大学法人金沢大学 国立大学法人 |
![]() |
東京都公立大学法人 国立大学法人筑波大学 国立大学法人東北大学 国立大学法人東海国立大学機構 国立大学法人金沢大学 国立大学法人 |
非対称な二次元シートを利用したナノサイズの巻物構造の実現
~高性能な触媒や発電デバイスへの応用に期待~
【概要】
東京都立大学、産業技術総合研究所、筑波大学、東北大学、名古屋大学、金沢大学、北陸先端科学技術大学院大学らの研究チーム(構成員及びその所属は以下「研究チーム構成員」のとおり)は、次世代の半導体材料として注目されている遷移金属ダイカルコゲナイド(TMD)(注1)の単層シートを利用し、最小内径5 nm程度のナノサイズの巻物(スクロール)状構造の作製に成功しました。TMDは遷移金属原子がカルコゲン原子に挟まれた3原子厚のシート状物質であり、その機能や応用が近年注目を集めています。一般に、TMDは平坦な構造が安定であり、円筒などの曲がった構造は不安定な状態となります。本研究では、上部と下部のカルコゲン原子の種類を変えたヤヌス構造と呼ばれるTMDを作製し、この非対称な構造がスクロール化を促進することを見出しました。理論計算との比較より、最小内径が5 nm程度まで安定な構造となることを確認しました。また、スクロール構造に由来して軸に平行な偏光を持つ光を照射したときに発光や光散乱の強度が増大すること、表面の電気的な特性がセレン側と硫黄側で異なること、及びスクロール構造が水素発生特性を有するなどの基礎的性質を明らかにしました。
今回得られた研究成果は、平坦な二次元シート材料を円筒状の巻物構造に変形する新たな手法を提案するものであり、ナノ構造と物性の相関関係の解明、そしてTMDの触媒特性や光電変換特性などの機能の高性能化に向けた基盤技術となることが期待されます。
本研究成果は、2024年1月17日(米国東部時間)付けでアメリカ化学会が発行する英文誌『ACS Nano』にて発表されました。
【研究チーム構成員】
【ポイント】
- 遷移金属ダイカルコゲナイド(TMD)のシートを安定した構造で巻物(スクロール)にする新たな手法を開発。
- TMDの上部と下部の組成を変えた「ヤヌス構造」が、スクロール化を促進することを発見。
- TMDの曲率や結晶の対称性などの制御を通じた触媒や光電変換機能の高性能化が期待。
【研究の背景】
近年、ナノチューブと呼ばれるナノサイズの円筒状物質は、その特徴的な構造に由来する物性、そして触媒や太陽電池等の光電変換デバイス等への応用について世界中で盛んに研究が行われています。一般に、ナノチューブは、厚みが1原子から数原子程度の極薄の二次元的なシート構造を円筒状に丸めた構造を持つナノ物質であり、代表的な物質として、炭素の単原子層であるグラフェンを丸めたカーボンナノチューブが知られています。また、遷移金属原子がカルコゲン原子に挟まれた構造を持つ遷移金属ダイカルコゲナイド(TMD)についても、二次元シートやナノチューブ構造が存在します。最近では、TMDのナノチューブが同軸状に重なった多層TMDナノチューブにおいて、その巻き方に起因する超伝導や光起電力効果を示すことが報告されました。一方、このような多層TMDナノチューブは、様々な直径や巻き方などを持つナノチューブが同軸状に重なっているため、その結晶構造の同定は困難となります。その電気的・光学的性質と構造の相関を明らかにするには、ナノチューブの巻き方を制御することが重要な課題となっていました。
このような課題の解決に向け、これまで主に二つのアプローチが報告されてきました。一つは、多層TMDナノチューブとは別に、構造の同定が容易な単層TMDナノチューブに着目したものです。特に、カーボンナノチューブ等をテンプレートに用いた同軸成長により、単層TMDナノチューブを成長させることができます。本研究チームの中西勇介助教、宮田耕充准教授らは、これまで絶縁体のBNナノチューブの外壁をテンプレートに用いたMoS2(二硫化モリブデン)の単層ナノチューブ(https://www.tmu.ac.jp/news/topics/35021.html)や、様々な組成のTMDナノチューブ(https://www.tmu.ac.jp/news/topics/36072.html)の合成に成功してきました。しかし、同軸成長法では、得られるTMDナノチューブの長さが多くの場合は100 nm以下と短く、物性や応用研究には更なる合成法の改善が必要となっています。もう一つのアプローチとして、単結晶性の単層のTMDシートを巻き取り、各層の結晶方位が揃ったスクロール構造にする手法も知られていました。一般にマイクロメートルサイズの長尺な構造が得られますが、TMDシートを曲げた場合、遷移金属原子を挟むカルコゲン原子の距離が伸び縮みするため、構造的には不安定となります。そのため、得られるスクロール構造も内径が大きくなり、また円筒構造ではなく平坦な構造になりやすいなどの課題がありました。
【研究の詳細】
本研究では、長尺かつ微小な内径を持つスクロール構造の作製に向け、上部と下部のカルコゲン原子の種類を変えたヤヌス構造と呼ばれるTMDに着目しました。このヤヌスTMDでは、上下のカルコゲン原子と遷移金属原子の距離が変わることで、曲がった構造が安定化することが期待できます。このようなヤヌスTMDを作製するために、研究チームは、最初に化学気相成長法(CVD法)(注2)を利用し、二セレン化モリブデン(MoSe2)および二セレン化タングステン(WSe2)の単結晶性の単層シートをシリコン基板上に合成しました。この単層シートに対し、水素雰囲気でのプラズマ処理により、単層TMDの上部のセレン原子を硫黄原子に置換し、単層ヤヌスTMDを作製できます。次に、有機溶媒をこの単層ヤヌスTMDに滴下することで、シートの端が基板から剥がれ、マイクロメートル長のスクロール構造を形成しました(図1)。
図1 単層ヤヌスMoSSeを利用したナノスクロールの作製手法。(a)単層MoSe2の構造モデル。(b)熱CVDシステムの概略図。(c)単層ヤヌスMoSSeの構造モデル。(d)水素プラズマによる硫化プロセスの概略図。(e)ヤヌスナノスクロールの構造モデル。(f)有機溶媒の滴下によるナノスクロールの作製方法の概略図。 ※原論文「Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides」の図を引用・改変したものを使用しています。 |
この試料を電子顕微鏡で詳細に観察し、実際にスクロール構造を形成したこと(図2)、全ての層が同一の方位を持つこと、そして最小内径で5 nm程度まで細くなることなどを確認しました。観察された内径に関しては、ヤヌスTMDのナノチューブでは最小で直径が5 nm程度までは、フラットなシート構造よりも安定化するという理論計算とも一致します。また、このスクロール構造に由来し、軸に平行な偏光を持つ光を照射したときに発光や光散乱の強度が増大すること、表面の電気的な特性がセレン原子側と硫黄原子側で異なること、およびスクロール構造が水素発生特性を有することも明らかにしました。
図2 ナノスクロールの電子顕微鏡写真。
※原論文「Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides」の図を引用・改変したものを使用しています。 |
【研究の意義と波及効果】
今回得られた研究成果は、平坦な二次元シート材料を円筒状のスクロール構造に変形する新たな手法を提案するものです。特に、非対称なヤヌス構造の利用は、様々な二次元シート材料のスクロール化に適用することができます。また、単結晶のTMDを原料に利用することで、スクロール内部の層の結晶方位を光学顕微鏡による観察で容易に同定すること、そして様々な巻き方を持つスクロールの作製が可能になりました。今後、本研究成果より、様々な組成や構造を持つスクロールの実現、電気伝導や光学応答と巻き方の関係の解明、触媒やデバイス応用など、幅広い分野での研究の展開が期待されます。
【用語解説】
タングステンやモリブデンなどの遷移金属原子と、硫黄やセレンなどのカルコゲン原子で構成される層状物質。遷移金属とカルコゲンが1:2の比率で含まれ、組成はMX2と表される。単層は図1aのように遷移金属とカルコゲン原子が共有結合で結ばれ、3原子厚のシート構造を持つ。近年、TMDが持つ優れた半導体特性により大きな注目を集めている。
原料となる材料を気化させて基板上に供給することにより、薄膜や細線を成長させる合成技術。
【発表論文】
タイトル | Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides |
著者名 | Masahiko Kaneda, Wenjin Zhang, Zheng Liu, Yanlin Gao, Mina Maruyama, Yusuke Nakanishi, Hiroshi Nakajo, Soma Aoki, Kota Honda, Tomoya Ogawa, Kazuki Hashimoto, Takahiko Endo, Kohei Aso, Tongmin Chen, Yoshifumi Oshima, Yukiko Yamada-Takamura, Yasufumi Takahashi, Susumu Okada, Toshiaki Kato*, and Yasumitsu Miyata* *Corresponding author |
雑誌名 | ACS Nano |
DOI | https://doi.org/10.1021/acsnano.3c05681 |
本研究の一部は、日本学術振興会 科学研究費助成事業「JP21H05232, JP21H05233, JP21H05234, JP21H05236, JP21H05237, JP22H00283, JP22H00280, JP22H04957, JP21K14484, JP20K22323, JP20H00316, JP20H02080, JP20K05253, JP20H05664, JP21K14498, JP21K04826, JP21H02037, JP22H05459, JP22KJ2561, JP22H05445, JP23K13635, JP22H05441, JP23H00097, JP23K17756, JP23H01087」、文部科学省マテリアル先端リサーチインフラ事業「JPMXP1222JI0015」、創発的研究支援事業FOREST「JPMJFR213X and JPMJFR223H」、戦略的創造研究推進事業さきがけ「JPMJPR23H5」、矢崎科学技術振興記念財団、三菱財団、村田学術振興財団および東北大学電気通信研究所共同プロジェクト研究の支援を受けて行われました。
令和6年1月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/01/18-1.html触媒シーズ創出に向けた自動特徴量設計技術を開発 ~事前知識なしで未知材料の機能を高精度に予測~
![]() ![]() ![]() |
北陸先端科学技術 北海道大学 科学技術振興機構 |
触媒シーズ創出に向けた自動特徴量設計技術を開発
~事前知識なしで未知材料の機能を高精度に予測~
ポイント
- 機械学習を用いた材料の機能予測において、経験的な側面を排除した特徴量設計技術を開発
- 事前知識を必要とせず、様々な触媒系のスモールデータに対して圧倒的な予測精度
- 機械学習を用いた材料探索の裾野を大きく広げ、材料シーズ創出を飛躍的に効率化
北陸先端科学技術大学院大学 物質化学フロンティア研究領域の谷池 俊明教授らは、北海道大学大学院理学研究院の髙橋 啓介教授らと共同で、機械学習を用いた材料の機能予測において、事前知識[注1]を必要とすることなく高精度な予測を実現する、特徴量設計技術を開発しました。 最近、AIやその他の機械学習技術を利用して、触媒などの実用材料に関する研究開発を加速させる取り組みが注目されています。これには、機械を訓練するためのデータと、材料を記述し機能を予測するための変数(記述子)が必要です。中でも、未知材料の機能を高精度に予測するには、機能に影響する因子を効率的かつ網羅的に取り入れた、材料記述子[注2]の存在が必要不可欠です。従来、この記述子は、対象に関する高度な専門知識(事前知識)に基づいて研究者が手ずから設計してきました。しかし、これは裏を返せば、真新しい、ないしは、非常に複雑などの事由により、知識の蓄積が十分でない対象に対しては、本来最も望まれるにも関わらず、機械学習の活用には大きな制限がありました。 本研究では、対象に対する事前知識を一切必要とせず、数十点程度の訓練データに対して機能する汎用的な特徴量設計技術を開発しました。これは、考え得る大量の記述子候補、すなわち仮説を生成し、目的にかなった記述子を機械に選ばせる、いわば仮説スクリーニング技術です。本研究では、この開発技術が、対象とする触媒反応によらず、従来技術を圧倒する予測精度を与えることや、ハイスループット実験[注3]と再帰的に組み合わせることで、膨大な候補材料から多様なシーズをピンポイントで見つけられることを示しました。本研究の成果は、機械学習を用いた材料探索の裾野を大きく拡大し、材料シーズ創出の飛躍的な効率化に役立つことが期待されます。 本研究成果は、2024年1月12日10時(英国時間)に英国の科学誌「Communications Chemistry」のオンライン版で公開されました。 本研究は、科学技術振興機構(JST)「未来社会創造事業 探索加速型(No.JPMJMI22G4)」、「戦略的創造研究推進事業 CREST(No.JPMJCR17P2)」の支援を受けたものです。 |
【研究の背景と経緯】
従来、自然科学研究は、個々の研究者の洞察に基づく仮説検証に導かれてきました。しかし、データ駆動型アプローチの隆盛により、このパラダイムは変化しつつあり、触媒を含む様々な材料分野で成功を収め始めています。このような背景の中、効果的な機械学習に適した、十分な規模を備えた材料データの欠如が大きな課題となっています。データの限界は、精巧な機械学習モデルの応用を困難にし、それでも高精度な予測を得るためには、材料の本質を捉えた記述子の存在が必要不可欠です。しかし、このような記述子設計は、関連要因を網羅するために、対象材料の高度な事前知識を必要とし、一般的に大変困難です。何より、未知の領域に踏み込むためにその事前知識が必要となることは論理的に矛盾しており、この記述子設計の経験的な側面は、データ駆動型アプローチの適用対象を、比較的良く知られた材料系に限定せざるを得ない主要因となってきました。
【研究の内容】
今回、本研究グループは、対象材料の事前知識を必要とせず、効果的な記述子を自動的に設計可能な汎用技術を開発しました。開発技術は、材料データが小規模であることを前提とし、元素などに関する一般的な物理量から演算を通して大量の記述子候補を生成し、目的に関連する記述子を機械に選択させる技術です。記述子候補を、材料の機能を説明し得る"仮説"と捉えると、開発技術は、コンピュータ上で大量の仮説を生成し重要な仮説を抽出する、いわば、仮説スクリーニング技術です。本研究では、メタンの酸化カップリング、エタノールのブタジエンへの転換、三元触媒のライトオフ温度という全く異なる対象に対して、開発技術が、触媒組成を記述子とする従来法と比較して、はるかに優れた予測精度を与えることを明らかにしました(図1)。さらに、ハイスループット実験と当該技術を組み合わせて用いる能動学習[注4]を通じて、機械が触媒設計を捉える認識の精度と汎化能力を改善していき(図2)、最終的に、類似性の低い多様な高性能触媒を、83%もの高精度[注5]でピンポイント予測することに成功しました。
このような成功の裏には、谷池教授らのグループが開発したハイスループット実験技術と、これによって創出した高品質な触媒データの存在が不可欠でした。
図1 開発技術を用いた触媒性能の予測。(上部)開発技術が異なる触媒反応に対して高精度な回帰を与えること、(下部)従来技術(元素組成のみ、元素組成+特徴量選択、特徴量付与のみ)と比較して極めて高い精度を与えることが示されています。1~3次は合成特徴量の次数を指し、次数が増加するほど、より複雑な特徴量をより大量に生成します。 |
図2 能動学習を用いた機械の改善。汎性を有さないモデル(対立仮説)の予測精度は能動学習に伴い悪化するが、汎性を有するモデル(真の仮説)の予測精度は悪化しない。 |
【今後の展開】
開発技術は汎用性が高く、触媒に限らず、訓練データを差し替えるだけで様々な材料対象へ即座に展開可能です。本研究グループは、開発技術とハイスループット実験、計画的なサンプリングを組み合わせて用いることで、数十億種もの材料を含むような極めて広大な空間から、事前知識や仮定を一切必要とすることなく、効率的に材料シーズを発見することができるようになると考えています。今後は、開発技術をソフトウェア化し、広く社会実装していく予定です。
【参考図】
自動特徴量設計技術: AIや機械学習を用いた材料機能の予測において、材料機能を説明し得る材料の特徴、すなわち材料記述子の質は機械学習の精度に直結します。今回開発した汎用技術は、材料記述子の設計を自動化・非専任化する技術です。対象の事前知識を必要とせず、数十点のデータから高精度な学習を可能にします。 |
【用語解説】
特定材料系の構造や機能などに関する専門知識を指す。従来のデータ駆動型アプローチでは、事前知識に基づき材料記述子を設計することが専らであった。よって、事前知識が十分に存在しない、複雑ないし未知の材料系では材料記述子の設計が困難であった。
組成や構造、物理特性といった材料を特徴付ける量の中で、目的とする材料機能と関連するものを材料記述子と呼ぶ。材料機能が単一の材料記述子によって説明できることは稀である。一方、材料記述子の数を増やすほど規模の大きなデータが求められるため、データが小さくなりがちな材料分野においては、機能を十全に説明可能な最小数の記述子を入手することが肝要である。
自動化・並列化・効率化などの手段に基づき単位時間当たりの実験数を飛躍的に増大させた実験を指す。材料分野では、研究者間にデータ取得・報告に関する統一性が存在しないことがほとんどであり、均質なデータを効率的に生成できるハイスループット実験は、データ駆動型アプローチと親和性が高い。
データを追加し繰り返し学習させることで機械の精度や汎化能力を高める方法を指す。
予測した触媒(36種)の内、エタンとエチレンの合計収率が15%以上を達成した触媒(30種)の比率を示す。
【論文情報】
掲載誌 | Communications Chemistry |
論文タイトル | "Automatic feature engineering for catalyst design using small data without prior knowledge of target catalysis" (対象の事前知識を必要としない触媒設計のための自動特徴量設計技術) |
著者 | Toshiaki Taniike*、Aya Fujiwara、Sunao Nakanowatari、Fernando García-Escobar、Keisuke Takahashi |
DOI | 10.1038/s42004-023-01086-y |
令和6年1月15日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/01/15-1.htmlがん治療のための多機能性アミノ酸ナノ粒子の開発に成功

![]() ![]() |
国立大学法人 フランス国立科学研究センター |
がん治療のための多機能性アミノ酸ナノ粒子の開発に成功
【ポイント】
- 3種類のペプチドと光開始剤が溶解した水溶液に紫外線を照射すると球状のナノ粒子が生成することを発見
- 合成したアミノ酸ナノ粒子に抗がん剤が封入可能であり、タンニン酸-鉄複合体をナノ粒子表面にコーティングできることを発見
- 多機能性アミノ酸ナノ粒子の複合的な分子設計によって生体内外の効果的ながん細胞死を誘導することに成功
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の都英次郎准教授らはフランス国立科学研究センター(所長・アントワーヌ・プチ、フランス・パリ)のアルベルト・ビアンコ博士ら(同センター細胞分子生物学研究所、フランス・ストラスブール)と共同で、多機能性のアミノ酸*1から構成されるナノ粒子を活用した新しいがん治療技術の開発に成功した(図1)。
ペプチドやタンパク質の構成要素であるアミノ酸は、高い生体適合性を有するため、とりわけナノ粒子化したアミノ酸をバイオメディカル分野に応用する研究に大きな注目が集まっている。都准教授の研究チームでも、光を使った簡便な手法によりアミノ酸ナノ粒子を合成できれば、新しいがん治療技術が実現できるのではないかと考え、研究をスタートさせた。
研究チームは、N末端*2を9-フルオレニルメチルオキシカルボニル基(Fmoc)*3で保護した3種類のペプチド*4(Fmoc保護トリプトファン- Fmoc保護トリプトファン、Fmoc保護チロシン-Fmoc保護トリプトファン、Fmoc保護チロシン- Fmoc保護チロシン)と光開始剤(リボフラビン*5)が溶解した水溶液に紫外線*6を照射するとアミノ酸分子間における共有結合*7を介した光架橋*8と非共有結合*9を介した自己組織化現象*10が誘起され、約100 nmの直径の球状ナノ粒子が形成されることを見出した(図1)。また、合成したアミノ酸ナノ粒子は、抗がん剤(ドキソルビシン*11)が容易に封入可能であり、生体透過性の高い近赤外レーザー*12に応答して発熱するタンニン酸-鉄複合体*13をナノ粒子表面にコーティングできることも明らかとなった。さらに、研究チームは、細胞やマウスを用いた実験によって、これらの複合的な分子設計に基づいた多機能性アミノ酸ナノ粒子が効果的ながん光治療技術に応用可能であることを示した。
本成果は、2023年12月28日にWiley-VCH発行「Small」のオンライン版に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
図1. 多機能性アミノ酸ナノ粒子の構造
【論文情報】
掲載誌 | Small (Wiley-VCH) |
論文題目 | Photocrosslinked co-assembled amino acid nanoparticles for controlled chemo/photothermal combined anticancer therapy |
著者 | Tengfei Wang, Yun Qi, Eijiro Miyako,* Alberto Bianco,* Cécilia Ménard-Moyon* |
掲載日 | 2023年12月28日にオンライン版に掲載 |
DOI | 10.1002/smll.202307337 |
【用語説明】
アミノ基(-NH2)とカルボキシ基(-COOH)の両方を持つ有機化合物の総称。天然には約500種類のアミノ酸が見つかっており、そのうち22種類が、鎖状に多数連結(重合)して高分子を形成しタンパク質となる。ヒトのタンパク質は約20種類のアミノ酸から構成されている。
タンパク質またはペプチドにおいてフリーなアミノ基で終端している側の末端のこと。
有機合成で用いられる、アミノ基の保護基の1つ。Fmoc(エフモック)基と略される。
アミノ酸が結合したもの。アミノ酸とアミノ酸がペプチド結合(-CONH-)して、2個以上つながった構造のものをペプチドという。
光開始剤とは主に可視光や紫外光を吸収し、この光エネルギーをフリーラジカルに変換する化学物質のこと。リボフラビンは、紫外線の存在下、光還元反応によりフリーラジカルを生成する。この性質を利用して、分子間の架橋が可能となり、光開始剤として合成反応によく利用される。
波長が可視光よりも短い10nm~400nmの光。
原子同士の間で電子を共有することで生じる化学結合で、結合力が強い。
光で化学結合を形成することにより、分子中の特定原子間にできる三次元的な化学結合のこと。
共有結合以外の原子同士を結びつける力を表し、水素結合やπ-π(パイ-パイ)相互作用などが知られている。共有結合に比べて結合力は弱いが、複数の力が協同的に働くことで原子・分子はあたかも共有結合のように連結される。
分子や原子などの物質が自発的に秩序を持つ大きな構造を作り出す現象。
抗ガン剤の一種である。腫瘍細胞の核内の遺伝子に結合することで、DNAやRNAを合成する酵素の働きを阻害することで抗腫瘍効果を示す。
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
タンニン酸はタンパク質を変性させることにより組織や血管を縮める作用を有する渋味を示す化学物質。鉄イオンと反応し強く結合して難溶性の塩(タンニン酸-鉄複合体)を形成することが知られている。
令和6年1月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/01/09-1.html金沢大学・北陸先端科学技術大学院大学 第2回共同シンポジウムを開催
令和5年12月12日(火)、金沢大学宝町キャンパス 医学図書館2階 十全記念スタジオにおいて、金沢大学・北陸先端科学技術大学院大学 第2回共同シンポジウムが開催されました。
金沢大学と本学は、融合科学共同専攻における分野融合型研究を推進してきましたが、今年度より、融合科学共同専攻にとどまらず、両大学間の共同研究の発展と促進を目指し、共同シンポジウムを開催しています。第1回目は令和5年6月26日に本学にて開催いたしましたが、第2回目である今回は「バイオメディカル」をテーマに、金沢大学にて開催いたしました。
金沢大学 和田隆志学長による開会挨拶後、本学 超越バイオメディカルDX研究拠点長 松村和明教授、金沢大学 附属病院眼科 小林 顕講師、金沢大学 医薬保健研究域医学系 三枝理博教授、本学 バイオ機能医工学研究領域 筒井秀和准教授がそれぞれバイオメディカル関連の最新研究について講演し、本学 寺野稔学長の挨拶をもって閉会となりました。
両学長は、開会・閉会の挨拶の際に、本シンポジウムをきっかけとしたシーズ開発や社会実装、および研究連携を中枢とした両大学の発展への期待について述べられました。また、本シンポジウムが、今後の両大学間の共同研究の発展と促進を目的としていることから、各講師の先生方は、自身の研究内容の説明に加えて、「どのような研究分野との共同研究が可能か」という点も併せて講演されました。
オンライン配信とのハイフレックス形式にて開催しました本シンポジウムには、両大学より多くの方が参加され、質疑応答の時間には講演内容に関する活発な意見交換が研究者間で行われました。次回は本学を会場として開催される予定です。本シンポジウムが今後両大学間の共同研究発展の端緒となるよう推進して参ります。

開会の挨拶をする金沢大学 和田学長

講演①「両性電解質高分子による細胞凍結保護とタンパク質安定化作用」
松村 和明 教授(本学 超越バイオメディカルDX研究拠点長)

講演②「水疱性角膜症治療 (角膜内皮移植)の進歩」
小林 顕 講師(金沢大学附属病院 眼科)

講演③「中枢体内時計神経ネットワークの動作原理解明と操作に向けて」
三枝 理博 教授(金沢大学医薬保健研究域医学系)

講演④「細胞認識能を備えた電気生理学計測法の構築にむけて」
筒井 秀和 准教授(本学 バイオ機能医工学研究領域)

閉会の挨拶をする寺野学長
令和5年12月15日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/12/15-1.html精密な高分子設計による能動的電子輸送が終始可能に -高分子が触手のように電子を授受-

精密な高分子設計による能動的電子輸送が終始可能に
-高分子が触手のように電子を授受-
ポイント
- 精密に合成された高分子が能動的に電子を輸送するナノシステムを設計
- 実際の葉緑体に倣った光エネルギー変換システムの構築が期待
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)、サスティナブルイノベーション研究領域の、博士前期課程大学院生 萩原礼奈、桶葭興資准教授、物質化学フロンティア研究領域の西村俊准教授らは、「電子を輸送する」高分子-金属ナノ粒子の複合組織を設計した。ここでは、三元系のヘテロ高分子が触媒ナノ粒子表面に結合しており、能動的な電子輸送システムとして機能する。従来の研究では、電子伝達には2 nm以内で著しく効率的になることが分かっていたが、この距離を制御する能動的なシステムは無かった。本研究の高分子は電子の授受に伴って相転移を起こし、能動的に触媒粒子との距離を変化させる。このようなナノシステムは、可視光エネルギーによる水の分解や水素生成の触媒作用のみならず、電池など電気化学反応を伴う系や人工酵素の系に展開することで、様々なエネルギー変換システムに有用と期待される。 |
桶葭准教授らの研究グループはこれまでに、持続可能社会の実現に向けて人工光合成[用語解説1]の高分子によるシステム構築に挑戦してきた。実際の光合成を行う葉緑体が持つ電子伝達組織、および電子移動に関するマーカス理論[用語解説2]に学び、今回、2 nm以内の電子輸送を能動的に起こす系を高分子の精密な合成を通して構築した。まず、三元系のヘテロ高分子を精密に合成し、これが結合した触媒ナノ粒子を作製した(図)。この高分子は、相転移[用語解説3]を起こす部位、ナノ粒子と結合する部位、そして電子を授受する部位から構成される。ここで、高分子中のビオロゲン分子[用語解説4]が電子を得ると、触媒の白金ナノ粒子まで迅速に運び水素生成する仕組みである。プロセスとしては、I) 電子を得たビオロゲン分子近傍の高分子が収縮する。II) この高分子の一部はナノ粒子表面に固定されているため、電子を得たビオロゲンをナノ粒子表面へ触手のように引き寄せられる。III) ビオロゲンが電子をナノ粒子に渡した後、この高分子は伸長して元に戻る。他方、このナノ粒子は水素生成の触媒として働く。このI~IIIがサイクリックに進む。従来の研究では、拡散律速に依存した受動的な電子移動が介在してしまっていたが、今回のシステムでは、高分子がナノ粒子表面に固定されたことでその能動的な電子輸送が終始可能となった。2 nm以内での電子移動において、著しく高い有効性が認められることは、理論だけでなく実証実験でも報告されていたが、この距離を制御する能動系はこれまで無かった。今回、高分子が触手の様に電子を捉えて触媒が電子を食べるような、アクティブなナノシステムが提案された。
上図:三元系のヘテロ高分子Poly(NIPAAm-co-AAm-co-Viologen) (PNAV)。相転移を起こす部位N、ナノ粒子と結合する部位A、そして電子を授受する部位Vから構成される。 下図:高分子PNAVが結合した白金ナノ粒子。光捕集分子などから電子を得たPNAV (PNAV+)は収縮し白金ナノ粒子に近づき電子を渡す。その際、PNAV2+となると伸長してナノ粒子表面から離れる。この能動的な電子の授受を繰り返す。 |
本成果は、2023年12月13日(英国時間)に科学雑誌「Chemical Communications」誌(RSC社)のオンライン版で公開された。なお、本研究は、文部科学省科研費 挑戦的研究(萌芽)(JP21K18998)の支援のもと行われた。
【論文情報】
掲載誌 | Chemical Communications (The Royal Society of Chemistry) |
論文題目 | Precise design of copolymer-conjugated nanocatalysts for active electron transfer |
著者 | Reina Hagiwara, Shun Nishimura, Kosuke Okeyoshi |
DOI | 10.1039/d3cc05242g |
掲載日 | 2023年12月13日付、オンライン版 |
【今後の展開】
高分子の相転移を用いた電子の能動輸送は、エネルギー変換系(光エネルギーから水素生成等)だけでなく、次世代バッテリーなど様々な先端材料にとって有用なナノシステムと期待される。
【用語解説】
令和5年12月13日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/12/14-1.html可視光応答型光触媒を用いた環境水浄化:研究開発の飛躍的加速へ

可視光応答型光触媒を用いた環境水浄化:研究開発の飛躍的加速へ
ポイント
- 光触媒試験を飛躍的に加速する技術の開発
- 環境水浄化のための光触媒の一括スクリーニング
- 環境水中で高活性を発揮する可視光応答型光触媒を開発
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の谷池俊明教授らは、可視光応答型光触媒を利用した環境水浄化に関するハイスループット実験[*1]技術を開発しました。 水質汚染は、現代社会における重要な問題の一つです。有機汚染物質の中でも染料は、その多様性や濃度の高さから環境への影響が大きく、発展途上国を中心に深刻な問題となっています。これらの有機汚染物質を効果的に除去する方法として、可視光応答型の光触媒反応が注目されています。しかし、現在の光触媒は高濃度の汚染物質に対して十分な活性を示すことができず、また実用的な環境下での研究や応用に関する知見も不足しています。特に、環境水中に含まれるさまざまな無機イオンが光触媒反応に影響を与えることが知られており、これらの環境条件を考慮した効果的な触媒の開発が急務となっています。 本研究では、光触媒反応を132並列で実施可能なハイスループット実験技術を新たに開発し、大規模な実験から、可視光応答型光触媒を用いた環境水浄化[*2]に関する有用な知見を導くことに成功しました。また、環境水中の特定のイオンが触媒の活性を有意に低下させることを明らかにしました。さらに、工業廃水において効果的な触媒を開発するため、15種類の貴金属ナノ粒子を光触媒に担持した結果、AuやPtなどの高仕事関数と酸化耐性を併せ持つ金属ナノ粒子が、環境イオンを活性種に変換し、高活性を示すことを明らかにしました。 この研究は、開発されたハイスループット実験技術の有効性を示すものです。今後は、この技術を改良することで、水分解や二酸化炭素還元など他の光触媒反応の研究を可能にする見通しです。 本成果は、2023年11月17日に学術雑誌「Environmental Pollution」(Elsevier社)のオンライン版に掲載されました。なお、本研究は、科学技術振興機構(JST)未来社会創造事業(探索加速型)「超広域材料探索を実現する材料イノベーション創出システム(JPMJMI22G4)」(研究代表:谷池俊明)の支援を受けて行われました。 |
開発ハイスループットスクリーニング装置 (a)とスクリーニング結果 (b)
【論文情報】
掲載誌 | Environmental Pollution (Elsevier) |
論文題目 | High-throughput experimentation for photocatalytic water purification in practical environments |
著者 | Kyo Yanagiyama, Ken Takimoto, Son Dinh Le, Nhan Nu Thanh Ton, Toshiaki Taniike |
掲載日 | 2023年11月17日にオンライン版に掲載 |
DOI | 10.1016/j.envpol.2023.122974 |
【用語解説】
実験の回転速度をスループットと呼ぶ。ハイスループット実験技術とは高度な並列化や自動化によって実験のスループットを劇的に改善する技術を指す。
太陽光や人工光を利用して水中の汚染物質を分解する技術で、環境に優しく持続可能な水浄化の方法として注目されている。光触媒はこのプロセスで重要な役割を果たす。
令和5年12月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/12/08-1.html学生の坪原さんが世界農業遺産国際スタディ・プログラムに参加
学生の坪原真旺さん(博士前期課程2年、サスティナブルイノベーション研究領域、小矢野・宮田研究室)が石川県主催の世界農業遺産国際スタディ・プログラムに参加しました。
令和5年度より、石川県内の大学生を対象に、県と国連大学が共同で開始した同プログラムは、「能登の里山里海」が世界農業遺産(GIAHS)に認定され、その認定効果が地域活性化に結び付いており、「石川モデル」として国内外から高い評価を受ける同県の特徴を活かし、世界農業遺産をテーマに国際的な視点で学習し、学生それぞれが自身の専攻分野の知識を活かして石川県の地域活性化等についての提案を検討し、成果発表としてプレゼンテーションするという研修プログラムです。これにより、国際的な視点を持って地域に貢献する若者を輩出するとともに、県内で学ぶことの魅力向上を図るもので、坪原さんは書類および面接選考を通過し、プログラムのメンバーに選ばれました。
同プログラムは7月~10月にかけて実施され、国連大学職員による、世界農業遺産や能登の里山里海に関する講義の受講や、能登地域の方々から、さまざまな取り組みや現状の課題などについてお話を伺う能登視察研修に参加し、その後、イタリアにある世界農業遺産の認定機関である国連食糧農業機関(FAO)の本部を訪問、能登についての紹介や、学生が考案した能登地域の活性化策などについて、英語でプレゼンテーションを行ったほか、関連機関である国連世界食糧計画(WFP)、国際農業開発基金(IFAD)の本部や、イタリアの世界農業遺産認定地を訪問し、さらに学習を深めました。また、プログラムの最後には成果発表会が開かれ、これまでの学習成果や、それをもとに考えた能登地域の活性化についての提案を発表し、世界農業遺産を活用した地域活性化策などについて意見交換を行いました。
■坪原さんより一言
普段、入ることができない国連の敷地や職員さんと話すことによって、環境問題やSDGsなどを肌で感じ、考えるきっかけができました。また、英語を実践的に使うことによって、プレゼンの能力向上や実力を試すことができたので、今後の研究に活かしたいと思います。
※詳しくは、石川県ホームページ「世界農業遺産国際スタディ・プログラム」をご覧ください。

国連でプレゼンテーションをしている様子
令和5年11月16日
学生のMISHRAさんが高分子学会第72回高分子討論会において優秀ポスター賞を受賞
学生のMISHRA, Sameer Nirupamさん(博士後期課程3年、物質化学フロンティア研究領域、松見研究室)が公益社団法人高分子学会の第72回高分子討論会において優秀ポスター賞を受賞しました。
高分子学会は、高分子科学と技術およびこれらに関連する諸分野の情報を交換・吸収する、さまざまな場を提供しています。会員はこれらの場を通じ、学術的向上や研究の新展開のみならず会員相互の人間的な触れ合いや国際的な交流を深めています。
優秀ポスター賞は、高分子学会年次大会および高分子討論会において、優れたポスター発表を行った発表者に授与されるもので、もって発表を奨励し、高分子科学ならびに同会の発展に資することを目的としています。
第72回高分子討論会は、9月26日~28日にかけて香川大学幸町キャンパスにて開催されました。
※第72回高分子討論会
■受賞年月日
令和5年9月28日
■研究題目
BIAN含有高分子/ポリ(アクリル酸リチウム)バインダーを用いたSi系負極の安定化
(Stabilization of Si-based Anode for LIB Using BIAN Type Conjugated Polymer/Poly (lithium acrylate) Binder)
■研究者、著者
Sameer Nirupam Mishra,Saibrata Punyasloka, Anusha Pradhan and Noriyoshi Matsumi
■受賞対象となった研究の内容
今日、リチウムイオン二次電池分野においてはシリコン系負極を用いた高容量化への展開に注目が集まっている。本研究においては、側鎖にフェノール基を有するBIAN(ビスイミノアセナフテン)型共役系高分子バインダーを新たに合成し、ポリ(アクリル酸リチウム)とのコンポジットバインダーとしてシリコン系負極に適用した。本系では100サイクルまで1173 mAg-1の放電容量を維持すると同時に、高いリチウムイオン拡散係数が観測され、シリコン系負極で課題とされている初期クーロン効率の改善につながった。これらの結果はコンポジットバインダーが示す自己修復能や高いリチウムイオン濃度に起因していると考えられる。
■受賞にあたって一言
I would like to thank the 72nd Symposium on Macromolecules Excellent Poster Award Selection Committee and SPSJ Chairman Kazunori Matsuura for considering me for the award. I also would like to take this opportunity to extend my sincere and heartfelt gratitude to Prof. Noriyoshi Matsumi for his constant guidance. Further, I would also like to thank all the members of the Matsumi Lab, friends, and family for their continual support. I see this award as a motivation and encouragement that will push me forward in my research career and help me achieve greater heights. Thank you.


令和5年11月6日
科学技術振興機構のさくらサイエンスプログラムを実施
物質化学フロンティア研究領域の長尾祐樹教授のマレーシアとの交流計画が科学技術振興機構(JST)の「国際青少年サイエンス交流事業 さくらサイエンスプログラム」に採択されたことを受け、10月5日~10月14日の日程でマレーシア工科大学本校、マレーシア日本国際工科院(MJIIT)、マレーシア工科大学マラッカ校及びマレーシアパハン大学から12名の教員・研究者・大学院生を本学に受け入れました。
「国際青少年サイエンス交流事業 さくらサイエンスプログラム」は、産学官の緊密な連携により、諸外国・地域の青少年を我が国に招へいし、我が国の青少年との科学技術分野の交流を行う事業です。これを通して、
①科学技術イノベーションに貢献しうる優秀な人材の養成・確保
②国際的頭脳循環の促進
③日本と諸外国・地域の教育研究機関間の継続的連携・協力・交流
④科学技術外交にも資する日本と諸外国・地域との友好関係の強化
に貢献し、ひいては、日本及び世界の科学技術・イノベーションの発展に寄与することを目的とします。
参考:https://ssp.jst.go.jp/outline/detail/
本学はアジア諸国の大学・研究機関との学術的交流を強く推進しているところであり、将来的に優秀な学生を受け入れるためにマレーシアにおける大学・研究機関においても交流を進めています。
本交流の趣旨はマレーシアの環境・エネルギーに関する技術交流を核に、国際共著論文成果に繋がる大学間連携を強化することができるように計画されました。本学教員による研究指導等を実施し、最終日には成果報告会が行われました。また、金沢のひがし茶屋街での金箔体験や、ゆのくにの森での蒔絵体験を通して日本的な文化や美にも触れ、さらに、東京の日本科学未来館を訪問して日本の多様な先端科学技術を紹介しました。
本交流プログラムはこれらの経験を通して招聘者の将来の日本への留学を促し、本学が招聘者の母国やアジアの科学技術の進歩や発展に貢献することを目指しています。
■実施期間
令和5年10月5日~令和5年10月14日
■研究テーマ
環境・エネルギーに関する技術交流
■本交流について一言
本計画をサポートいただきましたJSTに御礼申し上げます。また、本学受入教員の松見教授、前園教授、西村准教授、本郷准教授、実験や事務手続等をサポートして下さった安准教授をはじめとする10名以上の教職員や学生の皆様に御礼申し上げます。ありがとうございました。引き続きマレーシアとの交流の発展にお力添えをお願い致します。

金沢で金箔体験

ゆのくにの森での蒔絵体験

計算科学チュートリアル

日本科学未来館を訪問
令和5年10月17日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/10/17-1.htmlサスティナブルイノベーション研究領域の宮田講師が日本熱電学会の進歩賞を受賞

サスティナブルイノベーション研究領域の宮田全展講師が一般社団法人日本熱電学会の進歩賞を受賞しました。
日本熱電学会では、熱電工学、熱電科学、及び熱電技術、並びに関連分野における発明、発見、研究と開発、並びに同学会の発展に顕著な功績があったと認められる同学会会員に対して、その功績を讃え表彰を行っています。
本研究では、実験とスーパーコンピューターを活用したシミュレーションを協奏的に行うことで、希少元素を含まない新しい硫化物・リン化物熱電材料の創製と、革新的な材料設計指針を確立することに成功しました。それら一連の研究成果が、同学会において、熱電工学、熱電科学、及び熱電技術、関連分野における発見、研究と開発、並びに同学会の発展に顕著な功績であったことが認められ、この度の受賞となりました。
※参考:日本熱電学会
■受賞年月日
令和5年9月25日
■研究題目
実験と第一原理計算による新奇硫化物・リン化物熱電材料のマテリアルデザイン
■研究者、著者
宮田全展
■受賞対象となった研究の内容
本研究では、実験とスーパーコンピューターを駆使したシミュレーション計算により、高い性能(出力因子)を示す新しい硫化物熱電材料を創製し、そのメカニズムを明らかにしました。さらに、JAIST生まれのシミュレーション計算コードOpenMXと、電子輸送計算コードBoltzTraPをつなぐ汎用インターフェースプログラムを開発し、世界に先駆けて800種類を超える硫化物熱電材料の大規模計算を行うことで、熱電性能を最大化する設計指針を確立しました。本研究で開発されたインターフェースプログラムはOpenMXの公式計算オプションとして実装されています。
(OpenMX Ver. 3.9 ユーザーマニュアル)
実験とスーパーコンピューターによる高精度なシミュレーション計算により、新しい高性能熱電材料の候補物質群として、リン化物が高いポテンシャルを持つことを詳細に明らかにし、中でもAg(銀)-P(リン)化合物中のAg原子が特殊な振動をすることで、熱伝導を大きく抑制し、極めて低い格子熱伝導率を示すメカニズムを明らかにしました。そして、リン化物のみならず、広く無機材料について、熱伝導において重要なフォノン(原子振動の伝搬を仮想の粒子の運動として取り扱う概念)において、比熱・音速・緩和時間に相関関係があることを発見し、フォノンの観点から熱電材料の新しい評価指針を確立しました。
株式会社白山、石川県工業試験場を中心とした産官学連携により、Mg(マグネシウム)とSi(シリコン)を主成分とした環境にやさしい熱電材料の高性能化の材料設計指針を、実験とスーパーコンピューターによるシミュレーションより確立し、材料の高性能化に貢献しました。
■受賞にあたって一言
この度は、日本熱電学会の優秀ポスター賞、優秀講演賞に続き、進歩賞を賜りまして誠に光栄でございます。これも本学の小矢野幹夫教授、東大物性研の尾崎泰助教授、石川県工業試験場の豊田丈紫氏、株式会社白山の内田健太郎氏をはじめとした、数えきれないほどの共同研究者の先生方との研究・ディスカッションのお陰でございます。また、本研究は科研費(若手研究JP20K15021)をはじめとした数々の研究助成、本学の大規模計算機KAGAYAKIによって実施されました。この場を借りて、深く感謝御礼申し上げます。今後も学術・社会により一層の貢献ができるよう、研究・教育活動に邁進いたします。
令和5年10月16日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2023/10/16-1.html物質化学フロンティア研究領域の都准教授らの論文がNano Today誌の表紙に採択

物質化学フロンティア研究領域の都 英次郎准教授らの「化学修飾細菌を利用するがん光免疫療法の開発に成功」に係る論文が、Nano Today誌の表紙に採択されました。
なお、本研究は、科研費基盤研究(A)(23H00551)、科研費挑戦的研究(開拓)(22K18440)、科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Nano Today, October, 2023, Volume 52
掲載日:2023年10月
■著者
Sheethal Reghu, Seigo Iwata, Satoru Komatsu, Takafumi Nakajo, Eijiro Miyako*
■論文タイトル
Cancer immunotheranostics using bioactive nanocoated photosynthetic bacterial complexes
■論文概要
本研究では、低酸素状態の腫瘍環境内で高選択的に集積・生育・増殖が可能で、かつ生体透過性の高い近赤外レーザー光によって様々な機能を発現する非病原性かつ天然の紅色光合成細菌の表面化学修飾法を開発しました。また、当該化学修飾細菌の特性を活用することで体内の腫瘍を高選択的に検出し、効果的な免疫細胞(特にT細胞)の賦活化、ならびに標的部位のみを効果的に排除することが可能ながん光免疫療法を開発することに成功しました。
論文詳細:https://www.sciencedirect.com/science/article/pii/S1748013223002153
令和5年10月11日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/10/11-1.html学生の中島さんが日本太陽光発電学会第20回「次世代の太陽光発電システム」シンポジウムにおいてInnovative PV奨励賞を受賞
学生の中島寛記さん(博士後期課程3年、サスティナブルイノベーション研究領域、大平研究室)が第20回「次世代の太陽光発電システム」シンポジウム(第3回日本太陽光発電学会学術講演会)においてInnovative PV奨励賞を受賞しました。
日本太陽光発電学会は、太陽光発電に関連する学術分野の研究の促進ならびに成果の普及に関する事業を行い、将来の脱炭素社会の実現とその発展に寄与することを目的としています。
同シンポジウムは、国内の太陽光発電にかかわる研究者や技術者が一堂に会し、分野の垣根なく議論する場として開催されています。
Innovative PV奨励賞は、同シンポジウムにおいて発表された、太陽光発電ならびにその関連分野の発展に貢献しうる優秀な講演論文を発表した35歳以下の同会若手会員に対し授与されるものです。
※参考:日本太陽光発電学会ホームページ
■受賞年月日
令和5年8月31日
■論文タイトル
硝酸アルミニウム酸化処理により形成した p+反転層のピラミッドテクスチャ n 型結晶 Si 表面での有効性
■研究者、著者
中島 寛記、Huynh Thi Cam Tu、大平 圭介
■受賞対象となった研究の内容
n型結晶Si太陽電池のp+エミッタ層に利用されているB拡散層の形成には、1000 °C程度の高温加熱処理が必要となり、これが太陽電池製造のスループットを低下させている。さらに、Si中に拡散したBは、欠陥準位を形成し、太陽電池特性の劣化を引き起こす。そこで、本研究では、Si基板を硝酸アルミニウムの水溶液に浸漬するだけという非常に簡便なプロセスで、Si基板表面に超極薄のAlドープSiOx膜を形成し、その膜によって誘起されるp+反転層が、n型結晶Si太陽電池のエミッタ層として機能することを実証した。本公演では、AlドープSiOx膜に誘起された負の固定電荷がピラミッドテクスチャ形状を有するSi表面で増強され、良好な表面パッシベーション性能と太陽電池セル特性が得られたことについて報告し、簡便な湿式処理だけで、高効率・低コストの結晶Si太陽電池を製造できる可能性を示した。
■受賞にあたって一言
この度は、日本太陽光発電学会Innovative PV奨励賞に選定いただきましたこと大変光栄なことと感じております。今後も本技術の実用化を目指し、研究に邁進する所存です。日頃よりご指導いただいております大平圭介教授、HUYNH, Tu Thi Cam特任助教をはじめとした大平研究室の皆様に心より感謝申し上げます。なお、本研究は、JST次世代研究者挑戦的研究プログラムの助成を受けて実施されたものです。この場をお借りして御礼申し上げます。
令和5年9月22日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2023/09/22-1.htmlMoS2ナノリボンのエッジが示す特異な力学特性の観測に成功

MoS2ナノリボンのエッジが示す特異な力学特性の観測に成功
ポイント
- 雷、加速度、ガス、臭気などの環境電磁界を計測するセンサーの開発に必要な要素技術として、機械共振器がある。
- ナノスケールの超薄型機械共振器として期待されている、単層2硫化モリブデン(MoS2)・ナノリボンのヤング率測定に成功した。
- リボン幅が3nm以下になると、ヤング率がリボン幅に反比例して増加する特異な性質を発見した。
- リボンのエッジ部分における原子配列の座屈がエッジの強度を高める要因であることを、計算科学手法を用いて解明した。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域の大島義文教授は、サスティナブルイノベーション研究領域の前園涼教授、本郷研太准教授、鄭州大学物理学院の刘春萌講師、張家奇講師らと、独自に開発した顕微メカニクス計測法を用いて、リボン状になった単層2硫化モリブデン(MoS2)膜の力学性質を調べ、リボンのエッジ部分の強度が、リボンの内部より高いことを明らかにした。 単層MoS2ナノリボンは、ナノスケールの超薄型機械共振器への応用が期待されているが、その力学性質の解明が課題となっている。ナノリボンの力学性質について、そのエッジ部分の影響が予想されており、第一原理計算による予測値は報告されているが、明確な結論が得られていない。本研究では、世界唯一の手法である「顕微メカニクス計測法」を用いて、単層MoS2ナノリボンの原子配列を観察しながら、そのばね定数を測定することに成功した。解析の結果、エッジがアームチェア構造である単層MoS2ナノリボンのリボン幅が3nm以下になると、ヤング率が増加することを発見した。リボン幅の減少とともにエッジ構造の物性への寄与が大きくなるため、この結果は、エッジ強度が内部に比べて高いことを示す。 このエッジ構造を第一原理計算で調べたところ、エッジにおいてモリブデン(Mo)原子が座屈しており、硫黄(S)原子へ電荷が移動していることが示唆された。このことから、両原子間に働くクーロン引力の増加が、エッジ強度を高めることに寄与したと説明できる。 |
【研究の背景】
シリコンをベースとした半導体デバイスを凌駕する新奇ナノデバイスの開発、あるいは、加速度、ガス、雷などの環境電磁場を測定するセンサーの開発が精力的に行われている。このような開発に必要な要素技術として、機械共振器[*1]がある。従来、高い剛性を持ち、かつ、高品位な結晶が得られることから水晶が機械共振器として用いられてきたが、近年、ナノスケールの超薄型機械共振器が求められており、その有力候補として単層2硫化モリブデン(MoS2)のナノリボン(ナノメートルサイズの幅に切り出した帯状物質)が挙げられている。しかし、単層MoS2ナノリボンの力学性質は、明らかになっていない。その理由として、物質の力学特性を理解するためには、力学的応答を測定すると同時に材料の結晶構造や形状を観察する必要があるが、そのような観察手法が確立されていないことが挙げられる。
従来手法では、原子配列を直接観察できる透過型電子顕微鏡(TEM)にシリコン製カンチレバーを組み込んだ装置を用いて、カンチレバーの曲がりから測定対象材料に加えた力を求め、それによって生じた変位をTEM像で得ることで、ヤング率(変形しやすさ)を推量している。しかし、この測定法は、個体差があるカンチレバーのばね定数を正確に知る必要があり、かつ、サブオングストローム(1オングストローム(1メートルの100億分の1)より短い長さのスケール)の精度で変位を求める必要があるため、定量性が十分でないと指摘されている。
【研究の内容】
大島教授らの研究グループは、2021年、TEMホルダーに細長い水晶振動子(長辺振動水晶振動子(LER)[*2])を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする「顕微メカニクス計測法」[*3]を世界で初めて開発した。この手法では、水晶振動子の共振周波数が、物質との接触による相互作用を感じることで変化する性質を利用する。共振周波数の変化量は物質の等価バネ定数に対応しており、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)と微小なため、TEMの原子像がぼやけることはない。この手法は、上述した従来手法の問題点を克服するものであり、結果として高精度測定を実現した。
本研究では、この顕微メカニクス計測法を用いて、単層MoS2ナノリボンの力学性質を測定した。特に、アームチェア構造のエッジを持つMoS2ナノリボンに着眼し、そのヤング率の幅依存性について調べた。
具体的には、単層MoS2ナノリボンは、MoS2多層膜の端にタングステン(W)チップを接触させ、最外層のMoS2層を剥離することで作製した(図1)。図2に示す2枚は、それぞれ、同じ単層MoS2ナノリボンを断面から観察したTEM像(2-1)と平面から観察したTEM像(2-2)であり、単層MoS2ナノリボンが、MoS2多層膜とWチップ間に担持した状態にあることが確認できる(図3のイラストを参照)。また、エッジ構造は、平面から観察したTEM像のフーリエパターンから判定でき、アームチェア構造であることが分かった。この平面から観察したTEM像から、ナノリボンの幅と長さを測定し、それに対応する等価ばね定数をLERの周波数変化量から求めることで、このナノリボンのヤング率を得た。図3右側のグラフは、異なるリボン幅に対するヤング率をプロットした結果である。
同グラフから、リボン幅が3 nm以上では、ヤング率は166 GPa前後でほぼ一定であり、一方、リボン幅が2.4 nmから1.1 nmに減少すると、ヤング率は179 GPaから215 GPaに増加することがわかった。リボン幅の減少とともに物性へのエッジ構造の寄与が大きくなることを考慮すると、この結果は、エッジ強度が内部に比べて高いことを示す。
さらに、このアームチェア構造を第一原理計算で調べ、アームチェア・エッジにおいてモリブデン(Mo)原子が座屈し、硫黄(S)原子へ電荷が移動しているという結果を得た。このことから、両原子間に働くクーロン引力が増加することによりエッジ強度が高くなったと説明できた。
本研究成果は、2023年9月11日に科学雑誌「Advanced Science」誌のオンライン版で公開された。
【今後の展望】
現在、雷、加速度、ガス、臭気などの環境電磁界を計測するセンサーの開発が精力的に行われている。このようなセンサーの開発に必要な要素技術の一つが機械振動子である。本研究の成果は、ナノスケールの超薄型機械的共振器の設計を可能にする。近い将来、これを用いたナノセンサーがスマートフォンや腕時計などに組み込まれ、個人がスマートフォンで環境をモニタリングしたり、匂いや味などの情報を数値としてとらえ、自由に伝えることができる可能性がある。
図1.MoS2多層膜の端にタングステン(W)チップを接触し、最外層の単層MoS2膜を剥離する過程を示したイラスト
図2.同じ単層MoS2ナノリボンを断面から観察したTEM像(2-1)と平面から観察したTEM像(2-2)
図3.(左)単層MoS2ナノリボンが、MoS2多層膜とWチップ間に担持した状態を示すイラスト、
(右)アームチェアエッジの単層MoS2ナノリボンに対するヤング率のリボン幅依存性を示すグラフ |
【論文情報】
掲載誌 | Advanced Science(Wiley社発行) |
論文題目 | Stiffer Bonding of Armchair Edge in Single‐Layer Molybdenum Disulfide Nanoribbons |
著者 | Chunmeng Liu, Kenta Hongo, Ryo Maezono, Jiaqi Zhang*, Yoshifumi Oshima* |
掲載日 | 2023年9月11日 |
DOI | 10.1002/advs.202303477 |
【用語説明】
[*1] 機械共振器
材料には、ヤング率、その形状(縦、横、長さ)、質量によって決まる固有振動があり、これを共振周波数と呼ぶ。この共振周波数は、他の材料と接触したり、あるいは、ガス吸着などによる質量変化に応じてシフトする。そのため、この変化から、接触した材料の等価ばね定数や吸着したガスの質量を評価できる。このような評価法を周波数変調法という。本研究でも、周波数変調法によって、単層MoS2ナノリボンのばね定数を算出している。
[*2] 長辺振動水晶振動子(LER)
長辺振動水晶振動子(LER)は、細長い振動子(長さ約3 mm、幅約0.1 mm)を長辺方向に伸縮振動させることで、周波数変調法の原理で金属ナノ接点などの等価バネ定数(変位に対する力の傾き)を検出できる。特徴は、高い剛性(1×105 N/m )と高い共振周波数(1×106 Hz )である。特に、前者は、化学結合の剛性(等価バネ定数)測定に適しているだけでなく、小さい振幅による検出を可能とすることから、金属ナノ接点を壊すことなく弾性的な性質を得ることができ、さらには、原子分解能TEM 像も同時に得られる点で大きな利点をもつ。
[*3] 【参考】「世界初! 個々の原子間の結合強度の測定に成功―強くて伸びる白金原子の鎖状物質―」(2021年4月30日 JAISTからプレスリリース)
https://www.jaist.ac.jp/whatsnew/press/2021/04/30-1.html
令和5年9月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/09/19-1.html「大学見本市2023~イノベーション・ジャパン」に出展

8月24日(木)、25日(金)の2日間、東京ビッグサイト南展示棟(東京都江東区有明)で国内最大規模の産学マッチングイベントである「大学見本市2023~イノベーション・ジャパン」が開催され、本学からは以下の2件が出展しました。
- 超越バイオメディカルDX研究拠点 物質化学フロンティア研究領域 松村和明 教授
【展示タイトル】超越バイオメディカルDX研究拠点 - サスティナブルイノベーション研究領域 高田健司 助教
【展示タイトル】新機能!バイオマス由来桂皮酸を用いたバイオプラスチックの開発
※各ブースの出展内容については、以下を参照ください。
https://www.jaist.ac.jp/whatsnew/event/2023/08/03-1.html
8月24日(木)に同会場内で開催された研究者ショートプレゼンテーションでは、松村和明教授が「超越バイオメディカルDX研究拠点」をテーマに発表を行い、多くの聴講者によって活況を呈しました。本学ブースには企業関係者をはじめ大学や公的機関の関係者等、2日間で延べ174名もの方々が来訪され、今後の連携における検討等、活発な情報交換の場となりました。

プレゼンテーションの様子


出展ブースの様子
令和5年8月31日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/08/31-1.html化学修飾細菌を利用するがん光免疫療法の開発に成功

化学修飾細菌を利用するがん光免疫療法の開発に成功
ポイント
- 天然の紅色光合成細菌の細胞表面を簡便に化学修飾可能な手法を開発
- 作製した化学修飾細菌は、免疫細胞の効果的な賦活化のみならず、高い腫瘍標的能を有し、近赤外光によって様々な機能を発現可能
- 当該化学修飾細菌の特性と近赤外レーザー光を組み合わせた、新たながん光免疫療法を開発
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 物質化学フロンティア研究領域の都 英次郎准教授の研究グループは、光と化学修飾細菌を使ってマウス体内のがん診断・治療を可能にする技術の開発に成功した(図1)。 |
図1. 化学修飾細菌を利用するがん光免疫療法の概念
近年、低酸素状態の腫瘍内部で選択的に集積・生育・増殖が可能な細菌を利用したがん標的治療に注目が集まっている。しかし、従来のがん細菌療法は、基本的には抗がん剤の運搬という、いわゆる従来型のドラッグデリバリーシステムの概念を出ない。また、薬効も十分であるとはいえない。さらに、従来のがん細菌療法は、抗がん活性を発現するためには、遺伝子工学を用いた微生物の操作・改変が必須である。米国や欧州ではヒトへの臨床試験が行われ第3相試験に進んでいる例もあるが、使用される細菌は、多くの場合、遺伝子組換えによって弱毒化したサルモネラ菌やリステリア菌であり、体内で再び強毒化するリスクを常に伴っている。
本研究では、低酸素状態の腫瘍環境内で高選択的に集積・生育・増殖が可能で、かつ生体透過性の高い近赤外レーザー光*1によって様々な機能を発現する非病原性かつ天然の紅色光合成細菌*2の表面化学修飾法を開発した。また、当該化学修飾細菌の特性を活用することで体内の腫瘍を高選択的に検出し、効果的な免疫細胞(特にT細胞*3)の賦活化、および標的部位のみを効果的に排除することが可能ながん光免疫療法を開発することに成功した。
本研究を実現するために、がん細胞に対する傷害性の高いT細胞を賦活化可能な免疫チェックポイント阻害剤(抗PD-L1抗体*4)および生体適合性の高いポリエチレングルコール(PEG)脂質から成る機能性高分子複合体と、紅色光合成細菌を生理食塩水中で30分間混合し、洗浄するだけで、免疫賦活化作用と腫瘍標的能を有し、かつ生体透過性の高い近赤外レーザー光によって近赤外蛍光と熱を発現する化学修飾細菌を開発した(図2A)。また、当該細菌のこれらの特性を活用し、近赤外レーザー光照射と組み合わせることで、体内の腫瘍(大腸がん由来)を高選択的に検出し、光発熱作用と免疫の力によって標的部位を効果的に排除することが可能ながん光免疫療法を構築した(図2B、2C)。さらに、マウス大腸がん細胞、マウスマクロファージ細胞、ヒト正常肺細胞を用いた細胞毒性試験、ならびにマウスを用いた生体適合性試験(血液学的検査、組織学的検査など)を行った結果、いずれの検査からも化学修飾細菌そのものが生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発した簡便な細菌の表面化学修飾法が、がん光診断・治療法の基礎に成り得ることを示すだけでなく、界面化学、ナノ・マイクロテクノロジー、光学、微生物工学といった幅広い研究領域における材料設計の技術基盤として貢献することを期待させるものである。
本成果は、2023年8月14日(現地時間)にナノテクノロジー分野の世界最高峰「Nano Today」誌(エルゼビア社発行)のオンライン版に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
図2.(A) 化学修飾細菌の調製方法
(B) がん患部における化学修飾細菌の可視化(近赤外蛍光を検出) (C) 化学修飾細菌の抗腫瘍効果 |
【論文情報】
掲載誌 | Nano Today(エルゼビア社発行) |
論文題目 | Cancer immunotheranostics using bioactive nanocoated photosynthetic bacterial complexes |
著者 | Sheethal Reghu, Seigo Iwata, Satoru Komatsu, Takafumi Nakajo, Eijiro Miyako* |
掲載日 | 2023年8月14日 |
DOI | 10.1016/j.nantod.2023.101966 |
【用語説明】
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
近赤外光を利用して光合成を行う細菌。水の分解による酸素発生は行わない。
免疫を担うリンパ球の一種。活性化したT細胞は、サイトカイン(細胞同士の情報伝達を行うタンパク質の総称)を分泌するヘルパー細胞や、がんや感染細胞を殺傷するキラー細胞などのエフェクター細胞に分化する。
細胞上のPD-1に結合してPD-1とPD-L1あるいはPD-L2との結合を阻害し、T細胞の活性化を維持する抗体のこと。
令和5年8月29日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/08/29-1.html