研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。能美市の中学生の皆さんが来学
8月26日(月)、能美市の中学2年生20名の皆さんが施設見学のため来学しました。
中学生の皆さんは、能美市と沖縄県恩納(おんな)村との教育交流パートナー事業に基づき、9月に沖縄科学技術大学院大学(OIST)を訪問されます。その前に地元にある本学(JAIST)について知り、その後にOISTを見学することで両大学の違いや特徴を認識し、結果としてより学習効果が高まることを目的として、JAISTに見学に来られました。
貴重図書室の『解体新書』(杉田玄白著)や情報社会基盤研究センターの大規模並列計算機「KAGAYAKI」、ナノマテリアルテクノロジーセンターを見学した後、ナノマテリアル・デバイス研究領域のホ アン ヴァン准教授の研究室を訪問しました。ホ准教授と研究室の学生がソフトロボットの実演を行い、中学生の皆さんは科学技術を楽しく学ぶことができたようです。

貴重図書室の見学

大規模並列計算機KAGAYAKIの見学

ナノマテリアルテクノロジーセンターの見学

ホ研究室にてソフトロボットの実演
令和6年9月4日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/09/04-1.htmlダイヤモンド結晶中の色中心から飛び出す準粒子を発見
![]() ![]() ![]() ![]() |
| 国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 慶應義塾大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド結晶中の色中心から飛び出す準粒子を発見
電子と結晶格子の振動をまとめて一つの粒子とみなしたものをポーラロン準粒子と呼びます。色中心と呼ばれる不純物を導入したダイヤモンド結晶に超短パルスレーザー光を照射し、その反射率の変化を精密測定した結果、ポーラロンが色中心の周りに飛び出して協力しあうことを発見しました。
| ダイヤモンドの結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがあります。この窒素と空孔が対になったNitrogen- Vacancy(NV)中心はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となります。NV中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性を高空間分解能・高感度なセンサー機能として利用することが期待されています。NV中心の周りの結晶格子の歪み(ひずみ)により、NV中心の電子のエネルギー準位が分裂することが分かっていますが、電子と格子歪みの相互作用メカニズムなど詳細については、ほとんど解明されていませんでした。 本研究では、純度の高いダイヤモンド結晶の表面近傍に、密度を制御したNV中心を極めて薄いシート(ナノシート)状に導入しました。そのシートにパルスレーザーを照射し、ダイヤモンドの格子振動の様子を調べた結果、NV中心の密度が比較的低いにもかかわらず、格子振動の振幅が約13倍に増強されることが分かりました。そこで、量子力学に基づく計算手法(第一原理計算)でNV中心の周りの電荷状態を計算したところ、正負の電荷が偏った状態になっていることが分かりました。 電子と結晶格子の振動をまとめて一つの粒子とみなしたものをポーラロン準粒子と呼び、これにはいくつかのタイプがあります。ダイヤモンドでは、約70年前にフレーリッヒが提案したタイプは形成されないと考えられていましたが、今回の解析結果は、フレーリッヒ型のポーラロンがNV中心から飛び出してナノシート全体に広がっていることを示しています。本研究成果は、ポーラロンを利用したNV中心に基づく量子センシング技術の新たな戦略への道筋を開くものです。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明 教授
市川 卓人 大学院生(当時)
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀 准教授
慶應義塾大学 電気情報工学科
ポール フォンス 教授
【研究の背景】
ダイヤモンドは炭素原子のみからなる結晶で、高い硬度や熱伝導率を持っています。その特性を生かし、研磨材や放熱材料などさまざまな分野で応用されています。
そして、最近注目されているのが量子センサー注1)としての働きです。ダイヤモンド中の不純物には窒素やホウ素などさまざまなものがあります。その中でも、不純物原子で置換された点欠陥注2)に電子や正孔が捕捉され発光を伴う種類のものは、ダイヤモンドを着色させるため「色中心」と呼ばれ、量子準位の変化で温度や電場を読み取る量子センサーとして用いられています。量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心注3)と呼ばれる複合欠陥を用いたセンサーは、高空間分解能・高感度を必要とする細胞内計測やデバイス評価装置のセンサーへの応用が期待されています。
NV中心の周りの炭素原子の格子にはヤーン・テラー効果注4)により歪みが生じていることが分かっており、この格子歪みに伴いNV中心の電子状態が分裂し、NV中心からの発光強度などに影響を与えることが知られています。しかし、その格子歪みに関しては、ポーラロン注5)の存在が示唆されるものの、電子と格子振動の相互作用の観点からは十分な解明がなされていませんでした。
【研究内容と成果】
本研究では、極めて不純物が少ない高品質のダイヤモンド結晶に窒素イオン(14N+)を4種類の線量(ドーズ)で注入することで、NV中心の密度を制御しながら表面近傍40ナノメートルの深さに導入し、そのナノシートにおける炭素原子の集団運動(格子振動:フォノン注6))の様子を調べました。
フェムト秒(1000兆分の1秒、fs)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注7)を、NV中心を導入した高純度ダイヤモンド単結晶に照射し、ポンプ・プローブ分光法注8)によりダイヤモンド試料表面における反射率の変化を精密に計測しました。その結果、ポンプパルス照射直後(時間ゼロ)に見られる超高速に応答する電気・光学効果注9)の信号に加え、結晶中に発生した40テラヘルツ(1012 Hz)の極めて高い周波数を持つ位相がそろった格子振動を検出することに成功しました(図1)。さらにNV中心の密度を変化させて計測を行ったところ、14N+ドーズ量が1x1012/cm2のときに、格子振動の振幅(波形の縦軸方向の幅)が約13倍にも増強されることが分かりました(図2)。
通常の固体結晶では、格子欠陥を導入すると欠陥による格子振動の減衰が大きくなるため、格子振動の振幅は小さくなることが知られており、約13倍もの増強は固体物理学の範疇では説明できません。そこで第一原理計算注10)を用いて、NV中心の周りの電荷状態を計算したところ、正負の電荷が偏った状態になっていることが分かりました。これは、NV中心の周りに分極が発生しており、ヤーン・テラー効果によるポーラロンとは全く異なるフレーリッヒ型ポーラロン注11)がNV中心の周りに存在していることを示唆しています。また、約13倍もの格子振動の増強は、フレーリッヒ型ポーラロンがNV中心近傍から飛び出してナノシート全体に広がり、互いに協力し合っていることを示しています(図3)。一方、さらにドーズ量が増加すると、今度は欠陥による減衰により格子振動の振幅が小さくなることも分かりました(図2)。よって、ドーズ量が1x1012/cm2の時に増強と減衰がつり合い、最も協力現象が起こりやすいことが示されました。
【今後の展開】
本研究グループではこれまで、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)が発現することを報告しました。SHGは結晶にレーザー光を照射した際に、そのレーザー周波数の2倍の周波数の光が発生する現象です。今回の成果は、これらの先行研究に基づいたものです。
今回明らかにした物理的メカニズムは、レーザーパルスの強い電場下で起こるNV中心近傍のフレーリッヒ相互作用による協力的ポーラロンの生成と、それによるダイヤモンド格子振動の増強を示唆しています。また、今回観測したダイヤモンドの格子振動は、固体材料の中で最も高い周波数を持っています。つまり、これらの結果は、40テラヘルツという極めて高い周波数の格子歪み場による電子と格子振動の相互作用(ポーラロン準粒子)を利用したNV中心に基づく量子センシング技術の開発に向けた新たな戦略への道筋を開くものと言えます。
【参考図】

図1 本研究で行なった実験の概要図
NV中心なし、およびNV中心ありのダイヤモンド試料で得られた時間分解反射率信号。挿入図はNV中心の局所構造(楕円)およびポンプ・プローブ分光法の概要を示している。挿入図中の紫色の球が窒素(Nitrogen)を、点線で描かれた円が空孔(Vacancy)を示す。ポンプパルスを照射したのち、プローブパルスを照射するまでの時間を遅延時間(単位はfs)と呼ぶ。

図2 実験で得られた位相がそろった格子振動信号のドーズ依存性
NV中心なし、および4種類の窒素イオン(14N+)のドーズ量におけるダイヤモンド試料の時間分解反射率変化信号。黒線は、位相がそろった格子振動の信号を減衰型の正弦波(sin関数)によりフィットした結果である。ドーズ量が1x1012 N+cm-2の時に、位相がそろった格子振動の振幅がNV中心なしの場合と比較して約13倍に増強されていることが分かった。

図3 NVダイヤモンドにおける協力的ポーラロニック描像の模式図
図中のτは、パルスレーザー(ポンプパルス)照射後の経過時間(単位はfs)を表す。(a) 励起前のNVダイヤモンドの電荷状態を示す。NV中心は負に帯電したNV-状態(赤色の電荷分布)と電荷が中和されたNV0状態(緑色の電荷分布)が混在し、それぞれは局在している。挿入図はイオン化ポテンシャルINVを示し、rはイオン半径である。 (b) 光励起により、NV中心はポンプ電場Epumpによってイオン化される。 (c) 光励起直後、電荷は強く非局在化され、NV中心間の距離にわたって広がり、非線形分極PNLを形成する。 (d) 非線形分極PNLによりコヒーレントな(位相のそろった)格子振動が駆動される。
【用語解説】
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
結晶格子中に原子1個程度で存在する格子欠陥を指す。原子の抜け穴である空孔や不純物原子で置換された置換型欠陥などがある。
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」は、ダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NV中心には、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
固体中において、電子的に縮退した基底状態を持つ場合、結晶格子は変形する(歪ませる)ことによりエネルギーが低く安定な状態になる。このような効果をヤーン・テラー効果という。1937年にイギリスのハーマン・アーサー・ヤーンとハンガリーのエドワード・テラーにより提唱された。
結晶中の格子振動と電子が相互作用すると、結合して相互作用の衣を着た素励起である準粒子、すなわちポーラロンが生成される。ポーラロンの存在は1933年にロシアの物理学者レフ・ダヴィドヴィッチ・ランダウによって提案された。フレーリッヒが提案したタイプのポーラロン注11)はこれまで極性をもつ半導体や誘電体など(分極を有する材料)で報告されているが、ダイヤモンドは極性材料ではないため、フレーリッヒ型ポーラロンは観測されていなかった。
原子の集団振動を格子振動と呼ぶ。格子振動を量子化したものをフォノンと呼ぶ。
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
強い励起パルス(ポンプパルス)により試料を励起し、時間遅延をおいて弱い探索パルス(プローブパルス)を照射し、プローブ光による反射率変化などから試料内部に励起された物質の応答を計測する手法のこと。
物質に電場を印可すると、その強度に応じて屈折率が変化する効果のこと。
「もっとも基本的な原理に基づく計算」という意味で、量子力学の基本法則に基づいた電子状態理論を用いて電子状態を解く計算手法である。物質の光学特性などの物性を求めることができる。
電子と縦波光学フォノンの間の相互作用をフレーリッヒ相互作用と呼ぶ。1954年にドイツの物理学者ヘルベルト・フレーリッヒにより提唱された。この相互作用により生じたポーラロンがフレーリッヒ型ポーラロンである。
【研究資金】
本研究は、科研費による研究プロジェクト(22H01151, 22J11423, 22KJ0409, 23K22422, 24K01286)、および科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)(JPMJCR1875)の一環として実施されました。
【掲載論文】
| 題名 | Cooperative dynamic polaronic picture of diamond color centers. (ダイヤモンド色中心の協力的な動的ポーラロニック描像) |
| 著者名 | T. Ichikawa, J. Guo, P. Fons, D. Prananto, T. An, and M. Hase |
| 掲載誌 | Nature Communications |
| 掲載日 | 2024年8月30日 |
| DOI | 10.1038/s41467-024-51366-x |
令和6年9月2日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/09/02-1.html物質化学フロンティア研究領域の都准教授らの論文がJACS Au誌の表紙に採択
物質化学フロンティア研究領域の都 英次郎准教授らの「統合失調症の認知機能障害を回復する新薬候補- 脳移行性の皮下投与型ペプチドナノ製剤を開発 -」に係る論文が、アメリカ化学会発行の生物・化学系トップジャーナルJACS Au誌の表紙に採択されました。
なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、基盤研究(B)(20H03392)、挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST)研究成果最適展開支援プログラム(A-STEP)(JPMJTR22U1)、AMED橋渡し研究プログラム(JP22ym0126809)、創薬等先端技術支援基盤プラットフォーム(BINDS)(JP18am0101114、JP23ama121052、JP23ama121054)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、生体機能・感覚研究センター、広島大学トランスレーショナルリサーチセンターの支援などのもと行われたものです。
■掲載誌
JACS Au, Vol. 4, No. 8
掲載日:2024年8月26日
■著者
Kotaro Sakamoto*, Seigo Iwata, Zihao Jin, Lu Chen, Tatsunori Miyaoka, Mei Yamada, Kaiga Katahira, Rei Yokoyama, Ami Ono, Satoshi Asano, Kotaro Tanimoto, Rika Ishimura, Shinsaku Nakagawa, Takatsugu Hirokawa, Yukio Ago*, and Eijiro Miyako*
■論文タイトル
Cyclic Peptide KS-133 and KS-487 Multifunctionalized Nanoparticles Enable Efficient Brain Targeting for Treating Schizophrenia
■論文概要
統合失調症は、幻覚や妄想などの陽性症状、意欲の低下などの陰性症状、そして注意・集中力の低下や記憶力・判断力の低下といった認知機能障害などを特徴とする精神疾患で、人口の約1%に発症し、その罹患者は日本では約80万人、全世界では2000万人以上いると言われています。本研究では、統合失調症の発症に関係する神経ペプチド受容体VIPR2に対する選択的な阻害ペプチドKS-133と脳移行性のLRP1結合ペプチドKS-487を同時に搭載するナノ粒子を創製し、皮下投与型のペプチド製剤として開発に成功しました。また、本ペプチド製剤の皮下投与によって、VIPR2の過剰な活性化によって引き起こされた動物モデルの認知機能の低下を正常レベルまで回復可能なことを見出しました。本ペプチド製剤は、既存薬とは全く異なるメカニズムをもつため、統合失調症の新しい治療法の開発につながることが期待されます。
表紙詳細:https://pubs.acs.org/toc/jaaucr/4/8
論文詳細:https://pubs.acs.org/doi/10.1021/jacsau.4c00311
プレスリリース:https://www.jaist.ac.jp/whatsnew/press/2024/06/27-1.html
令和6年8月28日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/08/28-1.html学生のPATRAさんが第73回高分子学会年次大会において優秀ポスター賞を受賞
学生のPATRA, Amarshiさん(博士後期課程3年、物質化学フロンティア研究領域、松見研究室)が第73回高分子学会年次大会において優秀ポスター賞を受賞しました。
公益社団法人高分子学会は、高分子科学と技術およびこれらに関連する諸分野の情報を交換・吸収する、さまざまな場を提供しています。会員はこれらの場を通じ、学術的向上や研究の新展開のみならず会員相互の人間的な触れ合いや国際的な交流を深めています。
優秀ポスター賞は、高分子学会年次大会および高分子討論会において、優れたポスター発表を行った発表者に授与されるもので、もって発表を奨励し、高分子科学ならびに同会の発展に資することを目的としています。
第73回高分子学会年次大会は、6月5日~7日にかけて仙台国際センターにて開催されました。
※参考:第73回高分子学会年次大会
■受賞年月日
令和6年6月7日
■研究題目、論文タイトル等
高密度にイミダゾリウム基を有する高分子化イオン液体を炭素系負極バインダーとした金属イオン二次電池
■研究者、著者
PATRA, Amarshi、松見紀佳
■受賞対象となった研究の内容
フマル酸エステルは高分子合成用途のモノマーとして活用可能なバイオベース化合物であり、重合によって高官能基密度を有するポリカルボン酸を与える。本研究ではフマル酸エステルから誘導した高官能基密度を有するポリカルボン酸とイミダゾリウムヒドロキシドとの高分子反応により、高官能基密度型高分子化イオン液体を合成した。本ポリマーをリチウムイオン二次電池用グラファイト負極バインダー、ナトリウムイオン二次電池用ハードカーボン負極バインダーとしてそれぞれ検討したところ、いずれも負極における優れた安定化効果、イオン拡散能の向上が観測され、良好な充放電挙動につながることが見出された。
■受賞にあたって一言
Receiving the Poster Award at the 73rd SPSJ Annual Meeting is a profound honor. I extend my heartfelt gratitude to Prof. Noriyoshi Matsumi for his unwavering support and encouragement. My deepest thanks also go to my colleagues, family, friends, and loved ones for their invaluable assistance. This award not only validates my dedication but also motivates me to strive for greater achievements. Overcoming numerous challenges with persistence, I hope my work will significantly contribute to educational research. Special thanks to JAIST and MEXT for providing wonderful facilities to undertake my experiments and financial support for my doctoral degree.


令和6年8月27日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/08/27-1.htmlがんを欺くためのがん細胞の顔をしたナノ粒子の開発に成功 -マウス体内のがんを高感度検出・効果的治療が可能に!-
がんを欺くためのがん細胞の顔をしたナノ粒子の開発に成功
-マウス体内のがんを高感度検出・効果的治療が可能に!-
【ポイント】
- カーボンナノホーンにがん細胞成分と抗がん剤を吸着させた複合体の作製に成功
- 当該ナノ粒子の高い血中滞留性、腫瘍内浸潤作用、EPR効果により腫瘍に集積し、マウスに移植したがんの可視化と、免疫賦活化作用、抗がん作用、光熱変換によるがん治療が可能であることを実証
- 当該ナノ粒子と近赤外光を組み合わせた新たながん診断・治療技術の創出に期待
| 北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)物質化学フロンティア研究領域の都 英次郎准教授らは、カーボンナノホーン*1表面にがん細胞成分と抗がん剤を被覆したナノ粒子の作製に成功した(図1)。得られたナノ粒子は、ナノ粒子特有のEPR効果*2のみならず、がん細胞成分に由来する血中滞留性、腫瘍標的能によって、大腸がんを移植したマウス体内の腫瘍内に効果的に集積し、がん細胞成分に由来する免疫賦活化効果と抗がん剤に由来する薬効に加え、生体透過性の高い近赤外レーザー光*3により、がん患部の可視化と光熱変換による多次元的な治療が可能であることを実証した。さらに、マウスを用いた生体適合性試験などを行い、いずれの検査からもナノ粒子が生体に与える影響は極めて少ないことがわかった。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待される。 |
【研究背景と内容】
ナノ炭素材料の一つであるカーボンナノホーン(CNH)は、高い生体適合性と優れた物理化学的特性を有することが知られており、とりわけバイオメディカル分野で大きな注目を集めている。都准教授は、CNHが生体透過性の高い波長領域(650~1100 nm)のレーザー光により容易に発熱する特性(光発熱特性)を世界に先駆けて発見し、当該光発熱特性を活用したがん診断・治療技術の開発を推進している[例えば、Nature Communications 11, 4117 (2020).]。
CNHは、そのまま水などに分散させようとすると、分子間の強い相互作用により、粒状に凝集してしまう。CNHの光発熱特性を発揮させるためには、この凝集状態を解消しCNHを溶媒中にナノレベルで分散させる必要がある。従来法としては、ポリエチレングリコール(PEG)などの水溶性ポリマーをCNH表面に化学的に被覆することで水中分散性を改善させる手法がある。しかし、PEG修飾したナノ粒子を繰り返し投与した際、2回目投与時において、従来の高い血中滞留性が損なわれ、血中から速やかに消失するという現象[Accelerated blood clearance(ABC)現象]が報告されているだけでなく、PEGそのものが重篤なアレルギー反応を引き起こす可能性があるため、代替材料の開発が急務となっている。
がん細胞は、免疫細胞からの攻撃回避のために特殊な細胞膜機能を有している。また、堅牢な腫瘍構造を維持するために、がん細胞同士の癒着・親和性を高めることが可能となる特別な細胞膜成分で構成されている。さらに、がん細胞内の構成成分(遺伝子やタンパク質など)には免疫活性を高める効果があることが知られている。そこで本研究グループは、これらのがん細胞成分(細胞膜、遺伝子、タンパク質など)をCNHに搭載することができれば、CNHのマウス体内における血中滞留性、腫瘍内浸潤性、免疫活性などを高めることができるのではないかと考え、研究をスタートさせた。より具体的には、がん細胞成分と抗がん剤を被覆したCNHをがん患部に同時に送り込むことで、がん細胞成分に由来する上記の血中滞留効果、腫瘍内浸潤作用、免疫賦活化能に加え、抗がん剤に由来する薬効と共に、生体透過性の高い近赤外レーザー光を用いることで、患部の可視化やCNHに由来する光熱変換を利用した、新たながんの診断や治療の実現を目指した。
当該目標を達成するために、今回開発した技術では、簡便な超音波照射によってがん細胞成分をCNH表面に吸着させることで、CNHを水溶液中に分散できるようにした。また、がん細胞成分を活用することで、水に不溶な抗がん剤[パクリタキセル(PTX)]もCNH表面に同時に被覆することに成功した(図1)。この方法で作製したがん細胞成分-PTX-CNH複合体は、30日以上の粒径安定性を有していること、細胞に対し高い膜浸透性を有し抗がん作用を発現すること、近赤外レーザー光照射により発熱が起こることが確認できたため、がん患部の可視化と治療効果について試験を行った。なお、がん患部の可視化には、がん診断に利用可能な近赤外蛍光色素[インドシアニングリーン(ICG)]をがん細胞成分と共にCNH表面に結合させたナノ粒子(がん細胞成分-ICG-CNH複合体)を利用した。
大腸がんを移植して約10日後のマウスに、当該がん細胞成分-ICG-PTX-CNH複合体を尾静脈から投与し、24時間後に740~790 nmの近赤外光を当てたところ、がん患部が蛍光を発している画像が得られた(図2A)。また、当該ナノ粒子が、非イオン性のポリエトキシ化界面活性剤(クレモフォールEL)で被覆した従来型の水溶性ポリマーで被覆したCNH(CRE-ICG-CNH複合体)に比較して、がん組織に効果的に取り込まれていることが分かった(図2A)。そこで、当該ナノ粒子(がん細胞成分-PTX-CNH複合体)が集積した患部に対して808 nmの近赤外レーザー光を照射したところ、がん細胞成分に由来する血中滞留効果、腫瘍内浸潤作用、免疫賦活化能と抗がん剤に由来する薬効に加え、CNHの光熱変換による効果で2日後には、がんを完全に消失させることに成功した(図2B)。
一方、腫瘍内における薬効メカニズムを組織学的評価により調査したところ、とりわけレーザー照射したがん細胞成分-PTX-CNH複合体において細胞障害性の高いT細胞やナチュラルキラー細胞などの免疫細胞が活性化されていることが明らかとなった。
さらに、がん細胞成分-PTX-CNH複合体をマウスの静脈から投与し、生体適合性を血液検査(1週間調査)と体重測定(約1ヵ月調査)により評価したが、いずれの項目でもがん細胞成分-PTX-CNH複合体が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発したがん細胞成分のナノ粒子コーティング技術が、革新的がん診断・治療法の基礎に成り得ることを示すだけでなく、ナノテクノロジーや光学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、2024年8月19日に生物・化学系のトップジャーナル「Small Science」誌(Wiley発行)のオンライン版に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
図1.がん細胞成分を被覆したナノ粒子の作製と本研究の概念。
CNH: カーボンナノホーン、PTX: パクリタキセル。
図2. ナノ粒子をがん患部に集積・可視化(A)し、光照射によりがんを治療(B)
(赤色の囲いは腫瘍の位置を示している)。
【論文情報】
| 掲載誌 | Small Science |
| 論文題目 | Biomimetic functional nanocomplexes for photothermal cancer chemo-immunotheranostics |
| 著者 | Nina Sang, Yun Qi, Shun Nishimura, Eijiro Miyako* |
| 掲載日 | 2024年8月19日にオンライン版に掲載 |
| DOI | 10.1002/smsc.202400324 |
【用語説明】
飯島澄男博士らのグループが1998年に発見したカーボンナノチューブの一種。直径は2~5 nm、長さ40~50 nmで不規則な形状を持つ。数千本が寄り集まって直径100 nm程度の球形集合体を形成している。とりわけ、薬品の輸送用担体として期待されており、バイオメディカル分野で注目を集めている。
100 nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみ、がん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
令和6年8月22日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/08/22-1.htmlバイオ機能医工学研究領域の廣瀬講師がCHEMINAS 49において優秀研究賞を受賞
バイオ機能医工学研究領域の廣瀬大亮講師が、化学とマイクロ・ナノシステム学会第49回研究会(CHEMINAS 49)において、優秀研究賞を受賞しました。
一般社団法人化学とマイクロ・ナノシステム学会は、化学・生命科学・医学などの物質や生命現象を対象とする学問分野と、マイクロ・ナノスケールの材料・加工、計測・制御、システム構築などを対象とする工学技術を融合することで、新たな学術領域・技術分野を開拓し、それらを応用した新規産業の創出を目指しています。
CHEMINAS 49は、令和6年6月1日~2日にかけて東京農工大学小金井キャンパスにて開催され、研究の質とフラッシュプレゼンテーションを含む発表の質の両面において、優秀な研究発表を行った正会員または賛助会員の発表者、及びその連名者全員に優秀研究賞が授与されました。
※参考:CHEMINAS 49
■受賞年月日
令和6年6月2日
■研究題目、論文タイトル等
酸化物薄膜トランジスタ型核酸センサーの機械学習を用いた検出判定
■研究者、著者
廣瀬大亮、ZHAO Yunshu(博士前期課程2年)、高村禅
■受賞対象となった研究の内容
本研究室で研究を進めている酸化物薄膜トランジスタ(ox-TFT)型センサーは、小型、高感度、リアルタイム検出可能と、核酸検出の極めて有力なツールとなる可能性を有している。しかしながら、検体のわずかな液性変化で検出判定が左右されるという打たれ弱さがあった。そこで我々は、機械学習を用いることでより精度の高いDNAの検出判定が可能になるのではないかと考えた。500以上の実測データを用いて、主成分分析による測定データの次元圧縮ならびに教師あり学習による検出判定を行ったところ、高精度での核酸の検出判定ができることがわかった。
・発表ポスターより
背景

作製した酸化物薄膜トランジスタ型センサーと機械学習による検定結果
■受賞にあたって一言
この度は化学とマイクロ・ナノシステム学会第49回研究会において優秀研究賞を受賞でき、大変光栄です。講師就任後、初の発表でしたが、気負うことなくこれまでの成果をまとめることができたのが、吉と出たかと思っています。材料科学と情報科学を組み合わせることで、魅力的な研究となったと実感しております。高村禅教授をはじめ、研究室の皆さまより様々なサポートをいただいたことに深く感謝します。


令和6年8月22日
学生の福田さんとJANCHAIさんがPESI2024においてBest Poster Paper Awardを受賞
学生の福田雄太さん(博士後期課程1年、物質化学フロンティア研究領域、山口政之研究室)とJANCHAI, Khunanyaさん(博士後期課程3年、物質化学フロンティア研究領域、山口政之研究室)が、Polymer Engineering & Science International 2024(PESI2024)において、Best Poster Paper Awardを受賞しました。
PESI2024は、令和6年7月21日~25日にかけて東京工業大学にて開催された高分子加工に関する国際会議です。同会議では、高分子工学および高分子科学の様々な研究分野から国際的な研究コミュニティーが集まり、高分子材料、技術、方法論に関わる最新の研究成果について議論が行われました。
※参考:PESI2024
■受賞年月日
令和6年7月24日
【福田雄太さん】
■研究題目、論文タイトル等
Structure control of polypropylene extrudate by addition of hydrogenated poly(dicyclopentadiene)
■研究者、著者
Yuta Fukuda, Masayuki Yamaguchi
■受賞対象となった研究の内容
ポリプロピレン押出物にはクロスハッチ構造と呼ばれる構造が常に存在し、そのために固体物性の低下を招いている。この研究では、ポリプロピレンと溶融状態で相溶する異種ポリマーを添加することで、クロスハッチ構造の形成を抑制できることを明らかにした。
■受賞にあたって一言
この度はPolymer Engineering & Science international 2024においてポスター賞を受賞でき、大変うれしく思っています。日頃から熱心な指導をしてくださる山口政之教授、そして研究室のメンバーに心から感謝します。
【JANCHAI, Khunanyaさん】
■研究題目、論文タイトル等
Effect of the addition of low-density polyethylene on the rheological properties and crystallization behaviors under shear flow for polypropylene
■研究者、著者
Khunanya Janchai, Masayuki Yamaguchi
■受賞対象となった研究の内容
低密度ポリエチレンを添加することで、ポリプロピレンの流動誘起結晶化が顕著になることを明らかにした研究内容である。その結果、ポリプロピレン分子鎖の配向度が高くなり、剛性向上も期待できる。
■受賞にあたって一言
I am deeply pleased and honored to receive the BEST POSTER PAPER AWARD. I get the benefits of attending a conference to learn, develop my research skills, and have the chance to get feedback from experts on my work. I would like to express my sincere gratitude to my supervisor, Professor Masayuki Yamaguchi, who gave me invaluable advice, continuous support, and the excellent opportunity to join this conference. Also, I'd like to express my sincere thanks to the laboratory members for their good cooperation. This recognition is a significant milestone in my educational journey and a testament to my hard work and dedication to my studies. Thank you for recognizing my efforts and the potential you see in me. This honor will undoubtedly be a motivator for my future academic pursuits and a cherished accolade in my educational career.
令和6年8月19日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/08/19-1.html物質化学フロンティア研究領域の都准教授らの論文がAdvanced Functional Materials誌の表紙に採択
物質化学フロンティア研究領域の都 英次郎准教授らの「液体金属ナノ粒子を活用するがん光免疫療法の開発に成功」に係る論文が、ドイツの生物・化学系トップジャーナルAdvanced Functional Materials誌の表紙に採択されました。
なお、本研究は、科研費基盤研究(A)(23H00551)、科研費挑戦的研究(開拓)(22K18440)、科学技術振興機構(JST)研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Advanced Functional Materials, Vol. 34, No. 31
掲載日:2024年8月1日
■著者
Yun Qi, Mikako Miyahara, Seigo Iwata, Eijiro Miyako*
■論文タイトル
Light-Activatable Liquid Metal Immunostimulants for Cancer Nanotheranostics
■論文概要
ガリウム・インジウム(Ga/In)合金からなる室温で液体の金属(液体金属)は、高い生体適合性と優れた物理化学的特性を有することが知られており、とりわけナノ粒子化した液体金属をバイオメディカル分野に応用する研究に大きな注目が集まっています。本研究では、液体金属ナノ粒子を活用した新しいがん光免疫療法の開発に取り組みました。より具体的には、免疫賦活化作用のある物質を液体金属に組み合わせ、がん患部に選択的に送り込ませることで、免疫による高い抗腫瘍作用を発現させることに成功しました。また、本研究では、生体透過性の高い近赤外光を用いることで、患部の可視化や光熱変換を利用した、新たながんの診断や治療法を提案しています。
表紙詳細:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202470176
論文詳細:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202305886
プレスリリース:https://www.jaist.ac.jp/whatsnew/press/2023/08/04-1.html
令和6年8月9日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/08/09-1.htmlマルチモーダルセンシングを行う触覚センサにより人とロボットの協働をより安全に
マルチモーダルセンシングを行う触覚センサにより
人とロボットの協働をより安全に
【ポイント】
- 柔らかい素材を用いた連続体ロボット用触覚センサの形状復元情報の取得や接触検出を行うDeepLearningモデルを含む統合的なマルチモーダルセンシングプラットフォームを開発しました。
- 知覚情報を用いたロボットアームの動きを決定するアドミタンスベースコントローラにも取り組みました。
- 今後、このプラットフォームに基づいて、柔らかい素材を用いたセンサやロボットへの応用を期待します。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域のHo Anh Van准教授、Nguyen Tai Tuan大学院生(博士後期課程)、Luu Khanh Quan大学院生(博士後期課程)及びハノイ工業大学(ベトナム)のNguyen Quang Dinh博士の研究チームは、ソフトロボットのための新しい触覚センシングプラットフォームを開発しました。 |
【研究の内容】
本研究では、柔らかいスキンを持つ柔軟なロボットアーム用に設計した"ConTac"と呼ばれる新たなビジョンベースの触覚センシングシステムを開発しました。このシステムは、ロボットアームの位置推定と触覚検出を行うことが出来ます。また、シミュレーション上のデータで訓練した二つのDeepLearningモデルを使用しており、追加の調整を行うことなく実世界のデータで動作することが可能です。このシステムにおいて、二つの異なるロボットモジュールでテストし、その有効性を確認しました。さらに、形状情報と触覚情報を利用する制御戦略を開発し、ロボットアームが衝突に適切に対応できるようにしました。これらにより、このアプローチは、柔軟性の高いロボットの知覚と制御を大幅に改善できる可能性があることを解明しました。
自然界では象の鼻やタコの足など器用な動きをする体が存在します。本研究チームは、これらの自然構造の原理をロボットへ応用することで、高い堅牢性や安全性を備えた連続体ロボット[1]の開発を目指しています。
連続体ロボットは、ほとんどのタスクで必要となる自由度(DOF)よりも多くの自由度を持ち、剛体ロボットと異なる柔軟性や器用さにより、不測の事態へ対応可能です。特に、障害物や外乱などがある環境下で真価を発揮します。しかし、連続体ロボットのように柔軟性の高いロボットは、動作中に複雑な屈曲やカーブを描くため、形状や動きを正確に把握することが課題です。解析により、これらのロボットの運動学・動力学的問題を解決することは可能ですが、複雑なモデリングが必要となります。
解析とは別のアプローチとして、連続体ロボットに組み込まれた柔軟性を持つセンサを用いる方法があります。このセンサは、ロボットの表面に取り付けたり、覆ったりすることが出来ますが、この方法では多くの低解像度センサを必要とし、システムが大型になってしまうという欠点があります。そのため、ロボットやアクチュエータの端に1つのセンサモジュールを使用し、大型化を避ける効率的な解決策が求められていました。ところが、これまでの研究では、ロボットの姿勢推定に重点が置かれており、ロボットの柔軟性に対応するための接触検出は含まれていませんでした。
この問題に取り組むため、本研究チームは柔らかいスキンを持つロボットアームの形状を推定し、接触を検出できるConTacシステムを開発しました(図1)。このシステムの最終的な目標は、連続体ロボットに実装することですが、本研究では、検証のため柔らかいスキンを持つ多関節ロボットアームを用いて"知覚"に焦点を当て、開発を行いました。このシステムには、連続体ロボットのような屈曲動作が可能な骨格、マーカー付きの柔らかいスキン、スキンの変形を撮影するカメラ、スキンの形状と触覚のセンシングモデル及び接触機構が含まれます。また、キャリブレーションを行うことなく、同じ機構や形態を持つあらゆるロボットに適用することが出来ます。さらに、知覚情報を用いてロボットアームの動きを決定するアドミタンスベースコントローラ[2]を開発しました。

図1:ConTac概要。人間がロボットに触れると、ロボットは衝突を避けるために動きを変える。
本研究チームが開発を行ったConTacは、複雑な調整を必要とせず、様々なロボットアームで使用することを目指しています。これを実現するために、シミュレーションデータのみで学習させたDeepLearningモデルを用いました。これらのモデルは実際のロボットへ適応できるため、時間とリソースを短縮できます(図2)。ConTacシステムを搭載した柔軟なロボットアームは、ロボットが障害物の多い環境をナビゲーションし、人間とロボットが安全に作業することが求められるスマート農業やヘルスケアサービスに適しています。また、その柔らかさと柔軟的な機構は、周囲の環境を感知する能力が組み合わさり、植物や患者などへの安全なインタラクションでもあります。

図2:ConTacフレームワーク。センシングモデルの開発には、シミュレーション環境によるトレーニングデータの収集が用いられる。このシステムを搭載したロボットは、人間とロボットのインタラクションに用いられることが期待されている。
【今後の展開】
将来的に、既存のロボットシステムに簡単に組み込むことができる触覚センサの開発が期待されます。この進歩により、新しいセンシングと制御手法が導入されれば、ロボット本来の設計に変更を加えることなく、人間とロボットの安全な相互作用が促進されます。すべてのロボットが触覚を持つ社会となれば、産業と日常生活などに大きな変革をもたらすこととなります。
本研究成果は、2024年7月15日から19日にかけてオランダのデルフトで開催の、ロボティクス研究会におけるトップカンファレンス「ROBOTICS: SCIENCE AND SYSTEMS」で発表されました。
【論文情報】
| 論文題目 | ConTac: Continuum-Emulated Soft Skinned Arm with Vision-based Shape Sensing and Contact-aware Manipulation |
| 発表先 | Robotics: Science and Systems (RSS) |
| 著者 | Tuan Tai Nguyen, Quan Khanh Luu, Dinh Quang Nguyen, and Van Anh Ho* |
| URL | https://enriquecoronadozu.github.io/rssproceedings2024/rss20/p097.pdf |
【用語解説】
令和6年8月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/08/06-1.html金沢大学・北陸先端科学技術大学院大学 第3回共同シンポジウムを開催
令和6年7月29日(月)、本学小ホールにおいて、金沢大学・北陸先端科学技術大学院大学 第3回共同シンポジウムを開催しました。
金沢大学と本学は、平成30年度より融合科学共同専攻における分野融合型研究を推進してきましたが、昨年度より、融合科学共同専攻の活動にとどまらず、両大学間の共同研究の発展と促進を目的に共同シンポジウムを開催しており、今回で第3回目の開催となります。
「AI」をテーマに開催した今回は、寺野 稔学長による開会挨拶後、本学 人間情報学研究領域 池 勇勳准教授、金沢大学 融合研究域 融合科学系 米陀 佳祐准教授、金沢大学 融合研究域 融合科学系 藤生 慎准教授、本学 人間情報学研究領域 岡田 将吾准教授にそれぞれAI技術に関する先進的な研究開発についてご講演いただき、金沢大学 和田 隆志学長の挨拶をもって閉会となりました。
本シンポジウムが、今後の両大学間の共同研究の発展と促進を目的としていることから、各講師の先生方は、自身の研究内容の説明に加えて、「どのような研究分野との共同研究が可能か」という点も併せて講演されました。
また、共同研究のきっかけは研究者同士の雑談からというケースが多いことから、シンポジウム終了後に研究者同士が自由に歓談できる時間を設けました。講演後のリラックスした空間の中、多くの研究者が活発に情報交換を行い、お互いの研究内容について理解を深めました。
オンライン配信とのハイフレックス形式にて開催した本シンポジウムには、両大学から多くの方が参加され、質疑応答の時間にも研究者間による活発な意見交換が行われました。本シンポジウムが今後両大学間の共同研究発展の端緒となるよう推進して参ります。

開会の挨拶をする寺野学長

講演①「無人移動ロボットによる過酷な環境への挑戦」
池 勇勳 准教授
(本学 人間情報学研究領域)

講演②「市街地自動運転の認識技術と実証実験の取り組みについて」
米陀 佳祐 准教授
(金沢大学 融合研究域 融合科学系)

講演③「AIを用いた戦略的次世代型橋梁点検支援システムの開発」
藤生 慎 准教授
(金沢大学 融合研究域 融合科学系)

講演④「マルチモーダルインタラクション研究の展開と課題」
岡田 将吾 准教授
(本学 人間情報学研究領域)

閉会の挨拶をする金沢大学 和田学長

歓談時間の様子
令和6年8月1日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/08/01-2.html大聖寺高等学校の生徒さんが来学
7月25日(木)、加賀市にある大聖寺高等学校の1年生36名の皆さんが来学し、3つの講義を受講しました。
1つ目は、サスティナブルイノベーション研究領域の小矢野幹夫教授による「『熱から発電、電気で熱を操る』近未来のテクノロジー『熱電変換技術』とは?」について、温度差によって電圧が発生する原理「ゼーベック効果」に関する説明があり、その後、生徒たちはこの原理を利用して動く熱電ミニカーを作り、より速く走らせることに熱心に取り組んでいました。
2つ目は、人間情報学研究領域の長谷川忍教授が「AIと人間の学習の違いを学ぼう」と題して、AIと人間の学習プロセスの共通点と違いについて解説し、生徒たちは長谷川研究室が作成したコンピュータゲームを通して、AIを学習させる方法を学びました。
3つ目は、創造社会デザイン研究領域の謝浩然准教授が「生成AIの仕組み」について、生徒たちからのリクエストに応じて画像を生成するなど実演を交えて説明しました。グループワークにおいて、生徒たちは「2050年の世界」をイメージして画像を生成し、その創作意図を発表しました。
続く施設見学では、ナノマテリアルテクノロジーセンターの透過電子顕微鏡や情報社会基盤研究センターの大規模並列計算機「KAGAYAKI」を興味深く見ていました。
今回の訪問が科学技術に興味を持つきっかけになれば幸いです。

小矢野教授の講義
「『熱から発電、電気で熱を操る』近未来の
テクノロジー『熱電変換技術』とは?」

長谷川教授の講義
「AIと人間の学習の違いを学ぼう」

謝准教授の講義
「生成AIの仕組み」

透過電子顕微鏡の見学
令和6年7月30日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/07/30-1.html学生のLIUさんがICT/ECT 2024においてThe ICT2024 Outstanding Poster Prizeを受賞
学生のLIU, Ruianさん(博士後期課程3年、サスティナブルイノベーション研究領域、小矢野研究室)が40th International & 20th European Conference on Thermoelectrics (ICT/ECT 2024)においてThe ICT2024 Outstanding Poster Prizeを受賞しました。
国際熱電学会とヨーロッパ熱電学会が後援するICT/ECT 2024は、第40回国際熱電会議と第20回ヨーロッパ熱電会議の合同会議で、AGHクラクフ大学が主催し、ポーランド(クラクフ)にて令和6年6月30日~7月4日にかけて5日間にわたり開催されました。
国際熱電会議(ICT)は、理論とモデリング、物理現象、新素材、測定技術、熱電デバイス、システム、アプリケーションなどあらゆる側面を網羅するトピックを取り扱う、熱電変換技術に関する最も主要な国際会議であり、化学、物理学、材料科学の分野における新しいアイデアや発見、また熱電変換の進歩に寄与する産業およびエネルギー分野における実用的な応用について議論する場を提供しています。
ICT/ECT 2024では約300件のポスター発表があり、その中から優れた発表を行った8件の発表者に対してThe ICT2024 Outstanding Poster Prizeが授与されました。
参考:ICT/ECT2024
ICT/ECT2024参加レポート
■受賞年月日
令和6年7月3日
■研究題目、論文タイトル等
Investigation of lattice anharmonicity in Se-doped Bi2Te3 based on temperature-dependent Raman spectroscopy
■研究者、著者
劉鋭安(LIU, Ruian)、宮田全展、小矢野幹夫
■受賞対象となった研究の内容
SeドープのBi2Te3は、高性能なn型熱電材料としてインターネット光通信レーザーの温度制御などに広く応用されており、その熱電物性はよく調べられている。しかしながらこの機能性材料の低熱伝導率の原因であるフォノン散乱過程に関する実験はほとんど行われていない。私は、Seのドープ量を系統的に変化させたBi2Te3-xSex材料を合成し、ラマン散乱ピークの半値幅の温度依存性の解析から、結晶歪みやSe置換量による格子の非調和振動の変化を詳細に調べた。その結果、3次の非調和項の寄与が支配的である一方、4次以上の非線形的な非調和振動項はほとんど寄与しないことを明らかにした。いままでこの物質の低い熱伝導率は高次の非調和格子振動によるものと考えられていたが、私の実験結果はその考え方に修正をもたらすものであり、より現実的な低熱伝導率の原因の解明につながる重要な成果である。
■受賞にあたって一言
この度は、国際熱電会議よりThe ICT2024 Outstanding Poster Prizeを拝受しましたこと、誠に光栄に存じます。この表彰は私個人の力だけではなく、日々ご指導を賜りました小矢野幹夫教授、宮田全展講師(現産業技術総合研究所)をはじめ、研究室の皆様のお陰です。この場をお借りして心より深く感謝を申し上げます。また、渡航諸費用にご支援を頂いた丸文財団にも厚く御礼申し上げます。


令和6年7月26日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/07/26-1.html学生のJANCHAIさんがプラスチック成形加工学会第34回論文賞を受賞
学生のJANCHAI, Khunanyaさん(博士後期課程3年、物質化学フロンティア研究領域、山口研究室)が一般社団法人プラスチック成形加工学会の第34回論文賞を受賞しました。
プラスチック成形加工学会は、プラスチック材料・成形条件・ベストな製品に至る全工程にわたって科学と技術のメスを入れ、プラスチックの新しい可能性を切り開くため、会員相互の情報交換や議論を行う場を提供しています。
同学会では、プラスチック成形加工に関する学術研究を奨励し、学術の発展を促進することを目的として、論文賞を設けています。同賞は、贈賞式前年の会誌「成形加工」(1〜12月号)に掲載され公表された研究論文を対象に、独創性や工学的・工業的寄与と波及効果等の観点から、最も優秀と認められるもの2編以内を表彰するものです。
※参考:プラスチック成形加工学会
■受賞年月日
令和6年6月19日
■研究題目、論文タイトル等
ポリプロピレンのせん断誘起結晶化に及ぼす繊維状結晶核剤の影響
■研究者、著者
Khunanya Janchai、井上貴博(新日本理化㈱)、岩崎祥平(新日本理化㈱)、木田拓充、山口政之
■受賞対象となった研究の内容
身の回りの多くのプラスチック製品に使われているポリプロピレンの結晶化度および分子配向性を高めて剛性を高める技術を提案しています。共同研究先企業との共著論文となっています。
■受賞にあたって一言
この度は、プラスチック成形加工学会論文賞を賜り恐縮に存じます。当該論文をまとめるにあたっては、多くの方々のご支援をいただきました。特に、私が研究を行う上での指導や助言をしてくださった山口政之教授には深く感謝しております。査読の過程では、先生方に非常に丁寧にご指導いただき、たくさんの貴重なご示唆をいただきました。また、研究に参加してくださった方々にも、心から感謝の意を表します。
賞とはさらに励むことを奨めるということを意味するのだと思います。そのことを忘れず、これからも自分なりに精進して参りたいと思います。この度は本当にありがとうございました。重ねて深くお礼を申し上げます。
令和6年7月12日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/07/12-2.html生きたままの細胞の微細構造に迫る ~再生医療、創薬分野における研究・開発の発展に貢献~
![]() ![]() |
株式会社 東レリサーチセンター 国立大学法人 |
生きたままの細胞の微細構造に迫る
~再生医療、創薬分野における研究・開発の発展に貢献~
| 株式会社東レリサーチセンター(所在地:東京都中央区日本橋本町一丁目1番1号、社長:吉川正信、以下「TRC」)は、国立大学法人北陸先端科学技術大学院大学(所在地:石川県能美市旭台一丁目1番地、学長:寺野稔)物質化学フロンティア研究領域の松村和明教授と共同で、生きている細胞の微細な構造を解析する新しい方法を開発しました。 細胞は、細胞膜や細胞質、細胞小器官などさまざまな部分から成り立っています。これらの構造を「細胞の微細構造」と呼び、細胞のさまざまな機能を発現するために重要な役割を果たしています。細胞の微細構造は非常に小さく、通常は電子顕微鏡1)や超解像蛍光顕微鏡2)を用いて観察します。TRCと松村和明教授の研究チーム(以下、「研究チーム」)は、小角X線散乱3)を用いて、ナノメートルスケール(1億分の1メートル)のレベルで細胞の微細構造を解析する新しい方法を開発しました。この方法は、低温など特殊な環境での観察も可能で、新たな細胞の微細構造の観察法として期待されます。また、近年注目されている「相分離生物学」4)では、細胞内のタンパク質や核酸の凝集や分散などの相分離現象が、細胞の柔軟な機能発現に重要な役割を果たしているとされています。今回用いた小角X線散乱では、相分離構造を高感度で観測することができ、細胞生物学や再生医療の発展に貢献することが期待されます。 この研究成果は、2024年7月8日公開のBiophysical Chemistry誌に掲載されました。また、この研究は北陸先端科学技術大学院大学の超越バイオメディカルDX研究拠点の支援を受けて行われました。 |
【背景】
細胞の周りの環境(例えば浸透圧)が変わると、細胞の大きさが変わることはよく知られています。しかし、それだけでなく、細胞膜の張力や細胞内のタンパク質の集まり方も影響を受けます。このような変化は、新規モダリティ医薬品5)の開発や再生医療の分野で重要な知見となっています。
従来、細胞の微細構造の観察は電子顕微鏡や超解像蛍光顕微鏡によって行われてきました。しかし、電子顕微鏡では、煩雑な前処理や真空下での観察のため、生きたままの細胞の観察は難しく、また、蛍光顕微鏡では、解像度はサブマイクロメートル程度であり、微細構造の観察が難しい場合があります。したがって、さまざまな環境で生きたまま、かつ、非常に小さなスケールで細胞の微細構造を観察する新しい方法が求められています。
【研究の概要】
これに対して研究チームは、大型放射光施設SPring-8のBL08B2ビームライン6)で、小角X線散乱を用いて細胞の微細構造の解析を行いました。その結果、細胞内のさまざまな構造からの信号が検出され、それらが環境の変化に敏感に反応していることがわかりました。例えば、タンパク質を作るリボソームは、低浸透圧(水分が多い)ではサイズが膨張しますが、高浸透圧ではリボソームのサイズが収縮し、リボソーム間の距離が近づく様子が観察されました。また、高浸透圧下では、細胞膜が折りたたまれてマルチラメラ構造を作ることや、タンパク質や核酸の凝集状態が変化することが明らかになりました(図1)。これらの結果は、タンパク質の生成や放出に関連する現象と考えられます。抗体タンパク質の品質や産生量と細胞の微細構造の関係性が明らかになることで、抗体医薬品の開発への貢献が期待されています。

図1. 細胞の小角X線散乱信号の浸透圧に対する変化。高浸透圧で特に明瞭な散乱信号が検出され、さまざまな細胞微細構造の変化が起こっている。
【今後の展開】
細胞の微細構造の解明は、創薬や再生医療などの分野で注目されています。細胞の機能(抗体産生や接着・増殖・分化など)を最適化するために、さまざまな環境で細胞の微細構造を詳細に解明することが重要です。今回開発した小角X線散乱による細胞の微細構造解析法は、従来の電子顕微鏡や蛍光顕微鏡の限界を補完し、これまで観察が難しかった不定な構造(相分離)の観察にも有効です。また、従来の顕微鏡観察では困難であった低温や高温などの環境でも構造変化を捉えることが可能です。特に低温環境での細胞の微細構造解析は、細胞や組織の凍結保存への応用が可能であり、新型コロナウイルスで注目されたワクチンの凍結保存技術の発展にも寄与が期待されます。これらの技術は、食料不足や移植医療、創薬分野の課題解決や研究・技術開発への貢献が期待されています。
【用語説明】
試料に電子線を照射し、反射あるいは透過電子像を得る方法。ナノメートルスケールの細胞小器官の形態観察が可能であるが、煩雑な前処理や真空下での観察のため、生きたままの細胞を観察することは不可能である。
特定のタンパク質を蛍光分子で標識することで、その対象物を明るく輝かせ、可視光の波長の限界を超えた分子レベルの解像度で細胞を観察できる方法。ただし、蛍光標識した対象が凝集している場合などは、可視光の限界を超えて見分けることはできない。また、蛍光分子の選択は困難なこともあり、観察環境での蛍光活性の確認も必要である。
X線を物質に照射したときに生じる散乱を観測する方法。X線の散乱は物質中の分子の並び方によって異なる散乱を起こし、物質のナノメートル(10億分の1メートル)スケールの構造を調べることができる。
細胞内で起こるタンパク質や核酸などの生体分子の相分離に関する生物学分野の一つ。生体分子の相分離によって膜のない細胞小器官が形成されることで、細胞の外部環境の変化に瞬時に応答していると考えられている。細胞内の相分離現象が、細胞内の化学反応やシグナル伝達に重要な役割を果たしている可能性があり、新たな生物学として近年注目を集めている。
従来の低分子化合物を用いた医薬品とは異なる仕組みで作用する医薬品。従来の医薬品では効果が限定された疾患や患者に対して、新たな治療法を提供できる可能性があり、近年、研究・技術開発が進められている。生物由来の抗体や核酸、遺伝子、細胞医薬品などが該当する。
SPring-8 は兵庫県の播磨科学公園都市にある世界最高輝度の放射光を生み出す理化学研究所の施設。SPring-8 では、この放射光を用いて、物質科学や生命科学などの幅広い研究が行われている。BL08B2ビームラインは兵庫県が設置したビームラインであり、放射光の産業利用支援を目的としている。
【掲載論文】
| 掲載誌 | Biophysical Chemistry, 312 (2024) 107287. |
| 論文題目 | Nanoscale intracellular ultrastructures affected by osmotic pressure using small-angle X-ray scattering |
| 著者 | Masaru Nakada, Junko Kanda, Hironobu Uchiyama, Kazuaki Matsumura |
| DOI | https://doi.org/10.1016/j.bpc.2024.107287 |
| 公表日 | 2024年7月8日(オンライン公開) |
令和6年7月10日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/07/10-1.html統合失調症の認知機能障害を回復する新薬候補 -脳移行性の皮下投与型ペプチドナノ製剤を開発-
![]() ![]() ![]() |
| 国立大学法人 国立大学法人広島大学 国立大学法人大阪大学 国立大学法人筑波大学 一丸ファルコス株式会社 |
統合失調症の認知機能障害を回復する新薬候補
-脳移行性の皮下投与型ペプチドナノ製剤を開発-
【ポイント】
- 統合失調症の発症に関係する神経ペプチド受容体VIPR2に対する選択的な阻害ペプチドKS-133と脳移行性のLRP1結合ペプチドKS-487を同時に搭載するナノ粒子を創製し、 皮下投与型のペプチド製剤として開発
- 本ペプチド製剤の皮下投与は、VIPR2の過剰な活性化によって引き起こされた動物モデルの認知機能の低下を正常レベルまで回復可能
- 本ペプチド製剤は、既存薬とは全く異なるメカニズムをもつため、統合失調症の新しい治療法の開発につながることが期待
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の都英次郎准教授、広島大学(学長・越智光夫、広島県広島市)大学院医系科学研究科の吾郷由希夫教授、大阪大学(総長・西尾章治郎、大阪府吹田市)大学院薬学研究科の中川晋作教授、筑波大学(学長・永田恭介、茨城県つくば市)医学医療系の広川貴次教授、一丸ファルコス株式会社(社長・安藤芳彦、岐阜県本巣市)の坂元孝太郎開発2課長らの研究グループは、統合失調症の認知機能障害を回復する新薬になり得る脳移行性の皮下投与型ペプチドナノ製剤の開発に成功した(図1)。 |
図1. 本研究の概念図
統合失調症は、幻覚や妄想などの陽性症状、意欲の低下などの陰性症状、そして注意・集中力の低下や記憶力・判断力の低下といった認知機能障害などを特徴とする精神疾患で、人口の約1%に発症し、その罹患者は日本では約80万人、全世界では2000万人以上いると言われている。既存薬は、神経伝達物質の調節に関わるメカニズムを有するもののみであり、その治療効果は限定的であり、特に認知機能障害に対する効果が乏しい。近年、神経ペプチド受容体VIPR2の過剰な活性化が統合失調症の発症に関与することが臨床研究および非臨床研究で明らかとなり、新たなメカニズムの統合失調症治療薬につながることが期待されている。本研究グループは、これまでにVIPR2を選択的に阻害するペプチドKS-133を見出していたものの(FrontPharmacol 2021,12:751587)、脳への移行性が低いことが課題であった。
本研究では、KS-133を脳に送り届けるためのナノ製剤化を検討した。血液脳関門に発現するLDL受容体関連タンパク質のLRP1は、物質を血中から脳組織に移行させる働きがある。本研究グループは、これまでにLRP1に結合するペプチドKS-487を見出していた(Biochem Biophys Rep 2022,32:101367)。そこで、1.LRP1とKS-487の複合体の構造解析を分子動力学シミュレーションで実施、2.その構造を元にKS-487を表面に提示するナノ粒子をデザイン、3.バイオイメージング試験で皮下投与されたKS-487提示ナノ粒子が脳に移行することを確認、4.KS-487提示ナノ粒子にKS-133を内包させたペプチド製剤を調製し、その効果を動物モデルで確認した。これらの結果、KS-133とKS-487を同時に搭載するナノ粒子が、KS-133を脳に効果的に移行させ、動物モデルの認知機能障害を健常レベルまで回復させることが分かった(図2)。

図2. 統合失調症モデルマウスでの認知機能を評価する試験。マウスは新しい環境や物体を積極的に探索する習性をもつ。マウスに二つの新しい物体AとBを探索させて、記憶させる。24時間後に既知物体であるBを新しい物体Cに置き換えて、マウスが物体Cをどれだけ探索するかを計測することで、マウスの物体認知、学習・記憶能力を解析する。物体AとCの総探索時間のうち、どれだけ物体Cを探索していたかを調べる識別指数を用いて評価する。数値が高いほど認知機能が高いことを意味する。統合失調症モデルマウスの識別指数は、VIPR2選択的阻害ペプチドKS-133を内包し、中枢移行性ペプチドKS-487を提示するナノ粒子の投与によって、正常マウスと同等レベルに回復する。
本研究成果は、アメリカ化学会発行の生物・化学系のトップジャーナル「JACS Au」(アメリカ化学会発行)のオンライン版に2024年6月20日に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、基盤研究(B)(20H03392)、挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST)研究成果最適展開支援プログラム(A-STEP)(JPMJTR22U1)、AMED橋渡し研究プログラム(JP22ym0126809)、創薬等先端技術支援基盤プラットフォーム(BINDS)(JP18am0101114、JP23ama121052、JP23ama121054)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに北陸先端科学技術大学院大学超越バイオメディカルDX研究拠点、生体機能・感覚研究センター、広島大学トランスレーショナルリサーチセンターの支援などのもと行われたものである。
【今後の展開】
本ペプチド製剤は、VIPR2阻害という既存薬とは全く異なるメカニズムを有しており、アンメットメディカルニーズである統合失調症の認知機能障害を対象とした新薬になることが期待される。今後、細胞や動物モデルなどを用いた更なる検討、そしてヒトでの臨床試験によって、本ペプチド製剤の有効性と安全性を確認し、統合失調症の新しい治療薬として開発を進めていく。
【論文情報】
| 掲載誌 | JACS Au (アメリカ化学会誌) |
| 論文題目 | Cyclic Peptide KS-133 and KS-487 Multifunctionalized Nanoparticles Enable Efficient Brain Targeting for Treating Schizophrenia |
| 著者 | Kotaro Sakamoto*, Seigo Iwata, Zihao Jin, Lu Chen, Tatsunori Miyaoka, Mei Yamada, Kaiga Katahira, Rei Yokoyama, Ami Ono, Satoshi Asano, Kotaro Tanimoto, Rika Ishimura, Shinsaku Nakagawa, Takatsugu Hirokawa, Yukio Ago*, and Eijiro Miyako* |
| 掲載日 | 2024年6月20日 |
| DOI | https://doi.org/10.1021/jacsau.4c00311 |
令和6年6月27日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/06/27-1.html革新的ポリマーを用いたタンパク質凝集阻害メカニズムの解明 ―タンパク質医薬品製造の効率化や神経変性疾患治療への応用に期待―
![]() |
国立大学法人 国立大学法人東京工業大学 |
革新的ポリマーを用いたタンパク質凝集阻害メカニズムの解明
―タンパク質医薬品製造の効率化や神経変性疾患治療への応用に期待―
ポイント
- 双性イオンポリマー(PSPB)によるタンパク質凝集阻害の複雑な分子メカニズムを先駆的に解明した。
- PSPBは、多様なタンパク質の熱凝集に対して高い保護活性を持ち、PSPBとタンパク質の相互作用を実験及びシミュレーションにより包括的かつ詳細に検討した結果、弱く可逆的な結合の重要性を明らかにした。また、PSPBはタンパク質と弱く可逆的に相互作用することで、凝集経路を妨げ、凝集性中間体の形成を阻止することも明らかとなった。
- タンパク質治療薬の安定化と長期保存を実現する可能性を見出した。
- 将来的にはアルツハイマーなどの神経変性疾患の治療への応用も期待される。
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の松村和明教授、ラジャンロビン元助教及びZHAO, Dandan研究員(超越バイオメディカルDX研究拠点)は、東京工業大学(学長・益一哉、東京都目黒区)生命理工学院生命理工学系の古田忠臣助教と共同で、双性イオンポリマーによるタンパク質凝集阻害メカニズムの解明に成功した。 本研究グループが合成したスルホベタインポリマーと呼ばれる双性イオン高分子は、タンパク質と弱く可逆的に相互作用し、凝集経路を妨げることで凝集性中間体の形成を阻止し、有害な凝集を防ぐ。この画期的な発見は、タンパク質治療薬を進歩させ、タンパク質のミスフォールディングに関連する様々な症状に対する新規治療法を開発する上で、計り知れない可能性を秘めている。 本成果は、2024年5月30日11時(米国東部標準時間)にCell Press発行「Cell Reports Physical Science」オンライン版に掲載された。 |
【研究の背景】
タンパク質の凝集は、アルツハイマー病、パーキンソン病、ハンチントン病などの神経変性疾患の主な原因とされている。また、タンパク質医薬品の生産と保管中に凝集が発生すると、薬剤の活性と有効性が失われる可能性がある。従来の方法では、これらの凝集を防ぐことは困難であり、効果的な安定化手法の開発が求められていた。
【研究内容】
本研究グループは、双性イオン高分子注1の一種であるスルホベタインポリマー(PSPB)及びその疎水性誘導体がタンパク質凝集を抑制するメカニズムを解明した。(図1)。PSPBはタンパク質と弱く相互作用し、凝集経路を妨げることで凝集性中間体の形成を阻止する。実験により、PSPBがインスリンやリゾチームなどの複数のタンパク質を熱ストレスから効果的に保護することが示された。特に、疎水性残基を導入したPSPBは、タンパク質の凝集抑制効果が著しく向上することが確認された。この効果は分子シールディング効果注2と呼ばれ、保護対象のタンパク質と保護高分子が可逆的な相互作用を示すことにより、物理的に凝集を妨げている様子が分子動力学シミュレーション注3の結果からも確認された。
【主な結果】
- PSPBの合成と特性評価:異なる疎水性モノマー(BuMA、HxMA、OcMA)を組み込んだ種々のスルホベタインポリマー(PSPB)を合成し、その特性を評価した。
- タンパク質の保護効果:インスリン、リゾチーム、乳酸脱水素酵素(LDH)をモデルタンパク質として使用し、PSPBがこれらタンパク質の凝集繊維形成を著しく抑制することを確認。分子量と疎水性が高いPSPBは、特に効果的であることが示された(図2)。
- 分子動力学シミュレーション:PSPBが分子シールドとして機能し、タンパク質分子間の距離を保ち、凝集を防ぐ効果を持つことが確認された(図3)。
- メカニズムの解明:熱分析、分光学的手法などを駆使し、PSPBによる凝集抑制効果の解明に成功した。モデルタンパク質のインスリンを加熱すると、タンパク質の高次構造がほどけるアンフォールディングが起こる。その後、さらに加熱することで凝集性の前駆体が形成され、不可逆な凝集体となる。ここにPSPBが存在することで、アンフォールディングする温度が高温側にシフトし、凝集前駆体の形成が阻害される。冷却時にはPSPBは脱離し、元の高次構造が維持される(図4)。PSPBへの疎水基の導入は、タンパク質の疎水性残基との相互作用を高める効果があり、より凝集前駆体の形成阻害効果を高めていることが示唆される。
【今後の展望】
PSPBによるタンパク質凝集抑制効果の分子メカニズムに迫った研究は初めてであり、このメカニズムにより、PSPBがタンパク質治療薬の安定化と長期保存に貢献できる可能性が示された。
さらに、この研究は新しい診断及び治療法の開発にも応用される可能性があり、将来的には幅広い疾患に対する効果的な治療法の提供が期待される。本研究グループは、今後さらにアミロイドβタンパクの凝集抑制などの研究を進め、アルツハイマー病やパーキンソン病などのタンパク質凝集が原因とされる神経変性疾患の治療や原因解明など、実用化に向けた具体的な応用方法の開発に取り組んでいく予定である。

図1 各種合成した双性イオンポリマー
スルホベタインポリマー(PSPB)にブチルメタクリレート(BuMA)、ヘキシルメタクリレート(HxMA)、オクチルメタクリレート(OcMA)を共重合したポリマーの構造を示す。

図2 インスリン溶液の凝集抑制の様子。i)加熱前、ii)加熱後、iii)PSPB添加後に加熱。
加熱することで凝集により白濁していることが確認される。一方、PSPBを添加することで白濁は抑えられる。

図3 P(SPB-r-BuMA)のモデルとしたスルホベタイン2量体にブチルメタクリレートを結合した化合物(SPB2_BuMA)とインスリンのMDシミュレーションによるスナップショット。インスリン二分子の間にモデル化合物が分子シールドとして可逆的にサンドイッチされ、凝集を妨げている様子が見られた。

図4 凝集抑制メカニズムの模式図。インスリン二量体(天然構造)が加熱により単量体に変性し、さらにアンフォールディングして立体構造が解消される。その際にポリマーがあると、分子シールディング効果により、凝集前駆体の形成を抑制し、繊維状凝集前駆体(prefibrillar aggregates)から繊維凝集体(mature fibrils)の形成を阻害する。
なお、本研究は、科研費基盤研究(B)20H04532、若手研究20K20197、23K17211、学術変革領域研究(A)21H05516、国立研究開発法人科学技術振興機構(JST)研究成果最適展開支援プログラム(A-STEP)JPMJTR20UN、文部科学省ナノテクノロジープラットフォーム事業JPMXP09S21MS1051、JPMXP09S21MS1051b、文部科学省マテリアル先端リサーチインフラ事業JPMXP1222MS1007、ならびに北陸先端科学技術大学院大学超越バイオメディカルDX研究拠点、生体機能・感覚研究センターの支援のもと行われた。
【論文情報】
| 雑誌名 | Cell Reports Physical Science |
| 題目 | Molecular mechanism of protein aggregation inhibition with sulfobetaine polymers and their hydrophobic derivatives |
| 著者 | Robin Rajan, Tadaomi Furuta, Dandan Zhao, Kazuaki Matsumura |
| 掲載日 | 2024年5月30日11時(米国東部標準時間) |
| DOI | 10.1016/j.xcrp.2024.102012 |
【用語説明】
同一分子内に正電荷と負電荷を持つ全体としては中性の高分子で、高い水和性と低い非特異的タンパク質吸着性を持つ。これにより、生体適合性が高く、医療分野やバイオテクノロジー分野で広く研究、応用されている。
Tunaccliffeらの報告によると、ある種の天然変性タンパク質が乾燥時に他のタンパク質の周りに保護相を形成し、物理的に凝集を抑制する効果のことを分子シールディング(molecular shielding)効果として説明している。
Chakrabortee S, et al., Mol. Biosys. 2012, 8, 210-219
分子系の運動を時間的に解析する手法。具体的には、原子や分子の初期位置と速度を設定し、相互作用ポテンシャルを用いてニュートンの運動方程式を解くことで、分子系の時間発展を追跡し、構造変化、相転移、拡散などの現象を解析する。例えば、タンパク質のフォールディング過程や薬物分子の結合動態、材料の熱物性などを詳細に調べることができ、生物学、化学、材料科学に広く応用されている。
令和6年5月31日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/05/31-1.html









