研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。高分子化合物による細胞の凍結保護効果の機序を解明-再生組織などの長期保存技術の開発に貢献-

![]() ![]() |
北陸先端科学技術大学院大学 理化学研究所 |
高分子化合物による細胞の凍結保護効果の機序を解明
-再生組織などの長期保存技術の開発に貢献-
ポイント
- 高分子化合物による細胞の凍結保護効果の機序の一端を解明。
- 細胞凍結保護効果を説明するため初めて固体NMRの手法を応用し、細胞の脱水制御に伴う細胞内氷晶抑制効果を説明した。
- この手法を利用することで、新しい効果的な凍結保護物質の分子設計が可能となり、再生医療分野などへの応用が期待できる。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科物質化学領域 松村和明教授、ラジャン・ロビン助教、理化学研究所放射光科学研究センターNMR先端応用・外部共用チーム 林文晶上級研究員、長島敏雄上級研究員らの研究グループは、高分子化合物による細胞の凍結過程における保護作用機序を明らかにした。 本研究成果は、細胞への毒性や分化への影響が低い凍結保護高分子の設計指針を明らかとすることで、再生医療分野で必要とされる幹細胞や再生組織などの効率的な凍結保存技術の開発に貢献することが期待できる。 本研究成果は、Springer Nature発行の科学雑誌「Communications Materials」誌に2021年2月9日オンライン版で公開された。なお、本研究は日本学術振興会科研費、キヤノン財団、文部科学省大学連携バイオバックアッププロジェクト、文部科学省先端研究施設共用促進事業の支援を受けて行われた。 |
【研究の背景】
医学生物学研究に必要な細胞は、細胞バンクなどから凍結状態で入手できる。細胞の凍結保存技術自体は1950年代に確立されており、おもにジメチルスルホキシド(DMSO)[*注1]が保護物質として細胞懸濁液に添加され、液体窒素温度にて凍結保存されている。一般的な樹立細胞などは既存の保存技術で問題なく保存可能な細胞が多いが、受精卵などの生殖細胞、ES細胞やiPS細胞[*注2]などの特殊な幹細胞などの中には凍結保存が困難なものが多く、効率的な保存技術の開発が望まれている。また、汎用保護剤であるDMSOは毒性があり、分化[*注3]への影響もあることから再生医療分野では代替の物質の開発が望まれているが、この半世紀ほどは新しい凍結保護物質の報告はほとんど見られなかった。高分子系の保護物質は細胞膜を容易には透過しないため、細胞への毒性や分化への影響を低くすることが可能である一方、細胞外から凍結保護を行うということから開発は困難とされてきた。2009年に松村らが両性電解質高分子[*注4]による凍結保護作用を発表し[1]、その後、多くの細胞種で凍結保護効果が確認されてきた。また、急速に凍結することで細胞内外の水の結晶化を抑制するガラス化保存技術[*注5]にも両性電解質高分子が利用され、受精卵や胚[2]や軟骨細胞シート[3]、スフェロイド[*注6] [4]などの保存に成功した。また、高分子化合物による凍結保護物質の報告は世界中で近年になって非常に多く行われており、多くの分野での応用が期待されている。しかしながら、その具体的なメカニズムはわかっていない。
【研究成果と手法】
これまでDMSOなどの低分子による細胞膜透過性の凍結保護物質については、細胞内の水の結晶化を抑制することが主な機序として報告されてきている。しかし、高分子凍結保護剤の細胞外からの保護作用の機序は詳細にはわかっておらず、最近の論文では細胞外の氷の結晶(氷晶)の成長抑制作用と説明されている。確かに氷晶は物理的に細胞を破壊するため、その抑制が重要であることは間違いがないが、一方で、細胞内に大きな氷晶が形成されることは、細胞内小器官の破壊を伴う致命的なダメージを与えるとされているため、細胞内氷晶の形成が抑制されていることが考えられる。細胞内氷晶の形成については、一般的には顕微鏡などで観察されるが、凍結時の細胞内の現象を正確に捉えることが難しいため、はっきりしたことは分からない状況であった。
研究グループらは、両性電解質高分子溶液の凍結保護の分子メカニズムを調べるため、固体NMR[*注7]の手法を初めて応用し、凍結保護という複雑かつ多面的な現象の特徴を塩や水、高分子の運動と状態からの視点で解き明かすことに成功した。
両性電解質高分子であるカルボキシル基導入ポリリジン(PLL-(0.65) (図1))溶液、比較対象として、凍結保護効果の高いDMSO溶液、凍結保護効果のあまり見られないアルブミン(BSA)溶液、ポリエチレングリコール(PEG)溶液、保護効果のない生理的食塩水について、0℃から-41℃までの水分子および塩(イオン)の運動性を固体NMR測定により評価した。その結果、低温時の水の運動性がPLL-(0.65)溶液において他の溶液に比べ顕著に抑制され粘性が上昇することがわかった(図2)。凍結条件下では、この粘性の高いポリマー溶液が細胞の周辺を取り囲むことにより、細胞内への氷晶の侵入による細胞内氷晶形成を抑制していることが示唆される。また、PLL-(0.65)溶液中では高分子鎖にNaイオンがトラップされ、低温域でのNaイオンの運動性が低下していることも確認された(図3)。これにより、浸透圧に寄与するNaイオンの濃度がPLL(0.65)溶液において低下し、急激な脱水を抑制し、温和な条件でかつ十分に細胞内を脱水できる最適条件を達成していることが細胞内氷晶の形成の抑制を示唆する結果となった。これらの機序を図4に模式図として表す。低温時に高分子が塩や水を包含した会合体を形成し、それらの運動性が低下することで温和な条件でかつ十分に脱水が起こると共に、細胞外溶液の粘性の上昇に伴う細胞外氷晶の成長も抑えられ、結果的に細胞内氷晶の形成が抑制されることが細胞の凍結保護を可能としていることが考えられる。この機序は細胞内に浸透する既存の凍結保護剤と異なることから、新たな機序に基づく凍結保護剤の開発につながる研究成果である。
【今後の展開】
固体NMR測定により高分子や塩、水の分子運動の観点から細胞凍結保護高分子の新規機序について考察することが可能となった。この手法により効果の高い凍結保護剤の設計指針が得られることが期待される。また、細胞だけでなく、再生組織などの2次元3次元の生体組織などの効率的な保存法、保存剤の開発に役立つことが期待できる。
![]() 図1 本研究で使用した両性電解質高分子であるカルボキシル化ポリリジンの構造。PLL-(0.65)は、コハク酸付加部位(m)が65%であるものを示す。 |
![]() 図2 1H NMRの水のピーク幅の温度依存性。PLL-(0.65)に顕著な広幅化が見られ、低温での粘性の急上昇が確認された。 |
![]() 図3 a) 23Na NMRのピーク面積から、各溶液中の凍結下、氷と共存する溶液状態にあるNaイオンの量を評価した。凍結下のPLL-(0.65)溶液において、溶液として振舞うNaイオンの量が低下した。b)Naイオン量から系中のNaCl濃度を計算した結果。PLL-(0.65)溶液中のNaCl濃度は温度低下と共に速やかに上昇し、低温下で緩やかに下降する。これは速やかかつ適度な細胞の脱水による細胞内氷晶形成の抑制を示唆している。 |
![]() 図4 PLL-(0.65)溶液による細胞の凍結保護効果の模式図。低温凍結下、1) 高分子が高い粘性を持つ会合体(マトリックス)を形成することで、細胞外からの氷核の流入を阻止し、2) 塩や水をマトリクス内にトラップすることにより、凍結後の脱水を温和な条件で制御するという2つの効果で細胞内の氷晶形成を抑制している。また、マトリックス形成による粘度上昇は、氷晶が細胞膜を刺激する事による細胞内氷晶形成も抑制していることが示唆された。 |
【参考文献】
[1] Matsumura K, Hyon SH, Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30, 4842-4849 (2009)
[2] Kawasaki Y, Kohaya N, Shibao Y, Suyama A, Kageyama A, Fujiwara K, Kamoshita M, Matsumura K, Hyon S-H, Ito J, Kashiwazaki N. Carboxylated ε-poly-L-lysine, a cryoprotective agent, is an effective partner of ethylene glycol for the vitrification of embryos at various preimplantation stages. Cryobiology, 97, 245-249 (2020)
[3] Hayashi A, Maehara M, Uchikura A, Matsunari H, MatsumuraK, Hyon SH, Sato M, Nagashima H. Development of an efficient vitrification method for chondrocyte sheets for clinical application. Regenerative Therapy, 14, 215-221 (2020)
[4] Matsumura K, Hatakeyama S, Naka T, Ueda H, Rajan R, Tanaka D, Hyon SH. Molecular design of polyampholytes for vitrification-induced preservation of three-dimensional cell constructs without using liquid nitrogen. Biomacromolecules, 21, 3017-3025 (2020)
【用語解説】
注1 ジメチルスルホキシド(DMSO)
分子式C2H6SOの有機溶媒の一種。実験室レベルから工業的規模に至るまで広く溶媒として使用される他、10%程度の溶液は細胞の凍結保存として使用されている。
注2 ES細胞やiPS細胞
多能性幹細胞の一種。ES細胞は胚性幹細胞、iPS細胞は人工多能性幹細胞の略である。生体外にて、理論上ほぼすべての組織に分化する分化多能性を保ちつつ、ほぼ無限に増殖させることができるため、有力な万能細胞の一つとして再生医療への応用が期待されている。現在はDMSOを使用した保存液で保存されているが、DMSOの分化への影響が危惧される。
注3 分化
多細胞生物において、個々の細胞が構造機能的に変化すること。
注4 両性電解質高分子
一分子中にプラスとマイナスの電荷を共にもつ高分子化合物。
注5 ガラス化保存技術
受精卵などの保存によく用いられている超低温保存の一つ。凍結時においても氷の結晶を形成しにくい溶質濃度の高いガラス化液を用い、保存した細胞が氷による物理的傷害を受けにくい。
注6 スフェロイド
三次元的な細胞のコロニーで、再生医療の組織形成のビルディングブロックとして期待されている。
注7 固体NMR
固体NMRとは固体試料を観測対象とした核磁気共鳴 (NMR) 分光法で、方向依存的な異方性相互作用の存在のため共鳴線の線幅が広いのが特徴である。通常、共鳴線の先鋭化のため、試料を静磁場に対してマジック角(54.7°)傾けて、超高速で回転(MAS:Magic Angle Spinning)させて測定を行う。本研究では、温度制御装置を備え付けた固体MAS検出器により、プロトンとナトリウムの核磁気共鳴スペクトルを測定し、低温時の水やNaイオン、高分子の運動性について議論した。
【論文情報】
掲載誌 | Communications Materials(Springer Nature) |
論文題目 | Molecular mechanisms of cell cryopreservation with polyampholytes studied by solid-state NMR |
著者 | Kazuaki Matsumura, Fumiaki Hayashi, Toshio Nagashima, Robin Rajan,Suong-Hyu Hyon |
掲載日 | 2021年2月9日10時(英国時間)にオンライン版に掲載 |
DOI | 10.1038/s43246-021-00118-1 |
令和3年2月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/02/post_588.html細胞・組織の機能を制御する高分子材料を創成し、医療に役立てる


細胞・組織の機能を制御する高分子材料
を創成し、医療に役立てる
生体制御高分子研究室 Laboratory on Biofunctional Polymers
教授:松村 和明(MATSUMURA Kazuaki)
E-mail:
[研究分野]
材料化学、高分子化学、生体材料
[キーワード]
高分子化学、バイオマテリアル、再生医療、凍結保存、ハイドロゲル
研究を始めるのに必要な知識・能力
化学をベースとして、生体に応用できる材料を目指すので、化学の基礎知識は持っていた方が望ましいです。その上で、生物学や医学に対しても必要な事を習得する姿勢を期待します。異分野からの参加は歓迎しますが、化学、高分子化学の勉強を興味を持って続けられる向上心は必要です。
この研究で身につく能力
生体材料の研究は化学・生物・医学また物理学を含んだ学際的領域の研究です。生体の持つ高度に制御された機能を学び、それを代替する材料の創成を目標として研究を続けていくことで、化学のみならず、生物学や医学、物理学などの幅広い学問分野に触れ、多角的な物の見方を獲得することが出来ます。
また、生体材料の研究は目的がはっきりしているニーズ指向型の研究のため、課題解決能力を育む事が可能です。特に博士後期課程の学生に関しては、問題発見能力も同時に身につけるように研究を進めていきます。
【就職先企業・職種】 製造業・化学メーカーなど
研究内容
機能性高分子バイオマテリアル
人工臓器やドラッグデリバリーシステム(DDS)には高分子化合物のようなソフトマテリアルが多く使用され、研究されています。バルクな材料だけでなく、コロイドやミセル、溶液なども一種のバイオマテリアルとして様々な場面での研究が展開されています。
高分子材料はそのバルク界面で、もしくは溶液状態で細胞や組織と相互作用し、機能を制御することが可能であることがわかってきました。また、様々な場面でその機能を利用したバイオマテリアルの研究開発が行われています。
凍結保護高分子
細胞を凍結保存することができる高分子を見出し、その機序を調べると共に応用を目指しています。この不思議な現象は、電荷密度の高い高分子化合物、特に両性電解質高分子に見られる特徴であることがわかってきました。細胞などの様な水を含む高次構造体をそのまま凍結すると細胞内の水の結晶化により致命的なダメージが加わり、死滅します。このような高分子化合物で細胞を凍結時のダメージから保護できるということは、これまでの常識では考えにくいことでした。従って、この現象の機序を解明することで、凍結保護だけでなく、生体組織や高次構造体の保護作用などへとつながる可能性を秘めています。我々はこの高分子をゲルにすることで、細胞保護性のハイドロゲルを作成しました。また、ナノ粒子化することでドラッグデリバリーシステムへの応用も試みています。
再生医療応用可能な高分子
再生医療や組織工学に応用可能な、生体内分解性セルロースの開発も行っています。この技術により、細胞をその中で増殖させ、生体内で細胞治療が可能な足場材料の開発が期待されます。
生体と調和する高分子バイオマテリアル
生体機能の再生を目的とした診断・治療の支援を行うために、材料工学の手法を用いた、基礎的ならびに応用的研究も目指しています。具体的には、ハイドロゲルを用いた人工関節や人工血管用材料の設計など、高分子材料の観点から生物と化学の融合を目指し、さらには生体を凌駕するような機能を探求しています。
主な研究業績
- Rajan R, Furuta T, Zhao D, Matsumura K. Molecular mechanism of protein aggregation inhibition with sulfobetaine polymers and their hydrophobic derivatives. Cell Rep. Phys. Chem. 5, 102012 (2024)
- Kumar K, Nakaji-Hirabayashi T, Kato M, Matsumura K, Rajan R. Design of Highly Selective Zn-Coordinated Polyampholyte for Cancer Treatment and Inhibition of Tumor Metastasis. Biomacromolecules 25, 1481-1490 (2024)
- Hirose T, Rajan R, Miyako E, Matsumura K. Liquid metal–polymer nano-microconjugations as an injectable and photo-activatable drug carrier. Mol. Syst. Des. Eng. 9, 781-789 (2024)
使用装置
NMR
FITR
動的粘弾性装置
細胞培養用装置
共焦点レーザー顕微鏡
研究室の指導方針
本研究室では、高分子化学の基礎から応用までを理解し、生体材料としての応用を目指しています。そのためには、化学の知識だけでなく、生物や医学、さらには機械工学などの幅広い学問領域に通じている必要があります。また、生体材料がカバーする範囲は、人工臓器、再生医療、ドラッグデリバリー、バイオセンサなど多種多様であり、それらの研究開発に必要な知識を興味を持って獲得し、多角的な視点で課題の解決を遂行できる力のある学生を育成することを目標としています。
年に数度の学会発表を通じてプレゼンテーション能力を身につけ、週一度の研究室ゼミで基礎力・ディスカッション能力を養います。
[研究室HP] URL:https://matsu-lab.info/
金沢大学J-PEAKSシンポジウム

下記のとおり金沢大学主催のシンポジウムが開催されますので、ご案内します。
本学は連携大学として当該事業に携わっており、今回のシンポジウムでは、本学 松村和明教授/eMEDX拠点長がパネリストとして登壇します。
日 時 | 令和7年6月23日(月)16:00~18:00(受付開始 15:30~) |
会 場 | 金沢大学 未来知実証センター 3階オープンスペース 〒920-1192 石川県金沢市角間町 ※ハイブリッド開催 |
プログラム | 16:00 開会挨拶 16:05 来賓挨拶 16:10 金沢大学の取組紹介 16:30 若手研究者による分野融合に関する研究紹介 17:00 パネルディスカッション「大学の未来知が世界を変える ~私の夢を人と社会に~」 17:55 閉会挨拶 18:00 閉会 その他、詳細は下記ホームページをご参照ください。 (金沢大学HP)https://www.kanazawa-u.ac.jp/event/163810/ |
参加申込 | ・参加無料 ・会場参加150名、オンライン参加400名(先着順) ・下記フォームより事前申し込みをお願いします。(申込期限:6/18(水)) (参加登録フォーム)https://forms.office.com/r/8FrqyuT3s3 |
使用言語 | 日本語 |
お問い合わせ | 北陸先端科学技術大学院大学 共創活動推進課 イノベーション創出支援係 E-mail:sien@ml.jaist.ac.jp |
学生の鈴木さんがeMEDX-24においてOutstanding Student Poster Awardを受賞
学生の鈴木超さん(博士後期課程1年、物質化学フロンティア研究領域、松村研究室)が、International Symposium on Exponential Biomedical DX 2024(eMEDX-24)においてOutstanding Student Poster Awardを受賞しました。
eMEDX-24は令和6年12月19日~20日にかけて石川県にて開催されたバイオマテリアルとDXの融合に関する国際会議です。同会議では、ウェルビーイングの実現に貢献することに重点を置き、高分子やナノマテリアルなどの材料とコンピューターサイエンスの融合による医療材料研究に関する最新の研究成果について議論が行われました。
※参考:eMEDX-24
■受賞年月日
令和6年12月20日
■研究題目、論文タイトル等
Synthesis and Evaluation of Donor-Acceptor Conjugated Polymers for Thermo-responsive Protein DDS
■研究者、著者
鈴木超、松村和明
■受賞対象となった研究の内容
温度応答性の高分子を用いたドラッグデリバリーシステム(DDS)のための生体内での発熱源として、近赤外光を吸収して発熱するドナーアクセプター(DA)高分子の合成を行いました。このDAポリマーをナノ粒子化することに成功し、808nmの近赤外光を照射することで速やかな発熱を確認しました。今後はこのポリマーナノ粒子と温度応答性高分子を組み合わせることで、近赤外光に応答した薬物放出可能なDDSの創出に取り組んでいきます。
■受賞にあたって一言
今回、Outstanding Student Poster Awardを受賞することができ、大変光栄です。国内外の研究者、学生の方々から様々な質問をいただき、とても刺激的な機会となりました。これからもより一層研究に励みたいと思います。
令和7年1月31日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/01/31-1.htmlInternational Symposium on Exponential Biomedical DX 2024を開催
2024年12月19日から20日にかけて、本学 超越バイオメディカルDX研究拠点主催の第1回国際シンポジウム「International Symposium on Exponential Biomedical DX 2024(eMEDX-24)」を石川ハイテク交流センターにて開催しました。本シンポジウムでは、「ウェルビーイングの実現」をテーマに、バイオメディカルサイエンス・テクノロジーの最前線で活躍する国内外の研究者・科学者が一堂に会し、多岐にわたるテーマについて自由闊達な議論が展開されました。参加者は総勢148名に上り、基調講演4件、特別講演9件、招待講演32件が行われました。
本学の寺野 稔 学長および大会長である超越バイオメディカルDX研究拠点長の松村 和明 教授による開会挨拶の後、東京女子医科大学 岡野 光夫 名誉教授と亜洲大学校 キ・ドン・パク 教授による基調講演が行われました。岡野名誉教授は温度応答性高分子材料の研究、パク教授は生理活性ヒドロゲルの研究について、それぞれ医療分野への応用を含めた最先端の成果を発表し、参加者の大きな関心を引きました。続いて、バイオメディカル分野で活躍するトップランナーの研究者による特別講演や招待講演が行われ、参加者同士の活発な意見交換が展開されました。また、北陸三県のバイオメディカル研究室に所属するJST次世代研究者挑戦的研究プログラム(SPRING)に採択された博士後期課程の学生が主催する特別セッションでは、博士号取得後のキャリアプランについて熱心な議論が交わされました。
二日目には、京都大学 秋吉 一成 名誉教授と韓国科学技術研究院 クァン・リョル・リー 博士による基調講演が行われました。秋吉名誉教授はバイオインスパイアードナノマテリアルを活用したドラッグデリバリーシステムの開発について、また、リー博士はマテリアルズR&Dデータにおけるスキーマおよび語彙の標準化に関する研究成果について講演されました。その後、バイオメディカル分野を牽引する第一線の研究者による特別講演や招待講演が続き、参加者間では熱心な議論や意見交換が行われました。また、国内外の学生による最新の研究に関するポスター発表(49件)が行われ、活発なディスカッションが繰り広げられました。その結果、4名の学生が最優秀学生ポスター賞を、8名の学生が優秀学生ポスター賞を受賞し、授賞式が執り行われました。その後、本学超越バイオメディカルDX研究拠点の栗澤 元一 教授および都 英次郎 教授による挨拶で締めくくられ、盛況のうちに終了しました。
本シンポジウムの開催を契機に、ウェルビーイングの実現に向けて、超越バイオメディカルDX研究のさらなる加速を目指して邁進してまいります。


開会の挨拶をする寺野 稔 学長(左)と
松村 和明 超越バイオメディカルDX研究拠点長

基調講演①
岡野 光夫 名誉教授
(東京女子医科大学)

基調講演②
キ・ドン・パク 教授
(亜州大学校)

基調講演③
秋吉 一成 名誉教授
(京都大学)

基調講演④
クァン・リョル・リー 博士
(韓国科学技術研究院)

SPRING主催特別セッション

ポスター発表

優秀学生ポスター賞受賞式


閉会の挨拶をする栗澤 元一 教授(左)と
都 英次郎 教授(右)

シンポジウムの様子
令和6年12月27日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/12/27-1.html学生の加藤さんがSLTB2024においてPoster Awardを受賞

学生(JAIST-Spring研究員)の加藤裕介さん(博士後期課程2年、物質化学フロンティア研究領域、松村研究室)が、60th Anniversary Meeting of the Society for Low Temperature Biology (SLTB2024)において、Poster Awardを受賞しました。
本研究成果は、次世代研究者挑戦的研究プログラム(JAIST-SPRING)の支援のもと行われたものです。
SLTB2024は、令和6年9月11日~13日にかけてイギリスのマンチェスター大学にて開催された低温生物学に関する国際会議です。今回は低温生物学会(SLTB)60周年の記念会議となり、特に低温生物学会の歴史と持続可能なバイオバンクについて焦点が当てられ、生物、物理、化学など様々な分野からのアプローチによる低温環境での生物の生命現象に関する最新の研究成果について議論が行われました。
※参考:SLBT2024
■受賞年月日
令和6年9月12日
■研究題目、論文タイトル等
Cryopreservation with intracellularly introduced polymeric cryoprotectants and extracellular non-permeable small molecule cryoprotectants
■研究者、著者
加藤裕介、松村和明
■受賞対象となった研究の内容
細胞や組織の凍結保存を達成するためには、細胞内の氷晶形成を抑制することが重要と言われている。この研究では、その目的のために凍結保護高分子を細胞内に導入することにより、細胞外保護剤との相乗的保護効果を得ることに成功した。
■受賞にあたって一言
このたびはSLTB2024にてPoster Awardを戴き、大変光栄に存じます。本研究の遂行にあたり、丁寧なご指導を賜りました松村和明教授に、この場を借りて心より御礼申し上げます。また、多くのご助言をいただきました研究室の皆様に、深く感謝いたします。
令和6年10月31日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/10/31-1.html「BioJapan 2024」に出展
10月9日(水)~11日(金)の3日間、パシフィコ横浜(神奈川県横浜市)にて世界で最も歴史のあるバイオテクノロジー展である「BioJapan 2024」が開催され、本学からは超越バイオメディカルDX研究拠点(eMEDX)長の松村 和明教授が出展しました。
紹介ブースには、製造、企業、教育、行政関係者を中心とし、幅広い分野の方々から訪問いただき (58名: 48機関)、マッチング活動も行いました (9名: 5機関)。セミナーには19名の参加があり、大変盛況な様子でした。
また、「ARIM 次世代バイオマテリアル拠点」のスポーク機関として、バイオ機能医工学研究領域の山口 拓実准教授がARIM設備の利用法と本学の成果事例の紹介を行いました。



ブースおよびセミナーの様子
令和6年10月25日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/10/25-1.html10月9日(水)~11日(金) BioJapan 2024に本学が出展
10月9日(水)~11日(金)の3日間、パシフィコ横浜(神奈川県横浜市)にて世界で最も歴史のあるバイオテクノロジー展である「BioJapan 2024」が開催されます。
本学からは松村 和明教授および山口 拓実准教授が参加し、ブース出展およびプレゼンテーションを行います。
ご来場の際には来場登録のうえ、ぜひお立ち寄りください。
(来場案内)https://jcd-expo.jp/ja/visitor.html
※事前登録:無料(当日の来場登録:5,000円)
日 時 | 10月9日(水)~10月11日(金) 各日 10時00分~17時00分 |
会 場 | パシフィコ横浜(神奈川県横浜市西区みなとみらい1-1-1) |
ブース出展 | 【ブース名】国立大学法人北陸先端科学技術大学院大学 【小間番号】A-30 |
【ブース名】ARIM次世代バイオマテリアルハブ拠点 名古屋大学 【小間番号】B-21 ※本拠点のスポーク機関として本学が参画 |
|
プレゼンテーション | 【日 時】10月11日(金)10時55分~11時25分 【場 所】Presentation Stage A 【テーマ】ARIM 次世代バイオマテリアル 『材料からバイオまで。大学の最先端設備で研究開発しませんか?』 【講演者】山口 拓実(JAIST)、大住 克史(名古屋大学) |
【日 時】10月11日(金)13時50分~14時20分 【場 所】Presentation Stage A 【テーマ】北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点 『超越バイオメディカルDX研究~細胞・タンパク質の保護マテリアル』 【講演者】松村 和明 |
詳細はこちらをご覧ください。
・BioJapan 2024 公式サイト
生きたままの細胞の微細構造に迫る ~再生医療、創薬分野における研究・開発の発展に貢献~

![]() ![]() |
株式会社 東レリサーチセンター 国立大学法人 |
生きたままの細胞の微細構造に迫る
~再生医療、創薬分野における研究・開発の発展に貢献~
株式会社東レリサーチセンター(所在地:東京都中央区日本橋本町一丁目1番1号、社長:吉川正信、以下「TRC」)は、国立大学法人北陸先端科学技術大学院大学(所在地:石川県能美市旭台一丁目1番地、学長:寺野稔)物質化学フロンティア研究領域の松村和明教授と共同で、生きている細胞の微細な構造を解析する新しい方法を開発しました。 細胞は、細胞膜や細胞質、細胞小器官などさまざまな部分から成り立っています。これらの構造を「細胞の微細構造」と呼び、細胞のさまざまな機能を発現するために重要な役割を果たしています。細胞の微細構造は非常に小さく、通常は電子顕微鏡1)や超解像蛍光顕微鏡2)を用いて観察します。TRCと松村和明教授の研究チーム(以下、「研究チーム」)は、小角X線散乱3)を用いて、ナノメートルスケール(1億分の1メートル)のレベルで細胞の微細構造を解析する新しい方法を開発しました。この方法は、低温など特殊な環境での観察も可能で、新たな細胞の微細構造の観察法として期待されます。また、近年注目されている「相分離生物学」4)では、細胞内のタンパク質や核酸の凝集や分散などの相分離現象が、細胞の柔軟な機能発現に重要な役割を果たしているとされています。今回用いた小角X線散乱では、相分離構造を高感度で観測することができ、細胞生物学や再生医療の発展に貢献することが期待されます。 この研究成果は、2024年7月8日公開のBiophysical Chemistry誌に掲載されました。また、この研究は北陸先端科学技術大学院大学の超越バイオメディカルDX研究拠点の支援を受けて行われました。 |
【背景】
細胞の周りの環境(例えば浸透圧)が変わると、細胞の大きさが変わることはよく知られています。しかし、それだけでなく、細胞膜の張力や細胞内のタンパク質の集まり方も影響を受けます。このような変化は、新規モダリティ医薬品5)の開発や再生医療の分野で重要な知見となっています。
従来、細胞の微細構造の観察は電子顕微鏡や超解像蛍光顕微鏡によって行われてきました。しかし、電子顕微鏡では、煩雑な前処理や真空下での観察のため、生きたままの細胞の観察は難しく、また、蛍光顕微鏡では、解像度はサブマイクロメートル程度であり、微細構造の観察が難しい場合があります。したがって、さまざまな環境で生きたまま、かつ、非常に小さなスケールで細胞の微細構造を観察する新しい方法が求められています。
【研究の概要】
これに対して研究チームは、大型放射光施設SPring-8のBL08B2ビームライン6)で、小角X線散乱を用いて細胞の微細構造の解析を行いました。その結果、細胞内のさまざまな構造からの信号が検出され、それらが環境の変化に敏感に反応していることがわかりました。例えば、タンパク質を作るリボソームは、低浸透圧(水分が多い)ではサイズが膨張しますが、高浸透圧ではリボソームのサイズが収縮し、リボソーム間の距離が近づく様子が観察されました。また、高浸透圧下では、細胞膜が折りたたまれてマルチラメラ構造を作ることや、タンパク質や核酸の凝集状態が変化することが明らかになりました(図1)。これらの結果は、タンパク質の生成や放出に関連する現象と考えられます。抗体タンパク質の品質や産生量と細胞の微細構造の関係性が明らかになることで、抗体医薬品の開発への貢献が期待されています。
図1. 細胞の小角X線散乱信号の浸透圧に対する変化。高浸透圧で特に明瞭な散乱信号が検出され、さまざまな細胞微細構造の変化が起こっている。
【今後の展開】
細胞の微細構造の解明は、創薬や再生医療などの分野で注目されています。細胞の機能(抗体産生や接着・増殖・分化など)を最適化するために、さまざまな環境で細胞の微細構造を詳細に解明することが重要です。今回開発した小角X線散乱による細胞の微細構造解析法は、従来の電子顕微鏡や蛍光顕微鏡の限界を補完し、これまで観察が難しかった不定な構造(相分離)の観察にも有効です。また、従来の顕微鏡観察では困難であった低温や高温などの環境でも構造変化を捉えることが可能です。特に低温環境での細胞の微細構造解析は、細胞や組織の凍結保存への応用が可能であり、新型コロナウイルスで注目されたワクチンの凍結保存技術の発展にも寄与が期待されます。これらの技術は、食料不足や移植医療、創薬分野の課題解決や研究・技術開発への貢献が期待されています。
【用語説明】
試料に電子線を照射し、反射あるいは透過電子像を得る方法。ナノメートルスケールの細胞小器官の形態観察が可能であるが、煩雑な前処理や真空下での観察のため、生きたままの細胞を観察することは不可能である。
特定のタンパク質を蛍光分子で標識することで、その対象物を明るく輝かせ、可視光の波長の限界を超えた分子レベルの解像度で細胞を観察できる方法。ただし、蛍光標識した対象が凝集している場合などは、可視光の限界を超えて見分けることはできない。また、蛍光分子の選択は困難なこともあり、観察環境での蛍光活性の確認も必要である。
X線を物質に照射したときに生じる散乱を観測する方法。X線の散乱は物質中の分子の並び方によって異なる散乱を起こし、物質のナノメートル(10億分の1メートル)スケールの構造を調べることができる。
細胞内で起こるタンパク質や核酸などの生体分子の相分離に関する生物学分野の一つ。生体分子の相分離によって膜のない細胞小器官が形成されることで、細胞の外部環境の変化に瞬時に応答していると考えられている。細胞内の相分離現象が、細胞内の化学反応やシグナル伝達に重要な役割を果たしている可能性があり、新たな生物学として近年注目を集めている。
従来の低分子化合物を用いた医薬品とは異なる仕組みで作用する医薬品。従来の医薬品では効果が限定された疾患や患者に対して、新たな治療法を提供できる可能性があり、近年、研究・技術開発が進められている。生物由来の抗体や核酸、遺伝子、細胞医薬品などが該当する。
SPring-8 は兵庫県の播磨科学公園都市にある世界最高輝度の放射光を生み出す理化学研究所の施設。SPring-8 では、この放射光を用いて、物質科学や生命科学などの幅広い研究が行われている。BL08B2ビームラインは兵庫県が設置したビームラインであり、放射光の産業利用支援を目的としている。
【掲載論文】
掲載誌 | Biophysical Chemistry, 312 (2024) 107287. |
論文題目 | Nanoscale intracellular ultrastructures affected by osmotic pressure using small-angle X-ray scattering |
著者 | Masaru Nakada, Junko Kanda, Hironobu Uchiyama, Kazuaki Matsumura |
DOI | https://doi.org/10.1016/j.bpc.2024.107287 |
公表日 | 2024年7月8日(オンライン公開) |
令和6年7月10日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/07/10-1.html革新的ポリマーを用いたタンパク質凝集阻害メカニズムの解明 ―タンパク質医薬品製造の効率化や神経変性疾患治療への応用に期待―

![]() ![]() |
国立大学法人 国立大学法人東京工業大学 |
革新的ポリマーを用いたタンパク質凝集阻害メカニズムの解明
―タンパク質医薬品製造の効率化や神経変性疾患治療への応用に期待―
ポイント
- 双性イオンポリマー(PSPB)によるタンパク質凝集阻害の複雑な分子メカニズムを先駆的に解明した。
- PSPBは、多様なタンパク質の熱凝集に対して高い保護活性を持ち、PSPBとタンパク質の相互作用を実験及びシミュレーションにより包括的かつ詳細に検討した結果、弱く可逆的な結合の重要性を明らかにした。また、PSPBはタンパク質と弱く可逆的に相互作用することで、凝集経路を妨げ、凝集性中間体の形成を阻止することも明らかとなった。
- タンパク質治療薬の安定化と長期保存を実現する可能性を見出した。
- 将来的にはアルツハイマーなどの神経変性疾患の治療への応用も期待される。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の松村和明教授、ラジャンロビン元助教及びZHAO, Dandan研究員(超越バイオメディカルDX研究拠点)は、東京工業大学(学長・益一哉、東京都目黒区)生命理工学院生命理工学系の古田忠臣助教と共同で、双性イオンポリマーによるタンパク質凝集阻害メカニズムの解明に成功した。 本研究グループが合成したスルホベタインポリマーと呼ばれる双性イオン高分子は、タンパク質と弱く可逆的に相互作用し、凝集経路を妨げることで凝集性中間体の形成を阻止し、有害な凝集を防ぐ。この画期的な発見は、タンパク質治療薬を進歩させ、タンパク質のミスフォールディングに関連する様々な症状に対する新規治療法を開発する上で、計り知れない可能性を秘めている。 本成果は、2024年5月30日11時(米国東部標準時間)にCell Press発行「Cell Reports Physical Science」オンライン版に掲載された。 |
【研究の背景】
タンパク質の凝集は、アルツハイマー病、パーキンソン病、ハンチントン病などの神経変性疾患の主な原因とされている。また、タンパク質医薬品の生産と保管中に凝集が発生すると、薬剤の活性と有効性が失われる可能性がある。従来の方法では、これらの凝集を防ぐことは困難であり、効果的な安定化手法の開発が求められていた。
【研究内容】
本研究グループは、双性イオン高分子注1の一種であるスルホベタインポリマー(PSPB)及びその疎水性誘導体がタンパク質凝集を抑制するメカニズムを解明した。(図1)。PSPBはタンパク質と弱く相互作用し、凝集経路を妨げることで凝集性中間体の形成を阻止する。実験により、PSPBがインスリンやリゾチームなどの複数のタンパク質を熱ストレスから効果的に保護することが示された。特に、疎水性残基を導入したPSPBは、タンパク質の凝集抑制効果が著しく向上することが確認された。この効果は分子シールディング効果注2と呼ばれ、保護対象のタンパク質と保護高分子が可逆的な相互作用を示すことにより、物理的に凝集を妨げている様子が分子動力学シミュレーション注3の結果からも確認された。
【主な結果】
- PSPBの合成と特性評価:異なる疎水性モノマー(BuMA、HxMA、OcMA)を組み込んだ種々のスルホベタインポリマー(PSPB)を合成し、その特性を評価した。
- タンパク質の保護効果:インスリン、リゾチーム、乳酸脱水素酵素(LDH)をモデルタンパク質として使用し、PSPBがこれらタンパク質の凝集繊維形成を著しく抑制することを確認。分子量と疎水性が高いPSPBは、特に効果的であることが示された(図2)。
- 分子動力学シミュレーション:PSPBが分子シールドとして機能し、タンパク質分子間の距離を保ち、凝集を防ぐ効果を持つことが確認された(図3)。
- メカニズムの解明:熱分析、分光学的手法などを駆使し、PSPBによる凝集抑制効果の解明に成功した。モデルタンパク質のインスリンを加熱すると、タンパク質の高次構造がほどけるアンフォールディングが起こる。その後、さらに加熱することで凝集性の前駆体が形成され、不可逆な凝集体となる。ここにPSPBが存在することで、アンフォールディングする温度が高温側にシフトし、凝集前駆体の形成が阻害される。冷却時にはPSPBは脱離し、元の高次構造が維持される(図4)。PSPBへの疎水基の導入は、タンパク質の疎水性残基との相互作用を高める効果があり、より凝集前駆体の形成阻害効果を高めていることが示唆される。
【今後の展望】
PSPBによるタンパク質凝集抑制効果の分子メカニズムに迫った研究は初めてであり、このメカニズムにより、PSPBがタンパク質治療薬の安定化と長期保存に貢献できる可能性が示された。
さらに、この研究は新しい診断及び治療法の開発にも応用される可能性があり、将来的には幅広い疾患に対する効果的な治療法の提供が期待される。本研究グループは、今後さらにアミロイドβタンパクの凝集抑制などの研究を進め、アルツハイマー病やパーキンソン病などのタンパク質凝集が原因とされる神経変性疾患の治療や原因解明など、実用化に向けた具体的な応用方法の開発に取り組んでいく予定である。
図1 各種合成した双性イオンポリマー
スルホベタインポリマー(PSPB)にブチルメタクリレート(BuMA)、ヘキシルメタクリレート(HxMA)、オクチルメタクリレート(OcMA)を共重合したポリマーの構造を示す。
図2 インスリン溶液の凝集抑制の様子。i)加熱前、ii)加熱後、iii)PSPB添加後に加熱。
加熱することで凝集により白濁していることが確認される。一方、PSPBを添加することで白濁は抑えられる。
図3 P(SPB-r-BuMA)のモデルとしたスルホベタイン2量体にブチルメタクリレートを結合した化合物(SPB2_BuMA)とインスリンのMDシミュレーションによるスナップショット。インスリン二分子の間にモデル化合物が分子シールドとして可逆的にサンドイッチされ、凝集を妨げている様子が見られた。
図4 凝集抑制メカニズムの模式図。インスリン二量体(天然構造)が加熱により単量体に変性し、さらにアンフォールディングして立体構造が解消される。その際にポリマーがあると、分子シールディング効果により、凝集前駆体の形成を抑制し、繊維状凝集前駆体(prefibrillar aggregates)から繊維凝集体(mature fibrils)の形成を阻害する。
なお、本研究は、科研費基盤研究(B)20H04532、若手研究20K20197、23K17211、学術変革領域研究(A)21H05516、国立研究開発法人科学技術振興機構(JST)研究成果最適展開支援プログラム(A-STEP)JPMJTR20UN、文部科学省ナノテクノロジープラットフォーム事業JPMXP09S21MS1051、JPMXP09S21MS1051b、文部科学省マテリアル先端リサーチインフラ事業JPMXP1222MS1007、ならびに北陸先端科学技術大学院大学超越バイオメディカルDX研究拠点、生体機能・感覚研究センターの支援のもと行われた。
【論文情報】
雑誌名 | Cell Reports Physical Science |
題目 | Molecular mechanism of protein aggregation inhibition with sulfobetaine polymers and their hydrophobic derivatives |
著者 | Robin Rajan, Tadaomi Furuta, Dandan Zhao, Kazuaki Matsumura |
掲載日 | 2024年5月30日11時(米国東部標準時間) |
DOI | 10.1016/j.xcrp.2024.102012 |
【用語説明】
同一分子内に正電荷と負電荷を持つ全体としては中性の高分子で、高い水和性と低い非特異的タンパク質吸着性を持つ。これにより、生体適合性が高く、医療分野やバイオテクノロジー分野で広く研究、応用されている。
Tunaccliffeらの報告によると、ある種の天然変性タンパク質が乾燥時に他のタンパク質の周りに保護相を形成し、物理的に凝集を抑制する効果のことを分子シールディング(molecular shielding)効果として説明している。
Chakrabortee S, et al., Mol. Biosys. 2012, 8, 210-219
分子系の運動を時間的に解析する手法。具体的には、原子や分子の初期位置と速度を設定し、相互作用ポテンシャルを用いてニュートンの運動方程式を解くことで、分子系の時間発展を追跡し、構造変化、相転移、拡散などの現象を解析する。例えば、タンパク質のフォールディング過程や薬物分子の結合動態、材料の熱物性などを詳細に調べることができ、生物学、化学、材料科学に広く応用されている。
令和6年5月31日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/05/31-1.html金沢大学・北陸先端科学技術大学院大学 第2回共同シンポジウムを開催
令和5年12月12日(火)、金沢大学宝町キャンパス 医学図書館2階 十全記念スタジオにおいて、金沢大学・北陸先端科学技術大学院大学 第2回共同シンポジウムが開催されました。
金沢大学と本学は、融合科学共同専攻における分野融合型研究を推進してきましたが、今年度より、融合科学共同専攻にとどまらず、両大学間の共同研究の発展と促進を目指し、共同シンポジウムを開催しています。第1回目は令和5年6月26日に本学にて開催いたしましたが、第2回目である今回は「バイオメディカル」をテーマに、金沢大学にて開催いたしました。
金沢大学 和田隆志学長による開会挨拶後、本学 超越バイオメディカルDX研究拠点長 松村和明教授、金沢大学 附属病院眼科 小林 顕講師、金沢大学 医薬保健研究域医学系 三枝理博教授、本学 バイオ機能医工学研究領域 筒井秀和准教授がそれぞれバイオメディカル関連の最新研究について講演し、本学 寺野稔学長の挨拶をもって閉会となりました。
両学長は、開会・閉会の挨拶の際に、本シンポジウムをきっかけとしたシーズ開発や社会実装、および研究連携を中枢とした両大学の発展への期待について述べられました。また、本シンポジウムが、今後の両大学間の共同研究の発展と促進を目的としていることから、各講師の先生方は、自身の研究内容の説明に加えて、「どのような研究分野との共同研究が可能か」という点も併せて講演されました。
オンライン配信とのハイフレックス形式にて開催しました本シンポジウムには、両大学より多くの方が参加され、質疑応答の時間には講演内容に関する活発な意見交換が研究者間で行われました。次回は本学を会場として開催される予定です。本シンポジウムが今後両大学間の共同研究発展の端緒となるよう推進して参ります。

開会の挨拶をする金沢大学 和田学長

講演①「両性電解質高分子による細胞凍結保護とタンパク質安定化作用」
松村 和明 教授(本学 超越バイオメディカルDX研究拠点長)

講演②「水疱性角膜症治療 (角膜内皮移植)の進歩」
小林 顕 講師(金沢大学附属病院 眼科)

講演③「中枢体内時計神経ネットワークの動作原理解明と操作に向けて」
三枝 理博 教授(金沢大学医薬保健研究域医学系)

講演④「細胞認識能を備えた電気生理学計測法の構築にむけて」
筒井 秀和 准教授(本学 バイオ機能医工学研究領域)

閉会の挨拶をする寺野学長
令和5年12月15日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/12/15-1.html第2回 金沢大学・北陸先端科学技術大学院大学 共同シンポジウム
開催日時 | 令和5年12月12日(火)13:30~16:15 |
会 場 | 金沢大学宝町キャンパス(金沢市宝町13-1) 医学図書館2階 十全記念スタジオ ※Webexにて同時配信(対面・オンラインのハイフレックス) |
対 象 | 両大学の教職員・学生 |
テーマ | バイオメディカル |
プログラム | 13:30~ オープニング(共同シンポジウムの趣旨説明等) 13:35~ 開会挨拶 金沢大学 和田 隆志 学長 13:40~14:15 ≪講演1≫ *講演:30分、質疑応答:5分 講演者:松村 和明 教授 本学 超越バイオメディカルDX研究拠点長、 物質化学フロンティア研究領域長 講演タイトル:両性電解質高分子による細胞凍結保護とタンパク質安定化作用 14:15~14:50 ≪講演2≫ *講演:30分、質疑応答:5分 講演者:小林 顕 講師 金沢大学附属病院 眼科 講演タイトル:水疱性角膜症治療(角膜内皮移植)の進歩 14:50~15:00 休憩 15:00~15:35 ≪講演3≫ *講演:30分、質疑応答:5分 講演者:三枝 理博 教授 金沢大学 医薬保健研究域医学系 講演タイトル:中枢体内時計神経ネットワークの動作原理解明と操作に向けて 15:35~16:10 ≪講演4≫ *講演:30分、質疑応答:5分 講演者:筒井 秀和 准教授 本学 バイオ機能医工学研究領域 講演タイトル:細胞認識能を備えた電気生理学計測法の構築にむけて 16:10~16:15 閉会挨拶 北陸先端科学技術大学院大学 寺野 稔 学長 |
参加申込 | 下記申込み用フォームからお申込みください パソコン用フォームURL https://ws.formzu.net/fgen/S82865089/ スマホ用フォームURL https://ws.formzu.net/sfgen/S82865089/ |
備 考 | 〇会場での参加、オンライン参加ともに事前申込みが必要です。 〇会場には来客用駐車スペースがありませんので、対面参加をご希望の方は、公共交通機関ご利用にご協力ください。 〇オンライン参加の方には、アクセス用URLをご連絡いただいたメールアドレスに後日送信いたします。 |
問合せ先 | 研究推進課 学術研究推進係 内線:1907/1912 E-mail:suishin@ml.jaist.ac.jp |
「大学見本市2023~イノベーション・ジャパン」に出展

8月24日(木)、25日(金)の2日間、東京ビッグサイト南展示棟(東京都江東区有明)で国内最大規模の産学マッチングイベントである「大学見本市2023~イノベーション・ジャパン」が開催され、本学からは以下の2件が出展しました。
- 超越バイオメディカルDX研究拠点 物質化学フロンティア研究領域 松村和明 教授
【展示タイトル】超越バイオメディカルDX研究拠点 - サスティナブルイノベーション研究領域 高田健司 助教
【展示タイトル】新機能!バイオマス由来桂皮酸を用いたバイオプラスチックの開発
※各ブースの出展内容については、以下を参照ください。
https://www.jaist.ac.jp/whatsnew/event/2023/08/03-1.html
8月24日(木)に同会場内で開催された研究者ショートプレゼンテーションでは、松村和明教授が「超越バイオメディカルDX研究拠点」をテーマに発表を行い、多くの聴講者によって活況を呈しました。本学ブースには企業関係者をはじめ大学や公的機関の関係者等、2日間で延べ174名もの方々が来訪され、今後の連携における検討等、活発な情報交換の場となりました。

プレゼンテーションの様子


出展ブースの様子
令和5年8月31日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/08/31-1.htmlMeet up Chubu イベント「超越バイオメディカルDX研究拠点」見学会を開催
7月27日(木)、中部経済産業局および中部経済連合会主催の、連携パートナーを探索するためのオープンイノベーションプラットフォームである『Meet up Chubu』が、本学の「超越バイオメディカルDX研究拠点(eMEDX)」にて開催されました。現地参加とオンラインのハイブリッド形式で行われ、当日は約60名の多種多様な業種・業界の方々にご参加いただきました。
最初にeMEDX拠点長である物質化学フロンティア研究領域の松村 和明教授から施設概要の紹介があり、その後、eMEDX施設内のオンラインツアーをライブ配信で行いました。
続いて、松村教授、同じく物質化学フロンティア研究領域の都 英次郎准教授の研究紹介が行われました。各セッションの最後には参加者からたくさんの質問があり、活発な意見交換がなされました。
最後に、寺野稔学長からの挨拶では、eMEDXの展望について発言がありました。
eMEDXでは、本学が誇る世界トップレベルのバイオメディカル分野の研究に、スーパーコンピューターを活用したデータ駆動型のDXを組み合わせ、医療・ヘルスケア・メディカルなどに関わる広い分野でのイノベーションを目指すとともに、技術や知識をシェアして共創する「シェアードオープンイノベーション」という新しい考え方に基づき、多種多様な業種・業界の会員企業間のざっくばらんな交流を推進することで、北陸から世界のバイオメディカルを変えるイノベーションを共創していきます。

学長挨拶

松村和明 拠点長・教授

都英次郎 准教授

研究紹介の様子
施設に関するお問い合わせ先 北陸先端科学技術大学院大学 未来創造イノベーション推進本部 担当:山廣、竹田 〒923-1292 石川県能美市旭台1-1 E-mail:emedx@ml.jaist.ac.jp |
令和5年8月10日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/08/10-1.html大学見本市2023~イノベーション・ジャパンに本学が出展
8月24日(木)・25日(金)の2日間、東京ビッグサイト南展示棟(東京都江東区有明)で国内最大規模の産学マッチングイベントである「大学見本市2023~イノベーション・ジャパン」が開催されます。
本学からは以下の2件が出展します。
ご来場の際にはぜひお立ち寄りください。
日 時 | 8月24日(木) 10時00分~17時30分 8月25日(金) 10時00分~17時00分 |
会 場 | 東京ビッグサイト 南展示棟 南1ホール(東京都江東区有明3丁目11番1) |
大学等 シーズ展示 |
超越バイオメディカルDX研究拠点 物質化学フロンティア研究領域 松村和明 教授 【小間番号】H-56 高田健司 助教 【小間番号】C-68 |
詳細はこちらをご覧ください。
・イノベーション・ジャパン2023公式サイト
・イノベーション・ジャパン2023出展課題一覧
第2回 超越バイオメディカルDX研究拠点エクセレントコアセミナー

セミナーを下記のとおり開催しますので、ご案内します。
開催日時 | 令和5年7月21日(金) 15:00~17:00 |
場 所 | JAISTイノベーションプラザ 2F シェアードオープンイノベーションルーム (要予約:定員30名) |
講 師 | LECOMMANDOUX, Sébastien, Ph.D. Professor of University of Bordeaux, France |
講演題目 | 「Biomimetic protein bioconjugates for biomaterials and artificial organelles design 」 |
使用言語 | 英語 |
参加申込・ お問合せ |
下記の担当へ前日までにお申し込みください。 (参加費無料) 北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点長 松村 和明 (E-mail:mkazuaki@jaist.ac.jp) |