研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。協調ロボットの未来:広範囲触覚・近接センシングの簡易な実現に成功
協調ロボットの未来:広範囲触覚・近接センシングの簡易な実現に成功
ポイント
- 周囲の環境や人に対する安全な動作を実現するための近接覚と、利用者に対して安心感を提供する触覚、2つの感覚を備えたセンシングロボットアームの開発に成功した。
- 広範囲なセンシング機能を備えていながら、複雑な配線がなく、シンプルかつ耐久性の高い設計を実現した。
- センシング装置におけるデジタルツインを構築することによって、データ駆動型のセンシング機能を備えることができ、Sim2Real[用語説明]の効果を高めることにも成功した。
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)人間情報学研究領域のホ アン ヴァン(Ho Anh Van)准教授は、視覚による触覚・近接検知装置を備えたロボットアームの開発に成功した。これにより、ロボットと人間とのインターフェースに関して、人工知能(AI)を活かした人間とCyber-Physical System (CPS) [用語説明]環境における、新たな価値を創出する研究につながることが期待される。 |
【研究の背景と目的】
これまでの産業用ロボットの考え方では、人間とロボットは作業領域が明確に分離されており、ロボットは人間の安全半径内に立ち入ることが許されなかった。これは、第一義的には人間を危険から守るためだが、一方で、産業用ロボットの安全性に関する技術・研究の発展を阻害していた側面がある。安全性の確保は、最低限のセンシング技術と簡易なフェイルセーフ機能で十分とされ、研究開発のリソースは、より製品の競争力を高めるためのロボットの高速化・高精度化に注ぎ込まれてきた。しかしながら、近年の我が国における労働力不足や長引くコロナ禍による新しい生活様式の中で、これまで人間の手で行ってきた作業をロボットで代替しようとする動きが急速に高まってきている。さらに、全ての人が健康的な生活を送ることができる社会を目指すSDGsの大きな流れが加わり、現在ロボット技術に人間との調和、つまりロボットが人間と共存し、さらに人間とコラボレーションすることが強く求められている。
例えば、ロボットが人間をサポートする技術として、アームで人間を支える介護ロボットでは、介護サービスの提供を受ける人間が安心感を得られる触覚センシングの活用が検討されている。触覚は、人間同士の触れ合いにおいては愛情や信頼、思いやりを伝える重要な感覚である。しかし、ロボットの触覚技術は長年研究されてきているが、視覚技術の研究と比較すると未だ応用例は極めて少ない。また、同時に周囲の人間や環境に対する安全性を確保するためには、ロボットが周辺状況を高い精度で検知する必要があるが、特に外付けのカメラを利用する場合に、アームや利用者によって遮蔽される領域が多く、アームの近接領域の検出が困難となっている。
このような問題点に鑑み、今回、利用者が安心感を得られる接触と、安全な動作を実現する近接の両方の感覚を兼ね備えたロボットアームの技術を提案した。本研究において実現される近触覚・接覚のセンシング技術では、人間を含む周囲の環境を認識し、自立的な判断行動が可能となるロボットアームを開発することで、衝突回避等の安全性だけではなく、接触が許容される状況の判断および接触を通じた安心感の提供といった機能を有する、人工知能(AI)を搭載した協働ロボットの実現を目指す(図1)。

図1:本研究の位置付け
【研究の内容】
本研究では、低コストかつシンプルな構造を有する柔軟な触覚装置と、人間との接触を即時に検知することで、人間の行動を推定しながら人間と調和するロボットを実現した。このロボットは、人間の皮膚を模した柔軟なスキン上の複数の接触点へ加えられた力を、ロボットアームの両端に設置されたカメラが、スキンの変形の状態をリアルタイムで測定する技術によって実現した。さらに、透明なシリコンゴムと薄い柔軟な高分子分散液晶(PDLC)フィルムを組み合わせることで、柔軟なスキンの透明性をアクティブに切り替えることが可能となった(図2)。利用するPDLCフィルムは、外部から小さな電圧を印加することにより、透明/不透明を切り替えることができる。この透明/不透明の切り替えでは、近接覚と触覚の二つのモードを備え、またそのモードをシームレスに切り替えることができる。

図2:設計概念
(図2)
(右)近接覚モード(PDLCが透明):スキン内部の2台のカメラは、スキン近傍の外部オブジェクトを検知できる。
(左)触覚モード(PDLCが不透明):これまでの研究成果と同様、2台のカメラが接触または相互作用下でのスキンの歪みを検知し、触覚または力のセンシングが可能となる。
本研究で使用したロボットアームは、柔軟なスキンの内側に格子状のマーカーを備え、スキン内部に2台の小型カメラを配置している。スキンの透明性の能動的な切替えにより、近接覚と広範囲の触覚をセンシングする独創性の高い手法である。圧力センサを用いずカメラによるマーカーの変位から外力を算出することから、配線の複雑さやオクルージョン (光学遮蔽)などをほぼ完全に無くすことに成功しており、高いセンシング精度と耐久性を実現した。さらに、各モジュールの内圧を変えることでスキンの柔らかさを調整し、スキンに触れた人間に対する触感についても、制御可能である。さらに、深層学習を通じて多様な近接・接触動作・状況を予め学習させることで、人間と調和し、人間との複雑な近接・接触を実現する潜在的に高い適応性を持つと期待される。
図3:各動作モード
<参考動画>
動作ビデオ1:https://youtu.be/NN2u8YBLITY
動作ビデオ2:https://youtu.be/m8QzvDx_vpc
今日、ロボットは、いわゆる物理的な人間とロボットの相互作用(pHRI;physical Human-Robot Interaction)シナリオのように、安全半径の外で動作しつつ、人間と同じワークスペースを共有し(共存)、さらには人間と相互作用(コラボレーション)する必要がある。pHRIでは、ロボットは衝突の可能性を回避するだけでなく、避けられない物理的接触と意図的な物理的接触の両方を安全かつ信頼できる方法で対応することが期待されている。これを達成するために、深度カメラと力/トルクセンサーの組み合わせが提案されているが 、これは、外部カメラを使用するために、先述した視覚の遮蔽の問題を有している。近年、マルチモーダル知覚(触覚、近接など)を備えた大規模センサースキンが開発されたが、センサーネットワークのデータ取得と処理が複雑であるため、微調整が困難であり、衝突等の突発的な事故への応答が遅くなる可能性がある。
本研究は、ロボットの周りの多様な近接や接触動作・状況などをたった2台のカメラで検知することが可能なシンプルな構造をしており、信頼性を持つpHRIの実装方法となり得る。また、Sim2Realのプロセスで、実物の特性を再現できるデジタルツインにおいて、必要なデータ収集や学習などをシミュレーション環境で実施し、学習の結果を、実物に反映させることができ、今後の研究・開発の時間を大幅に縮小することも期待される。
本研究成果は、2023年2月28日にIEEE(米国電気電子学会)が発行する学術雑誌「IEEE Transactions on Robotics」のオンライン版に掲載された。また、2023年4月3日から7日までシンガポールで開催の、国際会議IEEE-RAS International Conference on Soft Robotics (RoboSoft 2023)で発表された。
なお、本研究は、国立研究開発法人科学技術振興機構(JST)・戦略的創造研究推進事業さきがけ「IoTが拓く未来」研究領域(JPMJPR2038)の支援を受け行った。
【今後の展開】
本研究によって、今後の展開が期待される製品・サービスとして、次の二つが挙げられる。一つ目は、利用者がより多くの事を自分自身でできるように支援し、さらに利用者に加え、周りの状況も考慮したロボットアームを備えた車椅子への活用である。二つ目に、サービスの提供を受ける利用者に安心感や大事にされているという感覚、思いやりなどを伝えることができる介護ロボットである。将来的に、これらの製品が介護保険等の給付対象として認可されることで普及促進へと繋がることが期待される。
【論文情報等】
| (1) | |
| 題目 | Simulation, Learning, and Application of Vision-Based Tactile Sensing at Large Scale |
| 雑誌名 | IEEE Transactions on Robotics |
| 著者 | Quan Khanh Luu, Nhan Huu Nguyen, and Van Anh Ho |
| 掲載日 | 2023年2月28日 |
| DOI | 10.1109/TRO.2023.3245983 |
| (2) | |
| 題目 | Soft Robotic Link with Controllable Transparency for Vision-based Tactile and Proximity Sensing |
| 国際会議名 | the 6th IEEE-RAS International Conference on Soft Robotics (RoboSoft 2023) |
| 著者 | Quan Luu, Dinh Nguyen, Nhan Huu Nguyen, anh Van Anh Ho |
| 発表日 | 2023年4月6日 |
【用語解説】
コンピュータ内のシミュレーション等で学習したモデルを現実世界に用いるという強化学習の手法。
実世界(フィジカル)におけるデータを収集し、サイバー世界でデジタル技術などを用いて分析・知識化を行い、それをフィジカル側にフィードバックすることで、産業の活性化や社会問題の解決を図っていく仕組み。
令和5年4月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/04/12-1.html新しいプロセス技術を駆使してシリコン系次世代太陽電池を開発しよう
新しいプロセス技術を駆使して
シリコン系次世代太陽電池を開発しよう
次世代シリコン太陽電池研究室
Laboratory on Next-Generation Silicon Photovoltaics
教授:大平 圭介(OHDAIRA Keisuke)
E-mail:
[研究分野]
太陽電池、半導体工学、薄膜形成
[キーワード]
結晶化、パッシベーション、モジュール耐久性
研究を始めるのに必要な知識・能力
学部もしくは高専で習う固体物理、半導体の基礎知識がある方が望ましい。
地球環境問題、エネルギー問題への関心は研究を進める原動力となる。
この研究で身につく能力
各学生の研究テーマを遂行することで、真空装置の取扱いの他、薄膜形成およびその物性評価技術、デバイス作製・評価技術が身につきます。また、データの解析や日々のディスカッション、ゼミ活動などを通じて、特に半導体や太陽電池に関する基礎学力を習得できます。さらに、学生の自主性を重んじる研究室の方針から、いわゆる「指示待ち人間」にならない、問題解決能力の高い人間に成長できます。国内・国際学会での発表や、展示会でのブース展示などを通して、プレゼンテーション能力や、英語も含めたコミュニケーション能力も鍛えられます。
【就職先企業・職種】 大学研究教育職、企業研究職(電機、精密機器メーカー)など
研究内容
地球上に豊富に存在するシリコンを用いた太陽電池は、現在でも市場の大部分を占めており、また今後も、太陽光発電技術の主役であり続けることが期待されています。一方で、さらなる低コスト化、高効率化、長寿命化が求められており、より一層の技術的なブレークスルーが必要です。当研究室では、以下の新技術に着目し、シリコン系高性能太陽電池実現のための基盤技術の確立を目指します。
1.瞬間熱処理による太陽電池用多結晶シリコン薄膜形成
キセノンランプにおけるミリ秒台の瞬間放電を利用したフラッシュランプアニール(FLA)は、数十J/㎠という、瞬間的には地上における太陽光の数万倍の強度のパルス光を照射できます。当研究室では、この手法を、安価なガラス基板上への多結晶シリコン薄膜の形成に応用する検討を行っています。非晶質シリコン膜をガラス基板上に形成し、一度のFLA光照射を行うだけで、膜厚4µm以上の多結晶シリコン膜が形成できます。水素を含有した非晶質シリコン膜を前駆体に用いると、結晶化後も膜内に多量の水素原子が残留し、シリコンの未結合手が終端されるため、低欠陥の多結晶シリコン膜が形成でき、高効率薄膜太陽電池用材料としての利用が期待されます。このFLAによる非晶質シリコン膜の結晶化の現象解明および制御と、形成される多結晶シリコン薄膜の太陽電池応用について研究を行っています。

FLA装置の発光の様子(左)と
Cat-CVD装置の触媒体(右)
2.触媒化学気相堆積(Cat-CVD)の太陽電池応用
加熱触媒体線での接触分解反応により原料ガスを分解して薄膜を形成するCat-CVD法は、膜堆積時の基板材料への損傷を低減でき、結晶シリコン表面でのキャリアの再結合を大幅に抑制可能な高品質パッシベーション膜を形成できます。触媒分解により生成するラジカルを用いたCatドーピングとともに、高効率バルク結晶シリコン太陽電池への応用を目指しています。
3.結晶シリコン太陽電池モジュールの耐久性と新構造開発
多数のモジュールが直列に接続される大規模太陽光発電所などで、モジュールのフレームとセルの間にかかる高電圧が原因で発電特性が低下する、いわゆる電圧誘起劣化(PID) の問題が顕在化しています。当研究室では、結晶シリコン太陽電池モジュールのPIDの機構を解明し、抑止技術を開発する研究を行っています。また、現行の太陽電池モジュールは、各部材が封止材で固められています。そのため、封止材由来の各種劣化が発生し、モジュールを廃棄する際の部材分別やリサイクルも困難です。この問題を解決するため、封止材を用いない新概念モジュールの開発にも取り組んでいます。
主な研究業績
- K. Ohdaira, M. Akitomi, Y. Chiba, and A. Masuda, Potential-induced degradation of n-type front-emitter crystalline silicon photovoltaic modules — comparison between indoor and outdoor test results, Sol. Energy Mater. Sol. Cells 249, 112038 (2023).
- R. Ohashi, K. Kutsukake, H. T. C. Tu, K. Higashimine, and K. Ohdaira, High passivation performance of Cat-CVD i‑a-Si:H derived from bayesian optimization with practical constraints, ACS Appl. Mater. Interf. 16, 9428 (2024).
- Z. Wang, H. T. C. Tu, and K. Ohdaira, Formation of n-type polycrystalline silicon with controlled doping concentration by flash lamp annealing of catalytic CVD amorphous silicon films, Jpn. J. Appl. Phys. 63, 105501 (2024).
使用装置
フラッシュランプアニール装置
触媒化学気相堆積(Cat-CVD)装置
太陽電池特性評価装置
太陽電池モジュール作製および信頼性評価装置
各種薄膜物性評価装置
研究室の指導方針
研究活動は自主性を重んじる方針で、学生自身の発想が研究に活かせます。毎朝一度、研究室メンバー全員が集まるミーティングを行い、その日の各自の活動を報告します。ミーティングでは、簡単な研究の相談もでき、メンバー間のコミュニケーションも十分行えるシステムです。当番の学生が文献紹介を行う勉強会では、細部にわたる質問への回答が求められ、しっかりとした基礎学力が身につきます。学術会議などでの外部発表は、積極的に行います。また、博士前期課程期間中に、英語の論文を執筆し投稿できるよう指導します。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/ohdaira/
機械学習を用いた太陽電池用シリコン薄膜堆積条件の新たな最適化手法を開発
|
国立大学法人 国立研究開発法人理化学研究所 |
機械学習を用いた太陽電池用シリコン薄膜堆積条件の
新たな最適化手法を開発
ポイント
- 実用で頻出する制約(膜厚制限や実現不可能な実験条件排除)を考慮した「制約付きベイズ最適化」を開発
- 制約内の実験条件範囲でキャリア再結合抑止能力が最良となる薄膜堆積を少ない実験回数で実現
- 太陽電池製造や薄膜堆積に限らず広く応用可能な手法として期待
| 北陸先端科学技術大学院大学 (JAIST)(学長・寺野稔、石川県能美市)の大橋亮太大学院生(博士前期課程)、Huynh, Thi Cam Tu特任助教(サスティナブルイノベーション研究領域)、東嶺孝一技術専門員(ナノマテリアルテクノロジーセンター)、大平圭介教授(サスティナブルイノベーション研究領域)と、理化学研究所革新知能統合研究センターの沓掛健太朗研究員は、結晶シリコン太陽電池に用いられる薄膜のシリコン堆積条件を最適化する新たな手法を開発した。 |
本研究グループではこれまで、触媒化学気相堆積(Cat-CVD)法*1を用いた太陽電池用薄膜形成に取り組んできた。特に、非晶質シリコン膜と結晶シリコン基板との接合からなるシリコンヘテロ接合太陽電池*2は、低損傷での膜堆積が可能なCat-CVDの優位性が生かせることから、有用な応用先として注力している。この製膜においては、多数の製膜パラメータが存在するため、太陽電池出力を最大化する最適製膜条件の発見には、一般に膨大な実験回数(試行錯誤)を要する。
このような実験条件の最適化問題に対して、「ベイズ最適化」*3と呼ばれる、機械学習を応用した逐次最適化法が、最近よく使用されている。しかし、太陽電池出力の最大化のみを目的とした単純なベイズ最適化では、次の実験条件で得られる膜の厚さを規定する機能は無く、デバイス動作上問題が生じるような厚膜が形成されうる。また、ベイズ最適化によって提示される実験条件が、実現不可能な組み合わせ(例えばガス流量と製膜装置のポンプの排気能力の不整合)となる可能性がある。
本研究では、これらのベイズ最適化における実践的な問題を解決するための、「制約付きベイズ最適化」を開発した。この手法では、未実施の実験条件のうち、製膜装置の仕様上実現が困難な実験条件を機械学習による予測に基づいてあらかじめ排除し、残りの条件の中からキャリア再結合抑止性能を最良化する可能性のある実験条件を提示させるよう工夫した。さらに、一定の製膜時間における予測膜厚を提示させる機能を持たせ、所望の膜厚を得るための製膜時間を逆算できるよう設計した。これらの制約を組み込むことで、製膜装置が実現可能な条件の範囲内でかつ一定の膜厚を有し、キャリア再結合抑止性能を最良化するベイズ最適化の手順を進行させることが可能となった。開発した「制約付きベイズ最適化」を用いることで、わずか8回のサイクルにより最適な製膜条件に到達し、20回のサイクルでベイズ最適化工程が完了した。また、本ベイズ最適化の提示に従って複数の製膜パラメータを広い範囲で変化させた結果、高いキャリア再結合抑止性能の実現には、製膜時の基板温度と原料ガスであるSiH4の流量の組み合わせが重要であることも見出した。
本研究で得られた手法は、太陽電池製造や薄膜堆積に限らず、幅広い分野や試料作製に適用可能な手法として期待される。

「制限付きベイズ最適化」の流れ
【論文情報】
| 雑誌名 | ACS Applied Materials and Interfaces(米国化学会) |
| 題目 | High Passivation Performance of Cat-CVD i‑a-Si:H Derived from Bayesian Optimization with Practical Constraints |
| 著者 | Ryota Ohashi, Kentaro Kutsukake, Huynh Thi Cam Tu, Koichi Higashimine, and Keisuke Ohdaira |
| 掲載日 | 2024年2月8日 |
| DOI | 10.1021/acsami.3c16202 |
【用語説明】
加熱触媒体線により原料ガスを分解し、薄膜を堆積する手法。原料ガスの分解時にイオンが生成されないため、イオンの衝突による結晶シリコン表面への損傷が起こらず、良好な薄膜/基板界面が得られる。
結晶シリコンウェハと非晶質シリコン膜の接合を基本構造とする太陽電池。非晶質シリコン膜により、結晶シリコン表面に存在する結晶欠陥が有効に不活性化され、キャリア再結合が抑えられる結果、汎用の結晶シリコン太陽電池と比べて高い電圧が得られる特長がある。
形状が不明な関数の最大値や最小値を得るための手法の一種。既知である実験条件(入力)とその結果(出力)のデータセットから、未実施の実験条件における結果の予測値を、不確かさ(標準偏差)とともに推定し、不確かさも含めて予測値が最良となる条件で次の実験を行う。その実験で得られた結果を含めて予測値を推定し直す。これを繰り返し、少ない実験回数で最適な実験条件を得る。
令和6年2月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/02/19-1.htmlポリビニルホスホン酸を用いたリチウムイオン2次電池におけるマイクロシリコンオキシド負極の安定化に成功
ポリビニルホスホン酸を用いたリチウムイオン2次電池における
マイクロシリコンオキシド負極の安定化に成功
ポイント
- ポリビニルホスホン酸をリチウムイオン2次電池のマイクロシリコンオキシド負極のバインダーとして適用することにより、その優れた接着性を活かして負極を安定化させることに成功した。
- 作製したアノード型ハーフセルは1000 mAg-1の電流密度において200サイクル後に650 mAhgSiO+C-1(1300 mAhgSiO-1)を維持した。
- ポリビニルホスホン酸は銅箔への接着において、ポリアクリル酸(2.03 N/m)と比較して大幅に高い接着力(3.44 N/m)を要した。
- ポリビニルホスホン酸をバインダーとした場合には、ポリアクリル酸やポリフッ化ビニリデンをバインダーとした場合とは異なり、200回の充放電サイクル後においてもSEM像において集電体からの剥離は観測されなかった。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の先端科学技術研究科 松見紀佳教授(物質化学フロンティア研究領域)、高森紀行大学院生(博士後期課程)、テジキランピンディ ジャヤクマール元大学院生、ラージャシェーカル バダム元講師(物質化学フロンティア研究領域)、丸善石油化学株式会社らのグループは、リチウムイオン2次電池*1における負極バインダーとしてのポリビニルホスホン酸がマイクロシリコンオキシド負極を高度に安定化することを見出した。 |
【研究内容と背景】
リチウムイオン2次電池の負極材開発において、マイクロシリコンオキシドはシリコンと比較して比較的穏やかな体積変化を示すため、活用が広範に検討されている。しかし、なお体積変化による負極性能の劣化を抑制できるバインダーの開発が望まれている。
本研究においては、ポリビニルホスホン酸をマイクロシリコンオキシド負極のバインダーとして活用することにより、ポリアクリル酸の場合と比較して顕著に電池のサイクル特性が向上することを見出した。
ポリビニルホスホン酸に関してDFT計算で電子構造を計算すると、LUMOレベルは-1.92 eVであり、ポリアクリル酸(-1.16 eV)やエチレンカーボネート(-0.31 eV)のそれよりも大幅に低い。負極側近傍においてエチレンカーボネートの還元分解に先立ってポリビニルホスホン酸の還元が起こることが想定され、エチレンカーボネートの過剰な分解の抑制、すなわち被膜形成の抑制と界面抵抗の抑制につながると考えられる。
ポリビニルホスホン酸(PVPA)を銅箔でサンドイッチした系の引き剥がしに要する応力を評価したところ3.44 N/mであり、ポリアクリル酸(PAA)(2.03 N/m)、ポリフッ化ビニリデン(PVDF)(0.439 N/m)と比較して大幅に高い接着力を示した(図1)。

図1.(a)ポリビニルホスホン酸、(b)ポリアクリル酸、(c) ポリフッ化ビニリデンの構造式
負極の組成をマイクロサイズSiO:グラファイト:ポリビニルホスホン酸:アセチレンブラック:カルボキシメチルセルロース=30:30:20:15:5とし、EC:DEC = 1:1(v/v)LiPF6溶液を電解液としてアノード型ハーフセル*2を構築した。
アノード型ハーフセルのサイクリックボルタモグラムでは、ポリビニルホスホン酸バインダーを用いた場合にのみ第一サイクルにおいてバインダーの還元ピークが観測された。また、本系ではLi挿入・脱挿入の可逆的な両ピークが他のバインダー系(PAA、PVDF)以上に明瞭に観測された(図2b-d)。
アノード型ハーフセルの充放電特性評価を行ったところ、ポリビニルホスホン酸バインダー系では1000 mAg-1の電流密度において200サイクル後に650 mAhgSiO+C-1以上の放電容量(1300 mAhgSiO-1以上の放電容量)を維持した(図2e)。一方、ポリアクリル酸バインダー系では、200サイクル後には300 mAhgSiO+C-1まで放電容量が低下した。また、ポリフッ化ビニリデンバインダー系の耐久性はさらに低く、200サイクル後には初期容量の20%の容量を維持するにとどまった。
グラファイトを用いずに負極におけるSiO組成を増加させた系についても検討したところ(SiO:ポリビニルホスホン酸:アセチレンブラック:カルボキシメチルセルロース=60:20:15:5)、0.21 mgSiOcm-2、0.85 mgSiOcm-2、1.84 mgSiOcm-2の活物質の塗布量においてそれぞれ100サイクル後に92.2%、90.9%、60.8%の容量維持率を示した(図2g)。

図2.(a)各アノード型ハーフセルの充放電曲線、(b)(c)(d)各アノード型ハーフセルのサイクリックボルタモグラム、(e)各アノード型ハーフセルの充放電サイクル特性、(f) 各アノード型ハーフセルの充放電レート特性、(g)各アノード型ハーフセルにおける活物質担持量の影響
200サイクルの充放電サイクル後、電池セルを分解して負極をSEM観察したところ、ポリビニルホスホン酸バインダー系においては集電体からの剥離は観測されなかった。一方、比較対象のポリアクリル酸バインダー系、ポリフッ化ビニリデンバインダー系では集電体からの剥離が観察された(図3)。

図3.各バインダーを用いた系の充放電前後の負極のSEM像及び充電後の膨張率
ポリビニルホスホン酸バインダーを用いたSiO負極とLiFePO4正極を組み合わせたフルセルも構築し、1.5 mAh以上の放電を150サイクルにわたって観測した。
本成果は、ACS Applied Energy Materials (米国化学会)のオンライン版に2024年2月8日に掲載された。
なお、本研究は、科学技術振興機構(JST)の次世代研究者挑戦的研究プログラムJPMJSP2102の支援を受けて実施した。
【今後の展開】
ポリビニルホルホン酸の優れた結着性を活用し、さらに様々なエネルギーデバイスへの適用範囲の拡充が期待される。
本材料はすでに丸善石油化学株式会社が生産技術を保有しており、国内特許、外国特許共に出願済みである(北陸先端科学技術大学院大学、丸善石油化学株式会社の共同出願)。
今後は、さらに電池製造に直接的に関わる企業との協同的取り組みへの展開を期待しており、電池製造技術を保有しつつ北陸先端科学技術大学院大学、丸善石油化学株式会社と三極的に連携できる企業の実用研究への参画を求めたい。
【論文情報】
| 雑誌名 | ACS Applied Energy Materials (米国化学会) |
| 題目 | Facile Stabilization of Microsilicon Oxide Based Li-Ion Battery Anode Using Poly(vinylphosphonic acid) |
| 著者 | Noriyuki Takamori, Tadashi Yamazaki, Takuro Furukawa, Tejkiran Pindi Jayakumar, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2024年2月8日 |
| DOI | 10.1021/acsaem.3c02127 |
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和6年2月14日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/02/14-1.html原子スケールナノテクノロジーで、革新的エネルギー・環境デバイスを開拓!
原子スケールナノテクノロジーで、
革新的エネルギー・環境デバイスを開拓!
R7年10月以降に入学する学生の受け入れは行いません
水田研究室 MIZUTA Laboratory
教授:水田 博(MIZUTA Hiroshi)
E-mail:
[研究分野]
サイレントボイスセンシング、超高感度センサ、熱制御素子
[キーワード]
グラフェン、ナノ電子機械システム(NEMS)、雷センサ、においセンサ、熱整流デバイス、バレートロニクス、量子デバイス、極限構造作製、第一原理計算
研究を始めるのに必要な知識・能力
水田研究室では物性物理、電気・電子工学、機械工学、化学、コンピュータ、IoT/AIの融合領域研究を行っていますので、これらのどれか1つ(あるいは複数)の基礎を修得していることが必要です。さらに、その専門を広げて行く好奇心旺盛な人が適しています。
この研究で身につく能力
水田研究室では、グラフェンをはじめとする新奇な原子層材料をベースに、NEMS(ナノ電子機械システム)技術と1ナノメートル精度の超微細加工技術を駆使して、超高感度センサデバイス、超低消費電力スイッチ、熱整流素子、バレートロニクスデバイスなどを開発しています。これらの研究を通して、①電子線直接描画や最先端ヘリウムイオンビーム技術による極微デバイス作製技術、②環境制御型・高周波プローブステーションや希釈冷凍機などを用いた極限電気特性測定、③第一原理計算からデバイス・回路シミュレーションに至る設計・解析技術、などを幅広く修得することができます。また、欧州を中心に海外研究機関と緊密に連携し、学生・スタッフが頻繁に交流しているため、研究を進める中で自然に国際的コミュニケーションスキルとリーダーシップ能力を身につけていくことが可能です。
【就職先企業・職種】 ICT企業、製造業、国立研究開発法人
研究内容
水田研究室では、グラフェンや極薄シリコン膜をはじめとする新奇な原子層材料と、原子スケール精度の超微細加工技術を駆使して、超高感度センサ、超低消費電力NEMS(ナノ電子機械システム)スイッチ、バレートロニクス、熱フォノンエンジニアリングなどを開発し、グローバルな環境・エネルギー問題に貢献することを目指しています。
具体的には以下の4テーマを中心に研究を推進しています。

図1.

図2.

図3.
①サイレントボイスセンシングの研究
従来のセンサ技術では検出が難しい自然界や生体の様々な微小信号(サイレントボイス(声なき声))を検出する革新的センサ素子の研究を行っています。落雷の予測を可能とする大気中電界センサ(図1右)や、疾病の予兆検出を目的とした超低濃度の皮膚ガス(におい)センサ(図1左)など、素子の原理探索から試作、測定データ解析技術の研究、さらに実用化研究まで、産業界とも連携して精力的に推進しています。
②超低電圧動作グラフェンNEMSスイッチの研究
グラフェンやhBN膜など異種原子層材料をファンデルワールス積層させたNEMS素子を作製し、その電気・機械的な動作の解明と超低電圧・急峻動作スイッチ(図2)の研究を行っています。シリコンMOSFETの理論限界を超える急峻スイッチング特性と0.5V未満の超低電圧動作を実現しています。
③ナノスケール熱制御技術の研究
最先端技術ヘリウムイオンビームミリング技術を用いて宙吊りグラフェン上に直径10nm以下のナノ孔周期的構造を形成します。特に非対称構造における熱整流素子(図3右)の実現を目指しています。
④原子層材料によるバレートロニクスの研究
バレー自由度を新たな情報担体として利用するバレートロニクスは、従来のエレクトロニクスを超える将来の情報処理技術として期待されています。原子層材料を積層した様々な構造におけるベリー曲率発生(図3左)を理論と実験の両面から探求しています。
主な研究業績
- J. Sun, M. Muruganathan, and H. Mizuta, ‘ Room temperature detection of individual molecular physisorption using suspended bilayer graphene’, Science Advances vol.2, no.4, e1501518 (2016) DOI:10.1126/sciadv.1501518
- A. Kareekunnan, T. Agari, A. M. M. Hammam, T. Kudo, T. Maruyama, H. Mizuta, and M. Muruganathan, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, ACS Omega 6, 34086-34091 (2021) DOI: 10.1021/acsomega.1c05530
- F. Liu, M. Muruganathan, Y. Feng, S. Ogawa, Y. Morita, C. Liu, J. Guo, M. Schmidt and H. Mizuta, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, Nano Futures 5(4), 045002 (2021) DOI: https://doi10.1088/2399-1984/ac36b5
使用装置
電子線リソグラフィー、走査型電子顕微鏡、
電界電離ガスイオン源(GFIS)微細加工装置、ヘリウムイオン顕微鏡(産業技術総合研究所)
環境制御型高周波プローバー、マルチガス種対応プローバー、
第一原理・量子輸送シミュレータ
研究室の指導方針
最先端のナノテクノロジーを駆使して、現在のCMOS技術を越える‘More than Moore’ & ‘Beyond CMOS’世代のエマージングテクノロジ開拓を目指しています。「まだ世界で誰も実現したことのない機能のデバイスをこの手で初めて開発してみたい!」という意欲のあるあなた、ぜひ一緒に研究しましょう。また、欧州・アジアを中心に海外研究機関に滞在しての研究活動も積極的に推進していますので、国際的に活躍したい方も大歓迎です。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/mizuta-lab/
結晶が成長する様子を観察してメカニズムを探る
結晶が成長する様子を観察してメカニズムを探る
次世代シリコン太陽電池研究室
Laboratory on Next-Generation Silicon Photovoltaics
講師:前田 健作(MAEDA Kensaku)
E-mail:
[研究分野]
結晶成長、太陽電池、非線形光学
[キーワード]
その場観察、結晶粒界、双晶
研究を始めるのに必要な知識・能力
学部や高専で習う基礎的な物理や数学の知識
思い込みで実験結果を判断せず、公平な視点で研究に取り組む姿勢
この研究で身につく能力
研究活動を通して、実験装置(ガス制御機構、加熱機構、顕微鏡など)の使い方やデータの収集と解析方法が身につきます。
また、定期的なゼミ活動や随時のディスカッションを通して、コミュニケーション能力や問題解決能力が鍛えられます。
失敗と思えるような実験から新しい発見が生まれることはよくあります。普通は気付けないような特徴を注意深く読み取る力や俯瞰的かつ合理的に考察する力など、修了後に社会で活躍する際にも役立つ能力を鍛えて欲しいと願っています。
【就職先企業・職種】 製造業など
研究内容
エレクトロニクス、オプトエレクトロニクスの発展を進めるには、材料となる結晶の高品質化や高性能化が不可欠です。結晶とは原子が規則正しく整列した固体であり、融液や溶液などの環境相から徐々に大きく成長することで形成されます。「成長」という言葉は主に生物に対して使われますが、立派な人間に成るには成長過程が重要であることと同様に、高性能な結晶を得るには成長過程が重要となります。この成長過程を注意深く観察することでメカニズムを解明し、高機能結晶を育てる技術を開発します。
1.薄膜多結晶シリコンの形成過程のその場観察
太陽電池の基板材料には半導体のシリコンが広く用いられています。薄膜多結晶シリコンはガラス基板上の非晶質シリコンにパルス光(フラッシュランプアニール光)を当てることで作ることができ、インゴットを薄くスライスして作る結晶基板よりも生産性とコスト面で優れています。非晶質シリコンが多結晶化する過程を観察することで、太陽電池の劣化の原因となる組織の形成機構を解明し、その形成を抑制する技術を開発します。
2.レーザー波長変換素子(周期双晶結晶)の作製

Li2B4O7の双晶成長過程(左)、顕微鏡観察炉(右)
半導体リソグラフィの極微細化やレーザー加工の超高精度化に伴い、高エネルギー効率で小型の全固体レーザー光源の短波長化が求められています。全固体レーザーは固体レーザーを非線形光学結晶により波長変換することで実現でき、光源にガスを用いるよりも安定で小型な装置となります。
非線形光学結晶の分極を周期的に反転することで変換効率を向上でき、強誘電体に電界印加することで生産されています。本研究では非強誘電体においても周期構造を導入するために、双晶形成を用いた反転技術の開発に取り組んでいます。
3.化合物半導体の融液成長過程の観察
シリコンSiは地殻中で酸素に次いで2番目に多い元素であり、単結晶シリコンは半導体デバイスの基板材料として世界中で広く生産されています。化合物半導体(InSb, GaSb, GaAsなど)の生産量は少ないですが、これからのエレクトロニクスの発展に無くてはならない結晶であり、単結晶育成技術の開発は重要です。結晶が成長する様子を観察して、双晶や粒界などの欠陥がどのように形成されるのか、そのメカニズムを解明することを目指しています。
主な研究業績
- K. Hu, K. Maeda, H. Morito, K. Shiga, K. Fujiwara, In situ observation of grain-boundary development from a facet-facet groove during solidification of silicon, Acta Materialia, 153, 186(2018).
- K. Maeda, A. Niitsu, H. Morito, K. Shiga, K. Fujiwara, In situ observation of grain boundary groove at the crystal/melt interface in Cu, Scripta Materialia, 146, 169(2018).
- K. Maeda, S. Uda, K. Fujiwara, J. Nozawa, H. Koizumi, S. Sato, Y. Kozawa, T. Nakamura, Fabrication of Quasi-Phase-Matching Structure during Paraelectric Borate Crystal Growth, Applied Physics Express, 6, 15501(2013).
研究室の指導方針
研究活動は自主性を重んじる方針で、学生自身の発想が研究に活かせます。毎朝一度、研究室メンバー全員が集まるミーティングを行い、その日の各自の活動を報告します。ミーティングでは、簡単な研究の相談もでき、メンバー間のコミュニケーションも十分行えるシステムです。当番の学生が文献紹介を行う勉強会では、細部にわたる質問への回答が求められ、しっかりとした基礎学力が身につきます。学術会議などでの外部発表は、積極的に行います。また、博士前期課程期間中に、英語の論文を執筆し投稿できるよう指導します。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/ohdaira/
ヘテロ元素化学から未来エネルギーを考える
ヘテロ元素化学から未来エネルギーを考える
蓄電池・エネルギー材料化学研究室
Laboratory on Energy Storage Materials and Devices
教授:松見 紀佳(MATSUMI Noriyoshi)
E-mail:
[研究分野]
エネルギー材料の創出研究
[キーワード]
リチウムイオン2次電池、ナトリウムイオン2次電池、リチウム空気電池、スーパーキャパシター
研究を始めるのに必要な知識・能力
研究への意欲、知的好奇心、多少の失敗にひるまない楽観性、他のメンバーと協調的に研究を遂行できる適応性。また、以下は研究室に入る時点で必須ではありませんが、有機合成化学、高分子合成化学、電池関連化学、光化学などの経験や知識があればアドバンテージになります。
この研究で身につく能力
物質をデザインし、合成し、キャラクタライズする能力。実験データの意味を客観的に考察する能力。短期的、長期的に研究計画を立てる能力。報告書を作成したり、効果的にプレゼンテーションを行う能力、ディスカッション能力などがそれぞれ身につきます。さらには英語でコミュニケーションをとるための実践的能力を身につける場としても適しています。よりテクニカルな点では、嫌気下で様々な物質を有機合成し、NMR等で構造確認するスキル、イオン伝導性材料をインピーダンス測定などにより評価し、それらの電気化学的安定性を評価し、実際に電池を構築して充放電評価するスキルが身につくほか、光電気化学反応を電気化学的に評価するスキルを身につけることが出来ます。
【就職先企業・職種】 総合化学メーカー、自動車関連メーカー、繊維系メーカー、素材メーカー、機械系メーカーなど。
研究内容

高分子バインダーと活物質から成る
高性能電極材料のイメージ図
次世代用高性能蓄電池の創成研究
これまで、リチウムイオン二次電池用負極としては長きにわたりグラファイト負極が使用されてきました。現在、従来型のグラファイト負極よりも10倍以上の理論容量を有するシリコン負極の適用に関する研究が注目を集めています。しかし、シリコンは充放電中の体積膨張・収縮が大きく、粒子や界面の破壊や集電体からの活物質の剥離などの問題を引き起こし、問題が山積しています。本研究室では特殊構造高分子バインダーを適用することで、次世代用高容量電池の創成を目指しています。また、現存する多くの電池系は、性能が大幅に経年劣化することがユーザーレベルで広く認識されており、長期耐久性の課題解決も重要となっています。この点においても、分子レベルでの高機能バインダーの設計を行っています。さらに、シリコン負極型リチウムイオン二次電池と同様に、高容量の革新型電池として期待されている蓄電池系として、リチウム―空気電池が挙げられます。リチウム空気電池の開発の鍵となっている酸素還元反応触媒、及び酸素発生反応触媒においても、独自のアプローチにより研究を進めており、とりわけ白金の代わりに卑金属を用いた低コスト系の開発を進めています。さらに、リチウムに依存しない元素戦略に配慮した次世代蓄電池設計も進めています。例えばナトリウムイオン二次電池の高性能化に関する研究を電解質設計の立場から進めており、汎用の電解質を利用した系よりも大幅にサイクル特性やレート特性に優れた全固体ナトリウムイオン二次電池系の開発につながっています。現在の本研究室の電池開発において、もう一点注力しているのが急速充放電への対応です。現状の電気自動車では、高速道路のサービスエリアなどで充電を行う際に約30分を要しており、ガソリンスタンドでの給油と比較すると極めて長時間を要しています。本研究室では特殊な活物質の合成や、特異的な人工界面形成により充放電時間を大幅に短縮する試みを行っています。それを実現するキーワードとなるのが積極的な界面設計です。長きにわたって電池研究は四大部材(電極、電解質、バインダー、セパレータ)の研究を中心に展開されてきました。しかし、固体電解質界面(SEI)の重要性がいっそうクローズアップされつつあり、その戦略的かつ合理的な設計が次世代蓄電池の成否の鍵を握っていると考えられます。本研究室では、有機合成化学や高分子合成のバックグラウンドを有する電池研究グループという個性を最大限に活かしつつ、独自のアプローチで未来社会のニーズに応える高性能電池系の創出を目指します。
主な研究業績
- "Densely imidazolium functionalized water soluble poly(ionic liquid) binder for enhanced performance of carbon anode in lithium/sodium-ion batteries", A. Patra and N. Matsumi, Adv Energy Mater (2024) 20243071.
- "Water-soluble densely functionalized poly(hydroxycarbonylmethylene) binder for higher performance hard carbon anode-based sodium-ion batteries", A. Patra, N. Matsumi. J Mater Chem A., 12 (2024) 11857-11866.
- "Confronting the issue associated with the practical implementation of zinc blende-type SiC anode for efficient and reversible storage of lithium ions"R. Nandan, N. Takamori, K. Higashimine, R. Badam, N. Matsumi. ACS Appl Ener Mater., 7 (2024) 2088-2100.
使用装置
充放電評価装置
インピーダンスアナライザー
電気化学アナライザー
核磁気共鳴分光装置
ソーラーシミュレーター
研究室の指導方針
合成化学を基盤にしながら、リチウムイオン二次電池やナトリウムイオン二次電池など社会的要求の高い研究分野に果敢にチャレンジします。クリエイティブな発想力と失敗を恐れない実行力、社会貢献への意識などを有したバランスのとれた人材の育成を目指します。ヘテロな研究集団を目指していますので、様々なバックグラウンドを持った人材を歓迎します。入って来るメンバーの科学的知識レベルも様々でしょうが、2年間ないし5年間にそれぞれのレベルに応じて大きな成長と達成感、自信を味わって巣立っていただくことが目標です。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/matsumi
超高強度シェルを有する高度安定化マイクロサイズシリコンの新規負極活物質の開発とリチウムイオン2次電池への応用
超高強度シェルを有する高度安定化マイクロサイズシリコンの
新規負極活物質の開発合成とリチウムイオン2二次電池への応用
ポイント
- 低コストながら、ナノサイズシリコンと比較して充放電に伴う体積膨張・収縮制御がより難しいマイクロサイズシリコンを用いた負極活物質に関して、シリコンオキシカーバイドの超高強度シェルを付与することにより課題の解決に成功した。
- 内部のマイクロサイズシリコンに一定の体積変化の余地を与えるために中間層としてカーボン層をスペーサーとして導入した。また、外殻層の電導性を確保するためにシリコンオキシカーバイド層にアセチレンブラック粒子を導入した。
- 本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であり、優れたレート特性を有することも明らかとなった。
- 高容量放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 松見 紀佳教授(物質化学フロンティア研究領域)、バダム ラージャシェーカル講師(物質化学フロンティア研究領域)、東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程2年)らのグループは、リチウムイオン2次電池*1の安定な高容量充放電を低コストで可能にする新規負極活物質(Si/C/ABG)の開発に成功した。 |
【研究内容と背景】
リチウムイオン2次電池の負極材開発において、高容量の発現の観点から関心を集めているシリコンは充放電に伴う体積膨張・収縮制御の困難さに対応するためナノサイズシリコン粒子が広く用いられてきたが、汎用性やコスト性の観点からマイクロサイズシリコンを用いた高容量2次電池の実現が切望されている。体積膨張・収縮制御においては、マイクロサイズシリコンの適用によりさらなる困難が伴うが、新たなアプローチによる課題の克服への要求が高まっている。
本研究においては、ナノサイズシリコン粒子に代わってマイクロサイズシリコン粒子を適用しつつ、充放電に伴う大きな体積膨張・収縮を抑制するために特殊な材料設計を行った。本負極活物質の外殻には、超高強度を有することが知られるシリコンオキシカーバイド層をコーティングした。また、シリコンオキシカーバイドの不十分な電導性を補う目的でシリコンオキシカーバイド層にアセチレンブラック粒子を共存させた。また、内部のマイクロサイズシリコンに一定の体積変化の余地を与えるためにスペーサーとしてあらかじめマイクロサイズシリコン表面にカーボン層のコーティングを行い、中間層とした。
合成手順としては、マイクロサイズシリコン(~1μm)表面にpH8.5においてポリドーパミン形成させ、乾燥後焼成し、カーボンコーティングを行った。その後、アミノプロピルトリエトキシシラン(APTES; シリコンオキシカーバイドの前駆体)にアセチレンブラックを混合した懸濁液で処理し、乾燥後焼成した(図1)。得られた材料をTEM、HAADF-STEM、EDSマッピング、XPS等の各測定によりキャラクタライズした(図2)。マイクロサイズシリコン上のカーボン層及び外殻層のシリコンオキシカーバイド(ブラックグラス)層が観測され、外殻層にはアセチレンブラック粒子が埋め込まれている様子が見受けられた。XPS測定からは、シリコンオキシガーバイド(ブラックグラス)層にはSi、SiC4、SiC3O、SiC2O2、SiCO3、SiO4が混在している様子が観測された。
このようなシリコンオキシカーバイドは、7.1 GPaの弾性率、13 MPaの曲げ強さ、11 MPaの圧縮強度を有することがShellemanら*2により報告されており、本負極活物質においても外殻部分に著しい力学的強度をもたらすと期待できる。
合成した負極活物質(Si/C/ABG)の評価に先立って、マイクロサイズシリコンとシリコンオキシカーバイド層との間にカーボン中間層を有さない材料に関しても合成し、これを負極活物質としたアノード型ハーフセル*3を構築して評価した。この系においては、マイクロサイズシリコンの体積変化が大幅に抑制された結果、セルの充放電能は大幅に減少した。一方、中間カーボン層を有するマイクロサイズシリコン/カーボン/シリコンオキシカーバイド型の負極活物質(Si/C/ABG)を70 wt%(アセチレンブラック15 wt%; CMC 7.5 wt%; PAA 7.5 wt%)用いた系では、750 mA/gの充放電速度において775サイクル後に1017 mAhg-1の放電容量を維持し、優れたレート特性を有することが明らかとなった (図3)。また、正極をNCA(ニッケル酸リチウム)とした場合のフルセルも良好に動作した(詳細は原著論文参照)。
さらに、充放電サイクル(65サイクル)後の負極のSEM像(断面像)より、充放電後にもクラック形成や活物質層の崩壊、層の剥離などは認められず、本負極活物質が極めて高い安定性を示していることも明らかとなった(図3)。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に7月18日に掲載された。
なお、本研究は、科学技術振興機構(JST) 未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
マイクロサイズシリコンの外殻層に超高強度シリコンオキシカーバイドを導入した特異的な負極活物質デザインにより、次世代型リチウムイオン2次電池へのマイクロサイズシリコン活用に道が拓かれると期待される。
さらに活物質の面積あたりの担持量を向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | Journal of Materials Chemistry A (英国王立化学会) |
| 題目 | Black glasses grafted micron silicon: a resilient anode material for high-performance lithium-ion batteries |
| 著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年7月18日 |
| DOI | 10.1039/D2TA03068C |

図1.マイクロシリコンへのシリコンオキシカーバイド層導入の手順

図2.(a-c) Si/C/ABGのTEM像
(d-h) Si/C/ABGのHAADF-STEM 像及び EDS マッピング

図3.充放電後のSEM像
(a,b) マイクロシリコン 負極(断面像)、(c) Si/C/ABG 負極top view、 (d) Si/C/ABG 負極(断面像)、 (e)シリコンオキシカーバイドをコートしたマイクロシリコン(Si/C/ABG)を負極としたハーフセルの充放電サイクル特性
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和4年7月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/07/28-1.htmlリチウムイオン2次電池用シリコン負極を大幅に安定化する自己修復型ポリマーコンポジットバインダーを開発
リチウムイオン2次電池用シリコン負極を大幅に安定化する
自己修復型ポリマーコンポジットバインダーを開発
ポイント
- リチウムイオン2次電池の高容量化のため、シリコン負極が注目されているが、シリコン粒子の大きな体積変化等の問題によって安定した充放電が困難となっている。
- リチウムイオン2次電池用シリコン負極を安定化する目的で、BIAN(ビスイミノアセナフテン)構造を有する共役系高分子とポリアクリル酸との水素結合ネットワークから成るコンポジットバインダーを開発した。
- アノード型ハーフセルを構築し充放電特性を評価したところ、600サイクル後に2100 mAhg-1を維持し、極めて高い安定性を示した。
- 充放電後における界面抵抗が極めて低いことや、充放電後の負極の構造的耐久性も高く、劣化は極めて軽微であることが分かった。
- 高容量放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 物質化学フロンティア研究領域の松見 紀佳教授、バダム ラージャシェーカル講師、アグマン グプタ研究員らのグループは、リチウムイオン2次電池*1用シリコン系負極を大幅に安定化するポリマーコンポジットバインダーの開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、EV車の更なる普及を見据えたエネルギー密度の向上を目的として、従来型負極であるグラファイトの理論放電容量を大幅に上回るシリコンの活用に関心が高まっており、カーボンニュートラルの見地からも高容量蓄電池の早期実用化が望まれている。また、シリコンは地殻に豊富に含まれる元素でありコスト面の利点が明白で、元素戦略の観点からも活用が期待される。
一方、シリコン負極においては、充放電時における大幅なシリコン粒子の体積変化が問題となっており、シリコン粒子の大幅な体積膨張による破断などの問題がある。また、充放電によってシリコン上に形成された界面被膜の破壊、集電体からの剥離、シリコン上に生成するクラック上の新たなシリコン面からの電解液の分解による厚いSEI被膜形成などの諸問題による大幅な内部抵抗の上昇によって、電池性能の劣化にも至っている。
【研究の内容】
本研究においては、負極の環境で還元され伝導性を発現するn型共役系高分子バインダー(ビスイミノアセナフテン骨格を有する共役系高分子、P-BIAN)と、この高分子(ポリマー)と水素結合性ネットワークを形成するポリアクリル酸(PAA)を組み合わせることにより、内部抵抗の低減と自己修復機能との相乗的な効果によりシリコン系負極を大幅に安定化できるコンポジットバインダーを開発した(図1)。両ポリマー間の水素結合形成はXPS測定(N1s)から確認された。
また、本コンポジットバインダーを用いてアノード型ハーフセル*2[アノード:Si/C/(P-BIAN/PAA)/AB =25/30/25/20 by wt%]を構築し、充放電特性を評価したところ、600サイクル後に2100 mAhg-1を維持し、極めて高い安定性を示した(図2)。さらに、サイクリックボルタンメトリー*3からは、可逆的で明瞭なリチウム脱挿入挙動や、電解液の分解抑制が示された。
次に、動的インピーダンス測定(DEIS)を行ったところ、本系における充放電後のSEI抵抗は、比較対象のポリアクリル酸バインダー系の場合の約1/6程度となった。
充放電試験後に電池セルを分解し負極を分析したところ、XPSにおいて負極内部の諸元素の環境に由来するピークが明瞭に観測されたことから、表面に形成したSEIは非常に薄いことが分かった。加えて、SEM観測においては400サイクル後においてもクラック形成は極めて軽微であり、比較対象(ポリアクリル酸)と対照的であったことから、本系においては充放電後の界面抵抗が極めて低いことが明らかとなった。また、充放電後の負極のSEMによる分析結果においても構造的耐久性が高く、有意な劣化が見られないことが分かった。
本成果は、ACS Applied Energy Materials (米国化学会)のオンライン版に4月29日に掲載された。なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する。(国内特許出願済み)
今後は、企業との共同研究を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | ACS Applied Energy Materials |
| 題目 | Heavy-Duty Performance from Silicon Anodes Using Poly(BIAN)/Poly(acrylic acid)-Based Self-Healing Composite Binder in Lithium-Ion Secondary Batteries |
| 著者 | Agman Gupta, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年4月29日 |
| DOI | 10.1021/acsaem.2c00278 |

|
図1.(a) 高分子化BIAN(P-BIAN)及びポリアクリル酸(PAA)の構造式
(b) P-BIAN/PAAコンポジットバインダーの設計戦略 (c)P-BIAN/PAAのコンポジット生成に伴う強靭さ及び自己修復能による力学的特性の向上のイメージ図 |

|
図2.(a) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルのサイクリックボルタモグラム
(b) P-BIAN/PAA系バインダーとPAAバインダーを有するSi系負極を用いたアノード型ハーフセルとの500 mAg-1における充放電サイクル特性の比較 (c) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルの充放電曲線(500 mAg-1) (d) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルと比較系(PAAバインダー系)との容量維持率の推移の比較 |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*3 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年5月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/05/12-1.htmlリチウムイオン2次電池に高容量化と耐久性を容易にもたらす新型負極活物質(β-シリコンカーバイド系複合材料)の開発
リチウムイオン2次電池に高容量化と耐久性を容易にもたらす
新型負極活物質(β-シリコンカーバイド系複合材料)の開発
ポイント
- リチウムイオン2次電池の高容量化のためシリコン系負極が注目されているが、シリコン粒子の大きな体積膨張・収縮等の問題によって、安定した充放電が困難となっている。
- リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている閃亜鉛鉱型構造を有するβ-シリコンカーバイド/窒素ドープカーボン複合材料の簡易合成法を開発し、リチウムイオン2次電池用負極活物質として検証した。
- 合成した活物質を用いたアノード型ハーフセルでは1195mAhg-1の放電容量を300サイクルまで示し、本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても、高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
- 高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)、先端科学技術研究科 物質化学領域の松見 紀佳教授、バダム ラージャシェーカル講師、並びに東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程)のグループは、リチウムイオン2次電池*1の安定な高容量充放電を可能にする新規負極活物質の開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、近年、従来型負極であるグラファイトよりも大幅に大きな理論容量を示すシリコン系負極が多大な関心を集めている。一方で、シリコン粒子は充放電時の体積膨張・収縮が極めて大きく、充放電の際の粒子の破断や界面被膜の破壊、集電体からの剥離などの多様な問題により、一般に高容量を安定に発現することが非常に困難となっている。このような状況を改善するために、特殊なバインダー材料の開発などのアプローチが本研究グループも含め国内外において検討されてきた。
【研究の内容】
本研究においては、シリコン粒子に代わり、極めて安定な充放電サイクルを汎用のバインダー材料使用時においても示すシリコンカーバイド系活物質を開発した。ダイヤモンド型構造を有するシリコンにおいては、リチウム脱挿入に伴う大幅な体積膨張・収縮は避けがたいものであるが、閃亜鉛鉱型構造の無機化合物においては、リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている。その挙動にヒントを得つつ、閃亜鉛鉱型構造を有するβ-シリコンカーバイドと窒素ドープカーボン*2との複合材料を合成し、新規リチウムイオン2次電池用負極活物質として検証した。
合成法としては、(3-アミノプロポキシ)トリエトキシシランに水溶液中でアスコルビン酸ナトリウムを加え、シリコンナノ粒子分散水溶液を作製した。その後pH8.5においてドーパミンを、引き続いてメラミンを加えてから遠心分離、乾燥し、600oCもしくは1050oCの二通りの条件で焼成した(図1)。
得られた材料について、HRTEM、HAADF-STEM、XPS、XRD、Raman分光法等により構造を確認した(図2)。HRTEMからは、炭素系マトリックスにβ-シリコンカーバイドの結晶が埋め込まれている様子が観測された。HAADF-STEM HRTEMからは、β-シリコンカーバイドの(111)面に相当する0.25 nmの面間距離が観測され、マトリックス内に指紋状に分布する様子が観測された(図2(c))。
次に、合成した活物質を用いて負極を構築し、アノード型ハーフセル*3(Li/電解液/β-SiC)を作製し各種電気化学的評価を行った。サイクリックボルタモグラム*4においては、シャープなリチウムインターカレーションのピークに加えて、シリコン負極の場合と形状は異なるものの0.58 Vのブロードなリチウム脱インターカレーションのピークを共に示した。
また、充放電挙動においては、1050oCの焼成処理により合成した活物質(MAD1050)を用いた系では1195 mAhg-1の放電容量を300サイクルまで示した(図3(b))。本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に2月16日(英国時間)に掲載された。
なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | Journal of Materials Chemistry A |
| 題目 | Zinc blende inspired rational design of β-SiC based resilient anode material for lithium-ion batteries |
| 著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年2月16日(英国時間) |
| DOI | 10.1039/D1TA08516F |


|
図2.(a,b)合成した活物質(MAD1050)のTEM像
(a)β-SiC粒子のHRTEM像、(c)β-SiC粒子のHAADF-STEM像 (d,e)赤色ボックス部位のFT/IFT、(f)面間距離プロファイル (g,h)黄色ボックス部位のFT/IFT、(i,j)緑色ボックス部位のFT/IFT |

|
図3.合成した各負極活物質を用いたアノード型ハーフセルの充放電特性(a/b/d)
及び比較データ(c;シリコン負極) |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*3 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/18-1.htmlシリコン負極表面を高度に安定化するポリ(ボロシロキサン)型人工SEIの開発に成功
シリコン負極表面を高度に安定化する
ポリ(ボロシロキサン)型人工SEIの開発に成功
ポイント
- リチウムイオン2次電池のシリコン負極表面の劣化を抑制する人工SEIの開発に成功した。
- 350回の充放電サイクル時点で、ポリ(ボロシロキサン)をコーティングしたシリコン負極型セルは、PVDFコーティング系と比較して約2倍の放電容量を示した。
- 本人工SEIの好ましい特性の一つは自己修復能にあることがSEM測定から明らかになった。
- 充放電サイクル後に、本人工SEIを用いた電池系ではPVDF系と比較して大幅に低い内部抵抗が観測された。
- LiNMCを正極としたフルセルにおいても、ポリ(ボロシロキサン)コーティング系電池セルはPVDF系と比較して大幅に優れた性能を発現した。
- 低いLUMOによりポリ(ボロシロキサン)のコーティング層は初期サイクルで一部還元され、同時にリチウムイオンを含有した好ましいSEIを形成する。
- ヘキサンなどの低極性溶媒にも可溶であり、多様な系におけるコンポジット化、成膜に対応性を有している。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の先端科学技術研究科 物質化学領域の松見 紀佳教授、博士後期課程学生(当時)のサイゴウラン パトナイク、テジキラン ピンディジャヤクマールらは、リチウムイオン2次電池*1 におけるシリコン負極の耐久性を大幅に向上させる人工SEI材料の開発に成功した(図1)。 リチウムイオン2次電池負極としては多年にわたりグラファイトなどが主要な材料として採用されてきたが、次世代用負極として理論容量が極めて高いシリコンの活用が活発に研究されている。しかし、一般的な問題点としては、充放電に伴うシリコンの大幅な体積膨張・収縮によりシリコン粒子や表面被膜の破壊が起こり、さらに新たなシリコン表面から電解液の分解が起き、厚みを有する被膜が形成して電池の内部抵抗を低減させ放電容量の大幅な低下につながっていた。本研究では、自己修復型高分子ポリ(ボロシロキサン)をコーティングすることにより、シリコン表面が大幅に安定化することを見出した。 コーティングを行っていないシリコン負極、PVDFコーティングしたシリコン負極、ポリ(ボロシロキサン)コーティングしたシリコン負極をそれぞれ用いたコインセルのサイクリックボルタンメトリー測定*2 を比較すると、ポリ(ボロシロキサン)コーティングを行った系においてリチウム脱挿入ピークの可逆性が大幅に改善された。これは、ポリ(ボロシロキサン)の低いLUMOレベル*3 により初期の電気化学サイクルにおいてコーティング膜が一部還元されることにより、リチウムイオンを含有した好ましいSEIを形成した結果と考えられる。ポリ(ボロシロキサン)コーティングを行ったシリコン表面に傷をつけた後、45℃におけるモルフォロジーの経過をSEM観察したところ、30分以内に傷が修復される様子が確認された(図2)。 このようなポリ(ボロシロキサン)の自己修復能力の結果、アノード型ハーフセルの充放電試験においてポリ(ボロシロキサン)コーティング系はPVDFコーティング系と比較して350サイクル時点で約2倍程度の放電容量を示した(図3)。また、充放電サイクル後のインピーダンス測定より、好ましい界面挙動*4 によるポリ(ボロシロキサン)コーティング系の内部抵抗の低下が示された。 また、LiNMCを正極としたフルセルについても検討したところ、ポリ(ボロシロキサン)コーティング系はPVDFコーティング系と比較して大幅に優れた性能を示した。例えば、30サイクル終了時点でのポリ(ボロシロキサン)コーティング系の放電容量はPVDFコーティング系の約3倍に達した。 本研究は、科学技術振興機構(JST)未来社会創造事業の支援を受けて行われた。 |
本成果は、「ACS Applied Energy Materials」(米国化学会)オンライン版に1月19日に掲載された。
| 題目 | Defined Poly(borosiloxane) as an Artificial Solid Electrolyte Interphase Layer for Thin-Film Silicon Anodes |
| 著者 | Sai Gourang Patnaik, Tejkiran Pindi Jayakumar, Noriyoshi Matsumi |
| DOI | 10.1021/acsaem.0c02749 |
【今後の展開】
自己修復能以外の他のメカニズムによりシリコンを安定化する他系との組み合わせにより相乗効果が大いに期待される。
更なる改良に向けた分子レベルでの構造改変により高性能化を図る。
電極―電解質界面抵抗を大幅に低減できる各種電極用高分子コーティング剤として、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が見込まれる。



【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
*3 LUMO:
電子が占有していない分子軌道の中でエネルギー準位が最も低い軌道を最低空軌道(LUMO; Lowest Unoccupied Molecular Orbital)と呼ぶ。
*4 電極―電解質界面抵抗:
エネルギーデバイスにおいては一般的に個々の電極の特性や個々の電解質の特性に加えて電極―電解質界面の電荷移動抵抗がデバイスのパフォーマンスにとって重要である。交流インピーダンス測定を行うことによって個々の材料自身の特性、電極―電解質界面の特性等を分離した成分としてそれぞれ観測し、解析することが可能である。
令和3年1月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/01/26-1.html表面・界面の理解に基づいたナノマテリアル開発
表面・界面の理解に基づいた
ナノマテリアル開発
先端ナノ材料科学研究室
Laboratory on Advanced Nanomaterials Science
教授:高村 由起子(YAMADA-TAKAMURA Yukiko)
E-mail:
[研究分野]
材料科学、材料工学、表面科学
[キーワード]
ナノマテリアル、二次元材料、薄膜成長、走査プローブ顕微鏡、放射光実験
研究を始めるのに必要な知識・能力
我々の研究室で行っている研究に向いているのは、ナノマテリアルの表面や界面で原子が並んでいる様子を見てみたい、という好奇心が強く、とにかく実験するのが好き、という方です。
この研究で身につく能力
最先端の装置、しかも世界に一台しかないような特殊な装置、を自分で操作して一定の期間内に成果を出すことを要求されますので、自ずとそのような装置の操作に必要な慎重さと大胆さが養われます。また、数多くの実験をこなすことで、効率的な実験計画の立て方が身につくのと同時に、装置の不具合などで実験が思い通りに進まない、といった経験から、想定外の事態に対応する能力も養われます。実験で得られた結果などについて自分でまとめ、考え、理解・学習する能力だけではなく、先輩や教員と一緒に議論することによって、説明する力、論理的に考える力が養われます。
【就職先企業・職種】 電気・電子、機械、医療機器メーカーのエンジニア職、研究職
研究内容

研究室での実験風景
現代の産業の基幹を支える薄膜材料の高品質化には、薄膜-基板界面の高度な制御が欠かせません。特に超薄膜やナノ構造体を対象としたナノマテリアル研究では、表面・界面が全体に占める割合が高くなり、表面・界面構造が成長や機能発現に果たす役割が重要となってきます。本研究室では、新奇ナノマテリアルには表面・界面の理解と高度な制御が必要であるとの認識から、表面・界面の詳細な分析とその制御に基づいたナノマテリアル開発を目指します。より具体的には、薄膜及びナノ構造成長表面のその場観察と異種材料界面構造の解析から得られる知見を有効に成長過程に還元するために、不純物混入の少ない超高真空における薄膜成長に取り組み、電子等のプローブと検出器を導入した装置を使用します。このユニークな装置を用いた薄膜成長とその場観察、放射光施設における表面・界面構造の解析と第一原理計算を組み合わせ、新しいナノマテリアルの創成とその構造・性質の解明に挑みます。
原子層厚みの究極のナノマテリアル、ケイ素版グラフェン「シリセン」の研究
シリコンウェハー上にエピタキシャル成長させた二ホウ化物薄膜表面を、光電子分光を専門とする研究室と第一原理計算を専門とする研究室と共同で詳細に調べている過程でシリセンを思いがけず発見することができました。この成果は国内外の大学や研究機関との共同研究に発展し、最近では、絶縁性の二次元材料である六方晶窒化ホウ素とシリセンを重ねることに成功しました。
二次元フラットバンドマテリアルの研究
ゲルマニウムウェハー上にエピタキシャル成長させた二ホウ化物薄膜を詳細に調べると、上記のシリセンの場合の蜂の巣構造とは異なる二次元的な結晶構造を持つGe層が形成されていました。また、我々の理論研究から、同様の結晶構造を持つ二次元材料の電子状態に「フラットバンド」の発現が期待できることが明らかとなりました。フラットバンドは物質に強磁性や超伝導を付与することがあり、現在、実験と計算の両面から研究を進めています。
カルコゲナイド系二次元材料の研究
セレン化ガリウム(GaSe)は、非線形光学特性を持つ層状物質として古くから研究されてきました。積層多形はこれまで何種類か報告されていましたが、我々の研究室の学生が、結晶多形を新たに発見しました。この従来とは異なる結晶構造を持つGaSe がどんな性質を持つのか、実験と計算の両面から調べています。
主な研究業績
- First-principles study on the stability and electronic structure of monolayer GaSe with trigonal-antiprismatic structure, H. Nitta, T. Yonezawa, A. Fleurence, Y. Yamada-Takamura, and T. Ozaki, Physical Review B 102, 235407 (2020).
- Emergence of nearly flat bands through a kagome lattice embedded in an epitaxial two-dimensional Ge layer with a bitriangular structure, A. Fleurence, C.-C. Lee, R. Friedlein, Y. Fukaya, S. Yoshimoto, K. Mukai, H. Yamane, N. Kosugi, J. Yoshinobu, T. Ozaki, and Y. Yamada-Takamura, Physical Review B 102, 201102(R) (2020).
- Van der Waals integration of silicene and hexagonal boron nitride, F. B. Wiggers, A. Fleurence, K. Aoyagi, T. Yonezawa, Y. Yamada-Takamura, H. Feng, J. Zhuang, Y. Du, A. Y. Kovalgin and M. P. de Jong, 2D Materials 6, 035001 (2019).
使用装置
超高真空走査プローブ顕微鏡、超高真空薄膜成長装置、薄膜材料結晶性解析X線回折装置、X線光電子分光装置、国内外の放射光施設、本学の超並列計算機
研究室の指導方針
我々の研究室では、迷ったらどんどん手を動かして、実験や計算をしてみることを学生さんに勧めています。実際にその実験や計算に従事している学生さんにしか思いつけない、新しいアイデアというのが必ずあります。アイデアとやる気とスキルがあったら、まずは、とことんやってみましょう。教員と先輩ができる限りのサポートをいたします。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/yukikoyt/groupHP/Home.html
Leafbot:振動機構によって駆動される一体型移動ソフトロボット
Leafbot:振動機構によって駆動される一体型移動ソフトロボット
【ポイント】
- ロボット設計: Leafbotと名付けた機構とボディ一体型(モノリシック*1)シート状ロボットは、シリコン製の本体に振動で駆動する運動機構を組み込み開発されました。
- ロコモーションと地形のナビゲーション: Leafbotは、その形態学的な設計により、平坦や斜面、起伏のある地形や障害物がある複雑な地形での効率的な横断(ロコモーション)を可能としました。
- 最高速度: 高周波による振動にて、Leafbotの最高速度は、平坦な道を最高速度5 BL/s(体長毎秒)を達成しました。
- テラダイナミクスの解析: 本研究では、事前に定義した条件下でLeafbotの地形横断能力を評価しました。またLeafbotに組み込まれる運動機構を3パターン設計し、性能比較を行いました。
- 実験による分析:ロコモーションダイナミクスを解析するため、数学モデルを開発し、実験を行いその検証を行いました。
- 本研究の応用: Leafbotは人間が直感的に操作しやすいため、配管などの狭所や複雑な地形を持つ環境下での検査作業の容易化が期待されます。
| 北陸先端科学技術大学院大学(学長:寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域のHo Anh Van教授が、NGUYEN, Linh Viet大学院生(博士後期課程)、NGUYEN, Khoi Thanh 大学院生(博士後期課程)らの研究チームを率い、柔軟素材を用いた機構とボディ一体型のシート状ソフトロボット「Leafbot」を開発しました。Leafbotは足やボディと一体化し、振動により駆動する画期的な機構を持ちます。これにより効率的な移動と地形ナビゲーションを実現しました。また、本研究により、Leafbotは、斜面や険しい路面を含む複雑な地形を横断する能力が示され、配管など狭所で複雑な環境下での応用の可能性があり、ソフトロボティクスの進歩に大きく貢献することが期待されます。 |
【研究の背景と内容】
柔軟素材を用いたソフトロボットは、その柔軟性と適応性により、硬さを持つ剛体ロボットでは適応が困難な環境への適応を可能とするため、大きく注目されています。ソフトロボットにはこのような利点があるにも関わらず、移動ソフトロボットの分野では、複雑な地形での効率的な移動の実現が未だ根強い課題として挙げられます。現在の移動ソフトロボットの設計は、振動を利用した機構を持つ移動ソフトロボットが得意な平坦な地形での移動に重点を置く傾向が見られます。しかし、それらは、斜面や障害物が存在する道、凹凸のある不規則な地形での移動には限界があります。このような限界は、実世界の条件下で、一体として機能する材料特性や動的設計、ロコモーション戦略(ロボットの運動・移動の計画)を統合することの難しさの起因となっています。
Leafbot(図1)は、複雑な地形での効率的なロコモーションという重要な課題に取り組んだ移動ソフトロボットの分野における画期的な成果です。Leafbotの特徴は、柔軟性・耐久性・適応性を兼ね備えたシリコンゴム製のシート型のソフトボディです。このロボットの核となる機構は、移動を行う環境とダイナミクス(動力学)な動きに相互作用する振動により駆動する機構です。

図1: (A)リーフボットのコンセプト、(B)Leafbotの設計
Leafbotの足は、曲率と弾力性を追求した形状をしており、凹凸のある地形と相互作用を最適化するだけでなく、非対称な摩擦力を利用して前進するための推進力を得ることができます。この足の設計は、多様な地形への適応性を持つだけでなく、限定された条件下で急斜面を乗り越えることを可能としています。
本研究チームは、手足の数が異なる3つのパターンのLeafbot(Leafbotの手足の数により3、5、9とナンバリング)を開発し、その動作検証を行いました。その結果、手足の数が多いほど摩擦が増加し、地形への適応性が向上しました。その一方で、手足の数が少なければ、より高速の移動が可能となることが示されました。Leafbotは、平坦な地形(道)において、最高速度5 BL/s(体長/秒)を達成します。さらに、このロボットは半円形の障害物のある道や険しい地形、斜面を移動する際にも卓越した性能を発揮しました。これはLeafbotが困難な環境下に適していることを証明しています。加えて、この研究では、Leafbotにロコモーションダイナミクスを解析する数値モデルを設計し、様々な条件下でのパフォーマンスを理解するための枠組みを提供します。

図2: Leafbot-X5は環境の凹凸をナビゲートし、2次元空間で操縦できる
Leafbotは、移動ソフトロボットが持つ行動能力を平坦な地形から拡大することで、この分野に新たな基準を打ち立てます。この技術は、工業検査や狭所の捜索救助活動、整地されていない農地の監視などへの用途で予想されます。さらに、Leafbotの柔軟でフレキシブルな構造は、平らな場所であれば起伏のある地形でも移動することが可能です。この機能は、2次元空間での操縦性を持たせるため、より多くの動力源(振動源)を搭載することで実現しました。また、改良型Leafbot-X5は、形態学的な手足も同様に、Leafbotが環境の凹凸に適応することを可能にしました(図2)。将来的には、より優れたエネルギー効率を実現するため、設計を改良し、また自律的なナビゲーションのために感覚システムを組み込み、多様な環境で耐久性・性能の担保・向上させるために新素材を追求する予定です。
【論文情報】
| 掲載誌 | IEEE Transactions on Robotics (T-RO) |
| 論文題目 | Terradynamics of Monolithic Soft Robot Driven by Vibration Mechanism |
| 著者 | Linh Viet Nguyen; Khoi Thanh Nguyen; and Van Anh Ho |
| 掲載日 | 2025年1月24日 |
| DOI | 10.1109/TRO.2025.3532499 |
【用語説明】
モノリシックとは、Leafbotのように、ロボットのボディに繋ぎ目がなく一体であり、耐久性・柔軟性・適応性が高められていることを指します。
令和7年2月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/02/17-1.html学生のMISHRAさんが高分子学会第72回高分子討論会において優秀ポスター賞を受賞
学生のMISHRA, Sameer Nirupamさん(博士後期課程3年、物質化学フロンティア研究領域、松見研究室)が公益社団法人高分子学会の第72回高分子討論会において優秀ポスター賞を受賞しました。
高分子学会は、高分子科学と技術およびこれらに関連する諸分野の情報を交換・吸収する、さまざまな場を提供しています。会員はこれらの場を通じ、学術的向上や研究の新展開のみならず会員相互の人間的な触れ合いや国際的な交流を深めています。
優秀ポスター賞は、高分子学会年次大会および高分子討論会において、優れたポスター発表を行った発表者に授与されるもので、もって発表を奨励し、高分子科学ならびに同会の発展に資することを目的としています。
第72回高分子討論会は、9月26日~28日にかけて香川大学幸町キャンパスにて開催されました。
※第72回高分子討論会
■受賞年月日
令和5年9月28日
■研究題目
BIAN含有高分子/ポリ(アクリル酸リチウム)バインダーを用いたSi系負極の安定化
(Stabilization of Si-based Anode for LIB Using BIAN Type Conjugated Polymer/Poly (lithium acrylate) Binder)
■研究者、著者
Sameer Nirupam Mishra,Saibrata Punyasloka, Anusha Pradhan and Noriyoshi Matsumi
■受賞対象となった研究の内容
今日、リチウムイオン二次電池分野においてはシリコン系負極を用いた高容量化への展開に注目が集まっている。本研究においては、側鎖にフェノール基を有するBIAN(ビスイミノアセナフテン)型共役系高分子バインダーを新たに合成し、ポリ(アクリル酸リチウム)とのコンポジットバインダーとしてシリコン系負極に適用した。本系では100サイクルまで1173 mAg-1の放電容量を維持すると同時に、高いリチウムイオン拡散係数が観測され、シリコン系負極で課題とされている初期クーロン効率の改善につながった。これらの結果はコンポジットバインダーが示す自己修復能や高いリチウムイオン濃度に起因していると考えられる。
■受賞にあたって一言
I would like to thank the 72nd Symposium on Macromolecules Excellent Poster Award Selection Committee and SPSJ Chairman Kazunori Matsuura for considering me for the award. I also would like to take this opportunity to extend my sincere and heartfelt gratitude to Prof. Noriyoshi Matsumi for his constant guidance. Further, I would also like to thank all the members of the Matsumi Lab, friends, and family for their continual support. I see this award as a motivation and encouragement that will push me forward in my research career and help me achieve greater heights. Thank you.


令和5年11月6日
特殊なダイヤモンドの針を開発し超高速で変化する電場の局所計測に成功
![]() ![]() ![]() |
| 国立大学法人筑波大学 国立大学法人 慶應義塾大学 |
特殊なダイヤモンドの針を開発し
超高速で変化する電場の局所計測に成功
NV中心と呼ばれる格子欠陥を導入したダイヤモンドを原子スケールの空間分解能を持つ原子間力顕微鏡(AFM)の探針(プローブ)に用い、二次元層状物質の表面近傍の電場をフェムト秒(1000兆分の1秒)・ナノメートル(10億分の1メートル)の時空間分解能で計測することに成功しました。
| ダイヤモンドの結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがあります。これをNitrogen-Vacancy(NV)中心と言います。そして、NV中心を導入したダイヤモンドに電界を加えると、その屈折率が変化するようになります。これは電気光学(EO)効果と呼ばれる現象で、ダイヤモンド単体では実現していませんでした。 本研究チームはこれまでに、NV中心を導入した高純度ダイヤモンドに1000兆分の1秒という極めて短時間だけパルス光を放出するフェムト秒レーザーを照射し、ダイヤモンドのEO効果を計測することで、ダイヤモンドの格子振動ダイナミックスを動的に高感度に検出することに成功しています。このことは、ダイヤモンドが超高速応答するEO結晶として利用可能で、電場を検出する探針(ダイヤモンドNVプローブ)となり得ることを示しています。 そこで本研究では、NV中心を導入したダイヤモンドの超高速EO効果と、原子スケールの空間分解能を有する原子間力顕微鏡(AFM)技術とを融合し、フェムト秒(fs=1000兆分の1秒)の時間分解能とナノメートル(nm=10億分の1メートル)の空間分解能で局所的な電場のダイナミックスを測定できる、時空間極限電場センシング技術を開発しました。そして、このセンシング技術を用いることで、二次元の原子層が層状に重なった二次元層状物質であるセレン化タングステン(WSe2)試料の表面近くの電場を500 nm以下かつ100 fs以下の時空間分解能でセンシングできました。 ダイヤモンドNVプローブはスピンや温度の変化にも感度があるため、本研究成果は、電場の検出に加え、磁場や温度を検出するためのセンシング技術としても展開されることが期待されます。 |
【研究代表者】
筑波大学数理物質系
長谷 宗明 教授
北陸先端科学技術大学院大学ナノマテリアル・デバイス研究領域
安 東秀 准教授
慶應義塾大学理工学部
ポール フォンス 講師(研究当時、同大学同学部電気情報工学科教授)
【研究の背景】
ダイヤモンド中の不純物には窒素やホウ素などさまざまな種類があります。その中でも、点欠陥に電子や正孔が捕捉され、発光を伴う種類のものはダイヤモンドを着色させるため、「色中心:カラーセンター」と呼ばれます。色中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、温度や電場を読み取る量子センサー注1)として用いられています。
量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心注2)と呼ばれる複合欠陥を用いたセンサーは、まだまだ発展途上の技術ですが、高空間分解能・高感度が要求される細胞内計測やデバイス評価装置のセンサーへの応用など、新しい可能性が期待されています。
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬くフェムト秒超短パルスレーザー注3)を用い、NV中心を導入したダイヤモンドの電気光学(EO)効果注4)を実時間分解計測することで、ダイヤモンドの格子振動ダイナミックスを動的に高感度に検出することに成功しています参考文献 a)。このことは、ダイヤモンドが超高速応答するEO結晶になり、電場検出の探針(プローブ)となり得ることを示すものです。
これまでもダイヤモンドを原子間力顕微鏡(AFM)注5)と組み合わせた電場センシングの試みはなされていましたが、局所ダイナミックスを動的に評価できる手法はほとんどありませんでした。特に時間分解能に関しては、発光測定に基づく従来の手法ではナノ秒程度が限界であり、ピコ秒以下の超高速時間分解能に関しては、全く開拓されていませんでした。
【研究内容と成果】
本研究では、量子光学(フェムト秒超短パルスレーザーを用いたダイヤモンドのEO効果)と走査プローブ顕微鏡(SPM)の一種である原子間力顕微鏡(AFM)技術を融合することで、光の回折限界を超える空間分解能に加えて、今までの検出限界を超える超高速時間分解能で局所的な電場計測を実現することを目指しました(図1)。
極めて不純物が少ない高品質のダイヤモンド結晶の表面近傍(深さ40nm)に、密度を制御したNV中心を導入し、そのダイヤモンド結晶をレーザーカットおよび集束イオンビーム(FIB)技術注6)を駆使することで、先端径が500 nm以下のダイヤモンドNVプローブに加工することに成功しました。このダイヤモンドNVプローブを、フェムト秒超短レーザーを組み込むことが可能な、ピエゾ抵抗効果注7)に基づく自己センシング方式注8)のAFMのカンチレバーに取り付けました(図2)。
このシステムを用いて、まずガリウムヒ素(GaAs)半導体基板の表面電場を調べました。フェムト秒超短パルスレーザーの出力光をビームスプリッタで約10対1に分岐し、強い方を励起のためのポンプ光、弱い方を探索のためのプローブ光とします。電子が電流を運ぶn型GaAs試料は高強度のポンプ光で励起され、プローブ光はダイヤモンドNVプローブに入射されます(図3a)。まず、ダイヤモンドNVプローブの有無による時間分解EO信号の検出感度を確認するため、ダイヤモンドNVプローブを用いないマクロ計測により時間分解EO信号を計測したところ、励起直後(Time delay=時間遅延0 ps)に立ち上がり、数ps(ps=1兆分の1秒)以内に緩和しポンプ光を当てる前に戻る信号が得られました(図3b)。またNVセンターを導入したダイヤモンドNVプローブを通じて、n型GaAsの表面電場を検出することに成功しました(図3c)。ダイヤモンドNVプローブの導入によりEO信号の大きさは約1/42に減少しましたが、局所計測に成功したと言えます。
さらに二次元層状物質注9)であるセレン化タングステン(WSe2)単結晶をシリコン基板上に転写した試料を用いて実験を行いました。このWSe2試料では、場所によって結晶の厚さが異なっていますが、光学顕微鏡で銀白色のバルク(Bulk)結晶(厚さが10原子層以上の結晶)を見つけ、このバルク結晶と接する紫色の単層(1 ML)部分との界面に着目しました(図4a)。この厚さの異なる界面を用いて、局所的な表面電場の計測を行ったところ、単層部分とバルク部分のキャリア特性を反映した表面電場信号を、500 nm以下かつ100 fs以下の時空間分解能でセンシングすることに成功しました(図4a,b)。また時間分解EO信号の減衰を指数関数を用いてフィッティング(モデル化)したところ、単層部分では約200フェムト秒で緩和する成分のみが観測されました。一方、バルク部分では、この成分に加えて、約2psで緩和する遅い成分の寄与があることが分かりました(図4c)。このことは、単層部分では電場は基板との相互作用などで高速に緩和するのみなのに対し、バルク部分では、表面電場と結合したキャリアのバンド内緩和やバレー間緩和注10)が寄与していることを示しています。n型GaAsの時間分解EO信号による電場検出感度を見積もると、約100 V/cm/
(Hzは周波数)となりました。これは発光測定に基づく従来の手法で得られたマイクロ秒時間領域でのDC(直流)電場センシングと同等の検出感度を達成したことになります。最近のマイクロ秒時間領域でのAC(交流)電場センシングに関する検出感度には2桁及びませんが、本手法ではDC(直流)電場センシングと同等の検出感度で500 nm以下かつ、100フェムト秒というマイクロ秒を遙かに凌ぐ高い時空間分解能が得られることが示されたと言えます。
【今後の展開】
今回開拓した時空間極限センシング技術は、例えば炭化ケイ素(SiC)などのパワー半導体材料や燃料電池材料内での局所電場検知、トポロジカル絶縁体における局所電場検知など、基礎物理・化学のための基盤技術となることが期待されます。また、NV中心を含むダイヤモンドNVプローブはスピンや温度の変化にも感度があるため、本研究のアプローチは、電場の検出に加え、磁場や温度を検出するためのセンシング技術としても展開可能であると言えます。例えばレーザー医療や分子レベルでの細胞の計測や制御を通じて、癌の治療をはじめとする量子生命科学の分野にも波及しうる革新的な展開が期待されます。
【参考図】

| 図1 本研究で行なった実験の概要図 ダイヤモンドNVプローブを用いた超高速ポンプ・プローブ電場センシング測定の概略図。試料上の各指定点においてAFMプローブを垂直に接近・後退させる「ピンポイントモード」で測定を行った。また試料はピエゾスキャナーを用いてx-y方向に走査される。 |

| 図2 本研究で作製したダイヤモンドNVプローブ概要図 (a) FIBで作製したダイヤモンドNVプローブ(探針)の走査型イオン顕微鏡像。マイクロメートルサイズに加工されたダイヤモンド結晶の一部が探針となっている。(b) ダイヤモンドNVプローブの探針部分のフォトルミネッセンス画像。赤色の部分から探針の直径が500 nm以下であることが分かる。(c)カンチレバーに取り付けたダイヤモンドNVプローブの光学顕微鏡像。カンチレバーは自己センシング方式用の回路部分の上部に位置しており、その先端に探針部分を含むダイヤモンドNVプローブが取り付けられている。 |

| 図3 ダイヤモンドNVプローブを用いたn型GaAs表面の電場センシング (a)ダイヤモンドNVプローブ先端近傍の表面バンド曲げと接触モードの配置図。表面状態はフェルミエネルギー(EF)を示すベル形状の破線で表され、下側のバンドは電子(-)で占有されている。VBは価電子帯、CBは伝導帯を示す。(b)ダイヤモンドNVプローブを用いないマクロ計測によるn型GaAsウェハーからの時間分解電気光学信号。(c)ダイヤモンドNVプローブを用いたn型GaAsからの局所的時間分解電気光学信号。(b)のマクロ計測の場合に比べてEO信号の大きさは約1/42になっているが、検出感度が十分であることが確認された。 |

| 図4 WSe2のEO信号の時空間測定 (a) ダイヤモンドNVプローブを用いた60 µm ×60 µm領域のトポグラフ画像。色の薄い部分がバルク(Bulk)結晶である。左上の挿入図は光学顕微鏡像であり、銀白色の部分はバルク(Bulk)結晶である。 局所計測では、単層(1ML)領域(P4)からバルク(Bulk)領域(P11)までを500 nmステップで計測する。(b)ダイヤモンドNVプローブを用いて得られた局所的な時間分解電気光学信号。P4からP11に行くに従い、単層(1ML)からバルク(Bulk)領域を測定している。図(b)の黒実線は、単一指数関数(単層=1ML領域のデータについて)または二重指数関数(バルク領域のデータについて)を用いたフィッティング(モデル化)を示す。(c) P4からP11の異なる位置における500 nmステップで得られた時間分解電気光学信号へのフィッティングにより得られた緩和時間定数。エラーバーは標準偏差を示す。 |
【用語解説】
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」はダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NV中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒(1000兆分の1秒)以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
物質に電場を加えると、電場の強度に応じて物質の屈折率が変化する効果のこと。
先端が鋭い探針で試料の表面を走査し、探針と表面との間に働く微少な力を測定して表面構造を原子スケールの高分解能で観察することができる顕微鏡のこと。AFM探針は、バネのようにしなるカンチレバーの先端に取り付けられており、コンタクトモードでは、この探針と試料表面を微小な力で接触させ、カンチレバーのたわみ量が一定になるように探針・試料間距離をフィードバック制御しながらX―Y方向(水平方向)に走査することで、表面形状を画像化できる。
イオンビーム(荷電しているイオンを高電界で加速したもの)を細く絞ったものである。物質の微細加工、蒸着、観察などの用途に用いられる。
半導体材料などに機械的なひずみ(力による変形)を与えたとき、材料の電気抵抗が変化する効果のこと。
通常のAFMでは、レーザー光をカンチレバー背面に照射し、反射したレーザービームの位置変化を位置センサーで計測することで、カンチレバーのたわみ量(表面構造によりたわんだ量)を読み取る。カンチレバーのたわみ信号を光で読み取ることから、これを光てこ方式と呼ぶ。一方、自己センシング方式のAFMでは、光てこ方式のようにレーザーと一センサーを必要とせず、ピエゾ抵抗効果などのカンチレバー自身の物理量の変化からカンチレバーのたわみ量を読み取ることができる。
共有結合が二次元方向だけに伸びている結晶のこと。原子一層レベルの二次元原子層が、ファンデルワールス力で積層して三次元結晶を形成している。炭素の二次元原子層であるグラフェンが積層したグラファイト、近年盛んに研究されるようになった遷移金属カルコゲナイドなどがある。本研究で調べたセレン化タングステン(WSe2)も遷移金属カルコゲナイドである。
半導体などにおいて、バレーとは電子バンドの極小点を指す。異なるバレー間にキャリアが散乱(遷移)することでエネルギーを失う緩和過程をバレー間緩和と呼ぶ。
【研究資金】
本研究は、科研費による研究プロジェクト(25H00849, 22J11423, 22KJ0409, 23K22422, 24K01286, 24H00416, 23H00264)、および国立研究開発法人 科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)(JPMJCR1875)の一環として実施されました。
【参考文献】
a) T. Ichikawa, J. Guo, P. Fons, D. Prananto, T. An, and M. Hase, 2024, Cooperative dynamic polaronic picture of diamond color centers. Nature Communications. 15, 7174 (10.1038/s41467-024-51366-x).
【掲載論文】
| 題名 | An ultrafast diamond nonlinear photonic sensor. (超高速ダイヤモンド非線形光センサー) |
| 著者名 | D. Sato, J. Guo, T. Ichikawa, D. Prananto, T. An, P. Fons, S. Yoshida, H. Shigekawa, and M. Hase |
| 掲載誌 | Nature Communications |
| 掲載日 | 2025年9月25日 |
| DOI | 10.1038/s41467-025-63936-8 |
令和7年9月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/09/26-1.html学生の永原さんが第6回フロンティア太陽電池セミナーにおいて優秀ポスター賞を受賞
学生の永原光倫さん(博士前期課程2年、サスティナブルイノベーション研究領域、大平研究室)が、第6回フロンティア太陽電池セミナーにおいて優秀ポスター賞を受賞しました。
フロンティア太陽電池セミナーは、産官学の様々な分野で太陽電池研究に取り組む研究者が集まり、シリコンや化合物など無機系、有機薄膜系、ペロブスカイト型、さらには量子ドット型など新しい太陽電池も含み、広く太陽電池の開発研究および関連する基盤技術を題材に取り上げ、様々な視点から徹底的に議論し、研究者間での連携を深めることで、本研究分野の飛躍的な発展の促進を図るものです。
第6回フロンティア太陽電池セミナーは令和6年12月12日~13日にかけて、愛媛県(松山市)にて開催されました。
※参考:第6回フロンティア太陽電池セミナー
■受賞年月日
令和6年12月13日
■研究題目、論文タイトル等
封止材とカバーガラスを使用しない曲面結晶Si太陽電池モジュールの機械的強度および浸水試験
■研究者、著者
永原光倫、Huynh Thi Cam Tu、大平圭介
■受賞対象となった研究の内容
封止材とカバーガラスを使用しない曲面・大面積結晶Si太陽電池モジュールに対し、JIS規格に基づく砂袋式荷重試験と降雹試験の2種類の機械的強度試験を行った。結果として、砂袋式荷重試験では、切削加工により作製したポリカーボネート(PC)ベースが破壊されないことや、フロントカバーであるPC板と太陽電池セルの接触による破損がないことが分かった。降雹試験では、降雹によるフロントカバーに傷が確認されないことや、衝撃による太陽電池セルの破損が見られないことを確認した。以上のことから、従来型太陽電池モジュールの評価基準を満たす機械的強度を有することが分かった。また、ベースの端部にOリングをはめ込み、ポリカーボネート製カバーとフレーム状のクランプで押さえることにより水分浸入の抑止を試みた。この構造を持つ小型モジュールに対し浸水試験を行った結果、水分浸入がみられなかったことから、OリングとAlフレームは水分浸入を防ぐ構造であるということが示された。
■受賞にあたって一言
優秀ポスター賞を受賞でき、とてもうれしく思います。研究を進める中で、大平圭介教授をはじめ多くのサポートと貴重な助言をいただいたことが、今回の受賞につながったと感じています。これからも一層研究活動に取り組んでいきたいです。
令和7年1月31日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/01/31-2.html



