研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。ナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発 ― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―

ナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発
― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―
【ポイント】
- 高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発
- 欠陥を多く含むメタチタン酸ナノ粒子の三次元結晶構造の決定に成功
- 多様な結晶構造をとり得る金属オキシ水酸化物ナノ粒子の構造解明に役立つと期待
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市) ナノマテリアル・デバイス研究領域の麻生浩平講師、大島義文教授、宮田全展講師 (研究当時)、同大学ナノマテリアルテクノロジーセンターの東嶺孝一技術専門員、日本製鉄株式会社 技術開発本部の神尾浩史主幹研究員らの研究グループは、高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発しました。これにより、従来のX線回折法(XRD)*1などでは困難だった、欠陥を多く含むメタチタン酸ナノ粒子の結晶構造を決定することに成功しました。メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました。酸素と金属で構成される金属酸化物や、さらに水素が加わった金属オキシ水酸化物は、多様な結晶構造をとり、それに応じて多彩な物性を発現することが知られています。格子相関解析は、このような材料の構造解明に弾みをつける新たな手法であり、多彩な物性の理解に貢献すると期待されます。 本研究成果は、2025年4月28日 (英国標準時間)に科学雑誌「Communications Chemistry」誌のオンライン版で公開されました。 |
【研究の背景及び概要】
酸素と金属で構成される金属酸化物ナノ粒子や、水素が加わった金属オキシ水酸化物ナノ粒子は、現代社会に欠かせない触媒、エネルギー変換、吸着材として注目されています。これらのナノ粒子は、組成が同じでも異なる構造をとり、異なる物性を示します。つまり、物性を真に理解する上で、合成されたナノ粒子の形状や構造の解明は欠かせません。典型的な構造解析として、X線回折法やラマン分光法*2があります。しかし、サイズが数ナノメートル (nm, 十億分の一メートル) 程度のナノ粒子の場合、ピークが明瞭でないため解析が困難です。また、今回の研究対象とした、金属オキシ水酸化物のひとつであるメタチタン酸は、欠陥を多く含むため構造解析がより困難となっていました。一方、透過電子顕微鏡 (TEM)*3や走査TEM (STEM)*4は、原子配列を可視化できますが、得られる情報は投影した二次元像です。
そこで、三次元の結晶構造を明らかにするため、多数のメタチタン酸ナノ粒子のTEM像を異なる様々な方位から取得しました。様々な方位から多数の像を得るのは、生物分野で利用される単粒子解析と類似していますが、本研究では異なる解析手法を採用しています。単粒子解析では、対象物の形状が均一であると仮定し、多数の像を観察方位ごとに分類して足し合わせることで、像の質を高めます。しかし、メタチタン酸ナノ粒子の場合、形状が均一ではないため、従来の方法をそのまま応用することはできませんでした。そこで、今回開発した手法では、像の足し合わせではなく、周期性や格子定数に敏感な結晶格子の間隔や異なる格子間の角度に着目しました。本手法は、間隔や角度の相関を統計的に解析することで、結晶構造の特徴を抽出しようとした点に新規性があります。
メタチタン酸ナノ粒子は、TEM試料用の支持膜上にランダムな方位を向いて分散するので、様々な方位からの粒子の原子分解能TEM像が得られます (図1a)。得られたTEM像から、画像処理によって個々のナノ粒子を検出し (図1b)、そのナノ粒子にガウス関数のマスクをかけて高速フーリエ変換 (FFT) パターンを得ました(図1c)。FFTパターンで観察されるスポットは、ナノ粒子の結晶格子の周期を反映します。異なるスポットの配置から、格子の間隔や角度の相関 (格子相関) が分かります。この処理を、500枚のTEM像で撮影された1300個のナノ粒子に対して行うことで、メタチタン酸ナノ粒子がもつ特徴的な格子相関を統計的に得ることが出来ました (図1d)。異なる観察方位に対する格子相関を組み合わせて解析することで、構造に関する三次元情報が得られます。
解析の結果、メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました(図1e)。この構造は、密度汎関数理論による計算*5でも安定であることが確認されました(図1f)。また、原子の個数や原子番号をより直接的に反映する環状暗視野STEM像*6(図1g)とも整合しており、提案する構造は妥当であると判断しました。
本研究で開発した格子相関解析は、従来と比べて1/20から1/500程度の低い電子線照射量で、三次元的な結晶構造の解明を可能とします。今後は、電子線に敏感なため解析が困難だった、金属オキシ水酸化物ナノ粒子や有機物を含むナノ材料への展開が期待されます。新規材料探索は理論計算による研究が多いなかで、本手法は解析の自動化が可能であり、実験による新たなアプローチを提示できると考えています。これにより、より適切な材料設計や高性能デバイスの開発に弾みがつくと期待されます。
図1 (a) HRTEM像。暗いコントラストで示されるメタチタン酸ナノ粒子が見られる。(b) 画像処理によって粒子領域を検出した図。粒子ごとに色分けして塗りつぶしている。(c) b中の中央下、白い丸とバツでマークされた粒子のFFT図形。(d)格子相関マップの一例。ここでは(004)面と(110)面、(002)面と(110)面の組み合わせがスポットとして現れている。(e)解析から提案された結晶模型。(f)結晶模型について計算した環状暗視野STEM像。(g)メタチタン酸ナノ粒子の環状暗視野STEM像。 |
【論文情報】
雑誌名 | Communications Chemistry |
論文名 | Three-dimensional atomic-scale characterization of titanium oxyhydroxide nanoparticles by data-driven lattice correlation analysis |
著者 | Kohei Aso, Koichi Higashimine, Masanobu Miyata,Hiroshi Kamio,and Yoshifumi Oshima |
掲載日 | 2025年4月28日 |
DOI | doi.org/10.1038/s42004-025-01513-2 |
【用語説明】
物質の平均的な結晶構造を調べる代表的な技術。X線を試料に照射してプロファイルを取得し、回折ピークの配置を解析することで試料の平均的な結晶構造が得られる。
物質にレーザー光を照射し、散乱された光の波長変化(ラマン散乱)を解析することで、物質の化学結合や結晶構造を得る手法。
電子線を試料に透過させ、得られた投影像から結晶構造を観察する手法。電子線を使うことを除いて、原理的には一般的な光学顕微鏡と同様。
0.1 nm程度に絞った電子線を試料上で走査し、試料各点からの信号によって結像する手法。
原子や分子の電子状態を理論に基づき計算する手法。ここでは、結晶構造のサイズ(格子定数)や原子位置をわずかに変化させながら計算を繰り返し、構造の安定性を評価した。
STEMのうち、前方散乱された電子をマッピングした像。原子番号や厚みの違いをより直接的に反映した像が得られる。
令和7年4月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/04/30-1.htmlナノバイオテクノロジー


ナノバイオテクノロジー
ナノバイオ研究室 Laboratory on Nanobiotechnology
講師:高橋 麻里(TAKAHASHI Mari)
E-mail:
[研究分野]
ナノ材料科学、細胞生物学
[キーワード]
ナノ粒子、バイオ医療応用
研究を始めるのに必要な知識・能力
探求心があり、努力することを厭わず、向上心がある方ならバックグランドが違っていても研究を楽しむことができます。研究テーマに対して、自分がこの研究を進めるんだという主体的な立場にたつことが必要です。共同研究をすることが多いため、協調性やコミュニケーション能力も必要となります。
この研究で身につく能力
ナノ粒子の合成法、構造・特性評価及び解析方法に関する幅広い知識。金属・磁性・半導体材料とナノ粒子にすることで現れる特徴的な性質に関する一般的な知識。細胞生物学に関する一般的な知識。新たな課題に対して取り組むチャレンジ精神。
【就職先企業・職種】 製造業(化学、精密機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
ナノ粒子のバイオ医療応用に関する注目は年々高まっています。私達は金属・半導体・磁性体をナノサイズにすることで現れるバルクとは異なる性質を利用して、ナノ粒子のバイオ医療応用に関する研究を行っています。応用先は様々ですが、主に下記に示す3つの内容に力を入れており、それぞれの用途に合わせたナノ粒子の合成から構造解析、特性評価、応用までの一連の流れを一人の学生が担当して研究を進めます。
1. 磁性体ナノ粒子を用いた細胞内小器官の磁気分離
正常細胞と機能欠損細胞から細胞内小器官を分離し、タンパク質を解析し比較することは、疾患の分子機構の解明において重要です。超常磁性体ナノ粒子を合成し、表面を生体分子で機能化した粒子を用い、細胞内小器官を迅速かつ温和に磁気分離し、生化学的手法による解析を行います。種々の細胞内小器官の磁気分離法の構築や機能欠損細胞のタンパク質解析を通して、最終的には創薬分野への貢献を目指します。
2. 磁気粒子分光を用いたイムノアッセイ
人生100年時代と言われる現代、私達が健康に長生きするためには、疾病の早期発見のための診断技術・精度の向上がますます重要となります。磁気粒子分光(MPS)を用いたイムノアッセイ(抗原抗体反応を用いた抗原の検出)では、種々の磁性体ナノ粒子を合成しMPSで評価し、感度が高いプローブを複数選択することで同時多抗原検出を目指します。
3. アップコンバージョンナノ粒子による光遺伝学的研究
アップコンバージョンナノ粒子とは、波長が長い入射光を照射した際に波長が短い発光を示す蛍光体ナノ粒子です。光遺伝学とは光受容タンパク質を遺伝学的に細胞に発現させ、光で細胞の応答を制御する技術で、この2つを組わせることで、光による生体組織の制御を行う研究をしております。
主な研究業績
- D. Maemura, T. S. Le, M. Takahashi, K. Matsumura, and S. Maenosono: "Optogenetic Calcium Ion Influx in Myoblasts and Myotubes by Near-Infrared Light Using Upconversion Nanoparticles" ACS Appl. Mater. Interfaces 15 (2023) 42196
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, S. Maenosono: "Quick and Mild Isolation of Intact Lysosomes Using Magnetic–Plasmonic Hybrid Nanoparticles" ACS Nano 16 (2022) 885
- T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono: "Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes" Langmuir 37 (2021) 6566
使用装置
透過型電子顕微鏡(TEM) 超伝導量子干渉磁束計(SQUID)
走査透過型電子顕微鏡(STEM) 動的光散乱測定装置(DLS)
X線回折装置(XRD) 共焦点レーザー顕微鏡(CLSM)
X線光電子分光装置(XPS) 核磁気共鳴装置(NMR)
研究室の指導方針
常に新しい内容の研究を行っており、研究内容に関しては教員が学生へ毎回指示を与えるのではなく、学生自身にも実験と論文調査から次の方向性を決めるといった、一緒に研究を進めていくスタンスで研究を行います。その過程で卒業後の進路(就職希望か進学希望)に合わせて必要な基礎知識と研究力が身につくように指導します。また、分野外の方でも最前線の研究が行えるように効率的な努力の仕方や学習法を身に着けられるように指導しますので、心配なことや研究に関する疑問等は積極的に相談してください。そのためにはコミュニケーション能力も重要であり、卒業後の社会人にとって必要不可欠なスキルが身につくようにサポートします。
[研究室HP] URL:https://www.jaist.ac.jp/~shinya/
固体電子構造と局所配位環境のデザインにより所望の光機能を発現させる!


固体電子構造と局所配位環境のデザインにより所望の光機能を発現させる!
光機能無機材料化学研究室
Laboratory on Optical Functional Inorganic Materials Chemistry
准教授:上田 純平(UEDA Jumpei)
E-mail:
[研究分野]
無機化学、固体化学、光化学、ガラス
[キーワード]
蛍光体、蓄光材料、応力発光体、白色LED、レーザー励起、白色光源、近赤外蛍光体、蛍光温度計、高圧物性、有機長残光蛍光体
研究を始めるのに必要な知識・能力
知的好奇心をもち、積極的に研究に取り組み、コミュニケーションとディスカッションを通して学問の発展や新分野の開拓、自己の成長を遂げたいという意欲が必要です。必要な知識は問いませんが、無機固体化学の知識があると研究に有利です。
この研究で身につく能力
研究テーマは、材料合成、物性評価、応用展開の一連の内容を含み、研究を通して計画能力、課題把握能力、論理的思考や幅広い知見と様々な測定技術を習得できます。英語での研究発表会や最新英語学術論文を紹介する雑誌会のゼミによって、プレゼンテーション力と英語コミュニケーション力が鍛えられます。
専門的には、材料合成技術(無機固体粉末、セラミックス、透光性セラミックス、ガラス、単結晶)や物性評価技術(X線回折測定、X線吸収分光、基礎的な光学特性評価、蛍光寿命測定、光伝導度測定、真空紫外分光、蓄光材料評価手法、ダイアモンドアンビルセルによる高圧実験)など、固体化学と分光学の研究者としての能力を身に付けることができます。
【就職先企業・職種】 材料・化学メーカー、電機メーカー
研究内容

組成に伴う化学的、幾何学的変化により光物性を制御
身の回りには発光する材料やデバイスが多く存在します。例えば、白色LED照明、レーザープロジェクター、テレビやスマートフォンのディスプレイはその一例です。これらの発光デバイスには、短波長の光を吸収して長波長の光に変換する蛍光体と呼ばれる発光中心イオン(希土類や遷移金属など)を添加した無機固体材料が使われています。蛍光体の光物性は、発光中心イオンの種類やその幾何学的・化学的な配位環境、結晶ホストの固体電子構造で大きく変化します。本研究室では、これらの光物性を支配する要因を詳細に調査・特定し、高効率蛍光体や近赤外蛍光体、残光蛍光体など所望の光機能を有した固体材料をデザインしています。
◆白色光を創る!
白色LED照明やレーザー励起白色光源は、青色LED(またはレーザー)と可視蛍光体から構成されています。白色光源用蛍光体は、用途により要求される特性が異なり、最近ではディスプレイ用の発光バンドの半値幅の狭い「ナロ―バンド蛍光体」やレーザーの強励起でも消光しない「レーザー励起用蛍光体」などの開発が求められています。我々は、物理現象の解明を通し、より高い特性を有する蛍光体を戦略的に創製します。

開発した長残光蛍光体
◆光を蓄える!
通常、蛍光体は励起光を遮断すると、直ちに減衰し光らなくなります。しかしながら、励起電子の一部を結晶ホストに存在する電子トラップに蓄えることにより、数分から数日の時間スケールで光続ける蛍光体(長残光蛍光体または蓄光材料)を作製できます。我々は固体電子構造に着目し、光誘起電子移動機構を制御することにより、残光蛍光体を設計しています。
◆光で測る!
蛍光体の光物性は、温度や圧力により変化するので、特徴的な発光の変化を利用することにより、非接触・非侵襲型の温度センサーや圧力センサーとして使用できます。バイオ応用に向けた近赤外サーモメーターや高感度圧力センサーなどを開発しています。
◆その他研究テーマ
透光性セラミックス、フォトクロミック材料、熱ルミネッセンス蛍光体、応力発光体、アップコンバージョン蓄光、有機長残光蛍光体、太陽電池用波長変換材料、消光機構解明、圧力誘起相転移
主な研究業績
- A. Hashimoto, J. Ueda, et al., J. Phys. Chem. C. 127, 15611(2023).
- J. Ueda, et al., ACS Appl. Opt. Mater. 1, 1128(2023).
- Jumpei Ueda, Bull. Chem. Soc. Jpn. 94, 2807(2021)
使用装置
真空高温管状炉、X線回折装置
蛍光分光光度計、クライオスタット
波長可変レーザー、蓄光材料評価装置
ダイアモンドアンビル高圧セル
研究室の指導方針
当研究室では、メンバーの人数により調整しますが、1週間に一度の研究報告会と雑誌会(最新英語論文の紹介)を行います。規則正しい生活のために、コアタイムを9時から17時とします。研究テーマは、材料合成、物性評価、応用展開の一連の内容を含み、研究室での実験だけでなく、共通分析機器の利用や学外との共同研究により、幅広い専門知識と技術の修得ができます。基本的に、在籍中に国内学会や国際学会で、一度は研究発表を行って頂きます。また、得られた研究成果は、国際論文雑誌にて学生が第一著者または共著者として発表することを目指します。
[研究室HP] URL:https://uedalab.com/
液体から高機能性材料を創成し、生体・環境の見える化へ


液体から高機能性材料を創成し、生体・環境の見える化へ
プリンテッドバイオセンサー研究室
Laboratory on Printed Biosensors
講師:廣瀬 大亮(HIROSE Daisuke)
E-mail:
[研究分野]
酸化物、バイオセンサー、液体プロセス
[キーワード]
MOD法、薄膜トランジスタ、生体分子検出、バイオチップ、プリンテッドエレクトロニクス
研究を始めるのに必要な知識・能力
分野に囚われない研究を行うための好奇心・挑戦心、未解明の謎を楽しむ心。
専門知識は基礎から指導しますので、知識は問いません。どの分野からも歓迎します。一緒に頑張りましょう!
この研究で身につく能力
研究では様々な実験をすることになります。それによって分野に囚われない研究の着眼点や発想が身につきます。また、課題を解決するための論理的思考やタスクをこなす力も身につきます。学会やゼミの発表を通して、発表力・発信力も身につきます。
【就職先企業・職種】 半導体製造機器メーカー、電子部品会社、計測機器メーカー
研究内容
有機金属分解(MOD)法を基礎とした、モノづくりを行っています。この手法は“ 液体” から石(酸化物)を作製する技術であり、様々な電気的特性を示す酸化物を作り出せます。
さらに私たちはこのMOD法で作製した酸化物や中間体にこれまでにない特異的な特徴があることを発見しました。その特徴と半導体プロセスとを組み合わせることで、新たなセンシングデバイスやパターニング手法の研究・開発をしています。そして、なぜ特異的な特徴が現れるかの物性解析による解明も同時に進めています。
・高感度 - 酸化物センシングデバイス
コロナウイルスの感染拡大が世界的な問題となったことから、PCRやイムノクロマトに代わる迅速で高感度な菌・ウイルスの検査手法の需要が急速に高まってきています。
私たちは迅速で高感度に測定可能な酸化物薄膜トランジスタ型核酸センサーの研究・開発を進めています。図に、これまで作製したセンサーを示しています。この技術は核酸のみならず、多様な分子に適用可能であり、環境・衛生・農業・医療などの分野への応用も目指しています。
・MOD中間体の特性を生かしたパターニング
センサーなどの電子デバイスを作製するには、酸化物の精度の良いパターニングが必要となります。私たちはMOD法から酸化物を作製する際の中間体が変形性を示すことを発見しました。この特性を利用し、型押し成型による低エネルギー・低コストの酸化物の直接プリンティング手法を開発しました。この技術によって、簡単にサブミクロンスケールのパターンの作製が可能になりました。示した図は作製した酸化物パターンと、酸化物を積層した薄膜トランジスタアレイです。このように様々な酸化物の精度のよいパターンが作製できることがわかります。
主な研究業績
- Submicron titania pattern fabrication via thermal nanoimprint printing and Microstructural analysis of printable titania gels, D. Hirose, H. Yamada, T. Jochi, K. Ohara and Y. Takamura, Ceramics International, online,(2024)
- Rapid and Highly Sensitive Detection of Leishmania by Combining Recombinase Polymerase Amplification and Solution-Processed Oxide Thin-Film Transistor Technology, W. Wu, M. Biyani, D. Hirose and Y. Takamura, Biosensors, vol. 13, 8, p. 765,(2023).
- Origin of the thermal plasticity property of zirconium oxide gels for use in direct thermal nanoimprinting, D. Hirose, J. Li, Y. Murakami, S. Kohara and T. Shimoda, Ceramics International, vol.44, p. 17602,(2018).
使用装置
電子デバイス作製装置(フォトリソグラフィ装置、スパッタ装置ナノインプリント)、電気特性評価装置(半導体パラメータアナライザ、インピーダンスアナライザ)、形状評価装置(走査型電子顕微鏡、原子間力顕微鏡)、材料物性評価装置(TG-DTA、FT-IR,UV-vis、XRD、XPS、接触角計)
研究室の指導方針
本研究室では液体から機能性酸化物をつくるMOD技術を基礎にして、生体・環境の見える化を目指しています。身の回りのあらゆる分子をターゲットとして、社会や生活へ応用を目指しています。今まさに大きく成長している段階です。みなさんのアイデアと私たちの技術を組み合わせ、新たな見える化センサーを創成しましょう!!
研究では、個々の興味に沿ったテーマを設定します。目標に向け、課題を一つずつクリアできるように指導いたします。生活や就職活動についての不安を取り除きながら、これからの壁を乗り越える力を身につけられるようサポートします。
新しい固体触媒プロセスの構築による資源・エネルギー問題の解決に挑む!


新しい固体触媒プロセスの構築による
資源・エネルギー問題の解決に挑む!
触媒・資源変換プロセス研究室
Laboratory on Catalyst/Resource Chemical Process
准教授:西村 俊(NISHIMURA Shun)
E-mail:
[研究分野]
触媒化学、固体触媒、合金触媒、バイオマス変換
[キーワード]
資源・エネルギーの有効利用技術、金属ナノ粒子触媒、固体酸塩基触媒、新触媒の創成、触媒作用機構の解明
研究を始めるのに必要な知識・能力
基礎的な計算・データ処理能力と仲間と安全に研究を進められる方であれば、バックグラウンドを問わずに歓迎します。物理化学、有機化学、無機化学、分析化学、触媒化学などの基礎・経験があると、よりスムーズに研究を開始できます。失敗にひるまずに挑戦する「忍耐力」や「好奇心・探究心」がより自発的に研究を進める上で役に立ちます。
この研究で身につく能力
新しい固体触媒プロセスの開発は、触媒設計→触媒調製・条件の最適化→触媒活性評価・反応条件の最適化→触媒のキャラクタリゼーション→触媒作用機構の提案→検証・再考といった多くの研究段階からなっています。また、触媒作用に関連する因子は一つであるとは限りません。従って、触媒開発プロセスを経験することで、様々な分析・評価手法の技術習得、多角的に実験データを整理・解析・統合する力を身に付けることができます。また、英語の先行研究を読み自らの研究へフィードバックする力、自分の結果を他人へより分かりやすく伝えるためのプレゼンテーション力を、日常の研究室ゼミや学会発表等を通じて向上できます。
【就職先企業・職種】 化成品・ポリマー製造や自動車触媒製造を主とした化学・材料メーカーなど。
研究内容
触媒は様々な物質変換・合成プロセスに欠かすことができない材料で、身近な生活を力強く下支えしています。そのため、高機能な触媒プロセスの開発は、日常の生活様式の劇的な改善やより低環境負荷なスタイルへと大きく変えるインパクトを持っています。例えば、空気中の窒素の人工的な固定化を実現したアンモニア合成触媒の実現(1918年ノーベル化学賞)は、窒素を含む化学品合成の発展に繋がり、その後の安定的な食料生産による人口増加や火薬製造による工業の発展へと繋がりました。
当研究室では、「従来の在来型化石資源の利用技術で培われた触媒プロセス技術を生かし、より高効率な触媒を設計するための指針の提案」や、「固体触媒を用いた高効率な次世代バイオマス資源変換プロセスの構築」から、持続可能・低環境負荷な社会形成に貢献できる触媒・資源変換プロセス技術の構築を目指しています。
・金属担持触媒の高機能化に向けた触媒設計と作用機構解明
金属活性点を固体表面に固定化した金属担持触媒は、主に1. 金属活性中心の電子状態や形状、2. 金属活性点の周囲環境、3. 担体の性質によって、その触媒作用が大きく異なります。それぞれの因子を系統的に制御し、対象とする触媒反応への性能を評価することで、求める触媒作用に対して選択的に欲しい性能を付与できる触媒調製指針の策定を目指します。例えば、異種金属を合金化させた活性サイトの構築による高活性化、保護配位剤を作用させることによる活性点周囲の環境制御による高活性・高選択性の発現、特異な構造を有する担体合成による超高活性化を実現しています。
・高効率なバイオマス資源変換を実現する固体触媒プロセス開発
バイオマス資源は再生可能でカーボンニュートラルであることから、持続可能な次世代資源としての活用が期待されています。しかし、低いLCA(ライフサイクル・アセスメント)が課題です。固体触媒を用いた高効率プロセスの実現によるバイオマス資源利用の拡大を目指しています。例えば、常圧水素によるバイオ燃料製造プロセス、非可食性グルコサミン類からの高品位化成品合成プロセス、高活性な酸- 塩基反応プロセス、バイオマス由来有機酸・脂肪酸の高効率な水素化転換を実現しています。また、バイオマス資源の連続的なフロー変換プロセスの展開に必要な課題抽出とその改善にも取り組んでいます。
主な研究業績
- S. D. Le, S. Nishimura: Selective hydrogenation of succinic acid to gamma-butyrolactone with PVP-capped CuPd catalysts. Catal. Sci. Technol. 12 (2022) 1060.
- K. Anjali, S. Nishimura: Efficient Conversion of Furfural to Succinic Acid using Cobalt-Porphyrin based Catalysts and Molecular Oxygen. J. Catal. 428 (2023) 115182
- X. Li, S. Nishimura: Synthesis of 5-Hydroxymethy-2-furfurylamine via Reductive Amination of 5-Hydroxymethyl-2-furaldehyde with Supported Ni-Co Bimetallic catalysts. Catal. Lett. 154 (2024) 237.
使用装置
触媒活性評価(GC, HPLC, GC-TOFMS, FTICR-MS, 液体 NMR)
触媒構造評価(XRD, ガス吸着 / 脱着 , SEM/TEM, XPS, 固体 NMR, FT-IR, TPR/TPD, パルス分析など)
状況に応じて、外部の共同利用研究施設(KEK-PF, SPring-8, SAGA- LS など)での XAFS 測定も行います。
研究室の指導方針
当研究室では、月1~2回の研究室ゼミ(研究進捗報告・ディスカッション)を行います。コアタイムは設けませんが、社会人生活に向け て規則正しい生活リズムを作って実験・大学院生活を送ってください。本学には様々な分析機器が共通設備として整備されており、 装置によっては専門職員からのサポートも得られる充実した環境が整っています。在籍中にこのサポート・分析体制を存分に活か し、自らのスキルアップを実現してほしいと思います。在籍中に得られた成果は、国内外での学会等で対外発表を行うことを推奨 します。また、修了生1人に対して1報以上の学術論文・国際会議プロシーディングス等を公開し、各学生の成果を残せるように努めています。
[研究室HP] URL:https://www.jaist.ac.jp/~s_nishim/index.html
“探索・学習・予測”のシナジーを実践する次世代マテリアル設計


“探索・学習・予測”のシナジーを実践する
次世代マテリアル設計
マテリアルズインフォマティクス研究室
Laboratory on Materials Informatics
教授:谷池 俊明(TANIIKE Toshiaki)
E-mail:
[研究分野]
ハイスループット実験、マテリアルズインフォマティクス、計算化学
[キーワード]
固体触媒、重合、ナノコンポジット、分離膜、グラフェン、データ科学
研究を始めるのに必要な知識・能力
私たちの研究はユニークであり、様々な専門の研究者が活躍できる非常に学際的なものです。新しい分野に創意工夫を持って挑戦する志を重視し、元々の専門分野を問わず多様な学生を受け入れています。所属学生の専門は、例えば、化学(触媒・高分子・ナノ材料)、化学・機械工学、データ科学、計算科学などです。
この研究で身につく能力
所属学生は、自身の研究やゼミ活動への参画を通して、1)ハイスループット実験、データ科学、計算化学のいずれか、ないしはこれらを組み合わせて用いる先進的な材料科学研究の実践方法、2)与えられた資源の中で成果を最大化するための研究計画能力、3)国際・学際的な環境でチームワークするスキルなどを習得できます。
【就職先企業・職種】 材料、化学、化学工学、マテリアルズインフォマティクスなどに関する研究開発職
研究内容

ハイスループット実験とマテリアルズインフォマティクスによる材料科学研究
気候変動や少子高齢化など、人類社会や我が国が置かれた避けられない課題に鑑み、谷池研究室では、ハイスループット実験、データサイエンス(マテリアルズインフォマティクス)、シミュレーションを基盤とした、イノベーション志向の物質科学を目指しています。かつてない効率で膨大な材料候補を探索し、社会問題の解決を目指しています。
❶ ハイスループット実験
異なる元素や物質を組み合わせることで得られる材料の数は膨大です。マテリアルサイエンスの目標の一つは、特別に優れた組み合わせやうまい組み合わせ方(プロセス)を発見し、より優れた材料を生み出すことです。私たちの研究室では、高度に自動化・並列化された実験装置を駆使するハイスループット実験を行っています。新しい装置やプロトコルの開発を通して実験のスループットを最大化し、浮いた時間を思考や情報収集に当てる研究スタイルを志向します。
➋ データ科学
ハイスループット実験は材料の合成条件、構造、性能を紐づけた材料ビッグデータを生み出します。効率的な材料探索を行うためには、良い材料を選出するだけでなく、材料性能の良し悪しがどのような因子と相関しているかを見極める構造性能相関を明らかにしていく必要があります。多変量解析や機械学習を駆使し、全てのデータから余すことなく学習することで物質探索を飛躍的に加速します。
➌ コンピュータシミュレーション
コンピュータや計算化学の発展によって、現実的な精度でのシミュレーションが可能になってきました。一方で、コンピュータを使った新しい材料の予測(in-silico設計)にはまだまだ距離があります。最も難しい問題は、複雑な材料を代表するような分子モデルを如何に構築するかです。実験も行う当研究室では、実践的な計算化学を標榜し、計算化学の夢であるin-silico材料設計に取り組んでいます。
ハイスループット実験装置の開発やデータサイエンスのプログラミングに加え、以下5つのテーマに注力しています:触媒・ポリマーインフォマティクス、構造性能相関、MOF やグラフェンなどのナノマテリアル、ポリマーナノコンポジット。
主な研究業績
- L. Takahashi, T. Taniike, K. Takahashi et al., Constructing Catalyst Knowledge Networks from Catalysts Big Data in Oxidative Coupling for Methane for Designing Catalysts, Chemical Science 2021, 12, 12546-12555 (press released, selected as Front Cover).
- T.N. Nguyen, K. Takahashi, T. Taniike et al., High-Throughput Experimentation and Catalyst Informatics for Oxidative Coupling of Methane, ACS Catalysis, 2020, 10, 921-932 (press released).
- G. Takasao, Toru Wada, T. Taniike et al., Machine Learning-Aided Structure Determination for TiCl4-Capped MgCl2 Nanoplate of Heterogeneous Ziegler-Natta Catalyst, ACS Catalysis, 2019, 9, 2599-2609.
使用装置
ピペッティングロボット Andrew+
多目的並列反応装置(研究室開発装置)
自動マイクロ波合成装置
触媒スクリーニング装置(研究室開発装置)
光触媒スクリーニング装置(研究室開発装置)
オペランド化学発光分析装置(研究室開発装置)
化学発光イメージング装置(研究室開発装置)
その場中・遠赤外分光光度計
レーザラマン分光光度計
マイクロプレートリーダー
X線回折装置 (オートサンプラー付)
蛍光X線分析装置 (オートサンプラー付)
研究室の指導方針
私たちの研究室にはコアタイムがありません。実験や研究のスループットを最大化し、ワークライフバランスを自身で設計して下さい。豊富なスタッフ陣があなたの研究をサポートします。チームミーティング(数週間に1回)やコロキウム(月に1回)を通して密な議論や指導を行います。また、国内外の学会への参加も積極的に支援しています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/taniike/
表面・界面の理解に基づいたナノマテリアル開発


表面・界面の理解に基づいた
ナノマテリアル開発
先端ナノ材料科学研究室
Laboratory on Advanced Nanomaterials Science
教授:高村 由起子(YAMADA-TAKAMURA Yukiko)
E-mail:
[研究分野]
材料科学、材料工学、表面科学
[キーワード]
ナノマテリアル、二次元材料、薄膜成長、走査プローブ顕微鏡、放射光実験
研究を始めるのに必要な知識・能力
我々の研究室で行っている研究に向いているのは、ナノマテリアルの表面や界面で原子が並んでいる様子を見てみたい、という好奇心が強く、とにかく実験するのが好き、という方です。
この研究で身につく能力
最先端の装置、しかも世界に一台しかないような特殊な装置、を自分で操作して一定の期間内に成果を出すことを要求されますので、自ずとそのような装置の操作に必要な慎重さと大胆さが養われます。また、数多くの実験をこなすことで、効率的な実験計画の立て方が身につくのと同時に、装置の不具合などで実験が思い通りに進まない、といった経験から、想定外の事態に対応する能力も養われます。実験で得られた結果などについて自分でまとめ、考え、理解・学習する能力だけではなく、先輩や教員と一緒に議論することによって、説明する力、論理的に考える力が養われます。
【就職先企業・職種】 電気・電子、機械、医療機器メーカーのエンジニア職、研究職
研究内容

研究室での実験風景
現代の産業の基幹を支える薄膜材料の高品質化には、薄膜-基板界面の高度な制御が欠かせません。特に超薄膜やナノ構造体を対象としたナノマテリアル研究では、表面・界面が全体に占める割合が高くなり、表面・界面構造が成長や機能発現に果たす役割が重要となってきます。本研究室では、新奇ナノマテリアルには表面・界面の理解と高度な制御が必要であるとの認識から、表面・界面の詳細な分析とその制御に基づいたナノマテリアル開発を目指します。より具体的には、薄膜及びナノ構造成長表面のその場観察と異種材料界面構造の解析から得られる知見を有効に成長過程に還元するために、不純物混入の少ない超高真空における薄膜成長に取り組み、電子等のプローブと検出器を導入した装置を使用します。このユニークな装置を用いた薄膜成長とその場観察、放射光施設における表面・界面構造の解析と第一原理計算を組み合わせ、新しいナノマテリアルの創成とその構造・性質の解明に挑みます。
原子層厚みの究極のナノマテリアル、ケイ素版グラフェン「シリセン」の研究
シリコンウェハー上にエピタキシャル成長させた二ホウ化物薄膜表面を、光電子分光を専門とする研究室と第一原理計算を専門とする研究室と共同で詳細に調べている過程でシリセンを思いがけず発見することができました。この成果は国内外の大学や研究機関との共同研究に発展し、最近では、絶縁性の二次元材料である六方晶窒化ホウ素とシリセンを重ねることに成功しました。
二次元フラットバンドマテリアルの研究
ゲルマニウムウェハー上にエピタキシャル成長させた二ホウ化物薄膜を詳細に調べると、上記のシリセンの場合の蜂の巣構造とは異なる二次元的な結晶構造を持つGe層が形成されていました。また、我々の理論研究から、同様の結晶構造を持つ二次元材料の電子状態に「フラットバンド」の発現が期待できることが明らかとなりました。フラットバンドは物質に強磁性や超伝導を付与することがあり、現在、実験と計算の両面から研究を進めています。
カルコゲナイド系二次元材料の研究
セレン化ガリウム(GaSe)は、非線形光学特性を持つ層状物質として古くから研究されてきました。積層多形はこれまで何種類か報告されていましたが、我々の研究室の学生が、結晶多形を新たに発見しました。この従来とは異なる結晶構造を持つGaSe がどんな性質を持つのか、実験と計算の両面から調べています。
主な研究業績
- First-principles study on the stability and electronic structure of monolayer GaSe with trigonal-antiprismatic structure, H. Nitta, T. Yonezawa, A. Fleurence, Y. Yamada-Takamura, and T. Ozaki, Physical Review B 102, 235407 (2020).
- Emergence of nearly flat bands through a kagome lattice embedded in an epitaxial two-dimensional Ge layer with a bitriangular structure, A. Fleurence, C.-C. Lee, R. Friedlein, Y. Fukaya, S. Yoshimoto, K. Mukai, H. Yamane, N. Kosugi, J. Yoshinobu, T. Ozaki, and Y. Yamada-Takamura, Physical Review B 102, 201102(R) (2020).
- Van der Waals integration of silicene and hexagonal boron nitride, F. B. Wiggers, A. Fleurence, K. Aoyagi, T. Yonezawa, Y. Yamada-Takamura, H. Feng, J. Zhuang, Y. Du, A. Y. Kovalgin and M. P. de Jong, 2D Materials 6, 035001 (2019).
使用装置
超高真空走査プローブ顕微鏡、超高真空薄膜成長装置、薄膜材料結晶性解析X線回折装置、X線光電子分光装置、国内外の放射光施設、本学の超並列計算機
研究室の指導方針
我々の研究室では、迷ったらどんどん手を動かして、実験や計算をしてみることを学生さんに勧めています。実際にその実験や計算に従事している学生さんにしか思いつけない、新しいアイデアというのが必ずあります。アイデアとやる気とスキルがあったら、まずは、とことんやってみましょう。教員と先輩ができる限りのサポートをいたします。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/yukikoyt/groupHP/Home.html
ナノ粒子工学:機能材料の創製から応用まで


ナノ粒子工学:機能材料の創製から応用まで
ナノ粒子工学研究室 Laboratory on Nanoparticle Engineering
教授:前之園 信也(MAENOSONO Shinya)
E-mail:
[研究分野]
ナノ材料化学、ナノ材料物性、コロイド化学
[キーワード]
半導体ナノ粒子、磁性体ナノ粒子、金属ナノ粒子、バイオ医療、エネルギー変換、センシング
研究を始めるのに必要な知識・能力
基礎学力、コミュニケーション能力、知的好奇心、柔軟な思考
この研究で身につく能力
修士課程では、(1) ナノ材料の化学合成技術、(2) 各種分析機器(透過型電子顕微鏡、X 線回折装置、X 線光電子分光、組成分析装置など)の操作スキル、(3) 基礎学問の知識(無機材料化学、結晶学、コロイド化学、固体物性など)、(4) ナノ材料に関する先端専門知識を身につけて頂きます。博士課程では、1-4に加え、英語によるプレゼンテーション能力、英語論文執筆能力、研究課題設定能力、共同研究遂行能力など、研究者に必要なあらゆる能力を身につけて頂きます。
【就職先企業・職種】 製造業(化学、精密機器、電気機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
物質をナノメートルサイズまで細かくしていくと、種々の物性がサイズに依存する新奇な材料となります。このような新奇材料を一般に「ナノ材料」と呼びますが、我々はその中でも特に「ナノ粒子」に興味を持ち、ナノ粒子に関する基礎から応用に亘る研究を行っています。半導体、磁性体、金属などのナノ粒子を化学合成し、その表面をさまざまな配位子によって機能化し、さらにそれらナノ粒子の高次構造を制御することによって、バイオ・医療分野あるいは環境・エネルギー分野で新たな応用を開拓することを目指しています。
1.磁性体ナノ粒子の合成とバイオ医療分野への応用
超常磁性体のナノ粒子を独自の方法によって合成し、その表面を自在に修飾することによって、バイオ医療分野での様々な応用の道を開拓しています。具体的には、細胞やタンパクの磁気分離、MRI 造影剤、ドラッグデリバリーシステムなどのナノ磁気医療に応用するための技術開発を行っています。
2.半導体ナノ粒子の合成とエネルギー変換素子への応用
狭ギャップ化合物半導体から広ギャップ酸化物半導体のナノ粒子まで、幅広い種類の半導体ナノ粒子を化学合成し、それらを用いて低炭素社会の実現を志向したナノ構造エネルギー変換素子の創製に関する研究を行っています。特に、ナノ構造熱電素子や光機能素子などに興味を持っています。
3.金属ナノ粒子を用いたバイオセンシング技術の開発
近年、金ナノ粒子を用いた様々なバイオセンサが開発され、簡便かつ迅速に DNA 配列検出やタンパク質機能解析などが可能となってきています。我々は、ナノ粒子プローブを用いたバイオセンシング技術の更なる高度化を目指し、異種金属元素からなるヘテロ構造ナノ粒子や合金ナノ粒子のプローブの開発を進めています。
主な研究業績
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, and S. Maenosono, “Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles”, ACS Nano 16 (2022) 885
- J. Hao, B. Liu, S. Maenosono, and J. Yang, “One-Pot Synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) Core-Shell Nanoparticles as Highly Efficient Catalysts for the Reduction of 4-Nitrophenol”, Sci. Rep. 12 (2022) 7615
- T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono, “Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes”, Langmuir 37 (2021) 6566
使用装置
透過型電子顕微鏡 (TEM) 超伝導量子干渉磁束計 (SQUID)
過型電子顕微鏡 (STEM) 動的光散乱測定装置 (DLS)
X 線回折装置 (XRD) 共焦点レーザー顕微鏡 (CLSM)
X 線光電子分光装置 (XPS) 核磁気共鳴装置 (NMR)
研究室の指導方針
就職希望者には、基礎・専門知識はもちろん、コミュニケーション能力、英会話力、論理的思考力および柔軟な対応力を涵養し、不確実性の時代を生き抜くことができる人材となってもらうための指導を行います。企業経験を活かした実践的就職指導も行っています。
博士後期課程への進学希望者については、先端的かつ国際的な研究環境を提供することによって、将来的に大学教員や企業研究者として活躍できるグローバル研究人材を育成します。
[Website] URL:https://www.jaist.ac.jp/~shinya/
電磁波と原子核でナノ空間を視(み)て、制御する


電磁波と原子核でナノ空間を視(み)て、制御する
固体ナノ化学研究室 Laboratory on Solid-State Nanochemistry
教授:後藤 和馬(GOTOH Kazuma)
E-mail:
[研究分野]
物理化学、無機材料化学
[キーワード]
核磁気共鳴(NMR)、炭素材料、二次電池(リチウムイオン電池、ナトリウムイオン電池、次世代電池)、その場分析
研究を始めるのに必要な知識・能力
化学の基礎知識があれば研究をすみやかに始められますが、必要なことは学ぶという意欲さえあれば知識の有無は問題ありません。研究を通して自分の成長(能力的&人間的)を望み、新しいことに取り組む意思があれば大丈夫です。
この研究で身につく能力
ものづくりに始まり、測定機器による分析、得られた実験結果・測定結果の考察までを行うので、無機材料を中心とした材料合成の実験技術、電池作製および評価の技術、NMRをはじめとする各種機器分析の技術など幅広い技術が身につきます。また、研究室でのセミナーや学会発表、海外研究グループとの国際交流を通してプレゼンテーション能力、英語力なども磨かれます。しかし一番大事なことは、得られた実験・測定結果から「物質の中で何が起きているか」を総合的にとらえ考察する能力や、課題を解決し研究をまとめるための論理的な思考力など、AIにとって代わられることのない「人間」としての考える力であり、これを特に重視しています。社会に出て長くずっと第一線で活躍できる能力を持った人になってもらいたいと考えています。
【就職先企業・職種】 化学・材料メーカー、電機・電池・自動車および関連メーカー、分析機器メーカー、公設試験研究機関、教員
研究内容
ナノサイズの空間や表面などの構造、およびミクロな環境を解明することをテーマとして、細孔物質(物質の中に多数の小さな穴=細孔をもった固体材料)の内部空間や、黒鉛などの層状化合物の層間に吸蔵された分子やイオンの状態、動的挙動、内部空間の表面状態などを、核磁気共鳴(NMR)法を中心に様々な方法で研究しています。内部空間への分子やイオンの導入(インターカレーション)は電池電極反応とも密接な関連があることから、特にリチウムイオン電池、ナトリウムイオン電池や今後実用化が期待される次世代電池など、各種二次電池の電極材料の研究を積極的に進めています。
【固体NMR開発と二次電池電極の状態分析】


電池のリアルタイムNMR解析(左上)*),金属リチウム析出イメージ(右上)2.
非晶質炭素の充電,過充電挙動モデル(下)2.
*) K.Gotoh et al., Carbon (2014).
・固体材料についてのNMRは、固体物質中の局所構造やダイナミクスの解析に極めて有効な分析手法です。特にナノ空間の構造や環境を調べる際には、吸着された物質中の原子やイオンを「プローブ(探針)」として利用し直接的に内部環境を調べることができます。よって、リチウムイオン電池やナトリウムイオン電池ではそれぞれリチウム、ナトリウムのNMR共鳴信号を解析することで、電池内部の微小な状態変化を検出できます。軽元素であるリチウムやナトリウムは電子顕微鏡やX線分光など他の分析手段では直接観測が非常に難しいため、NMRでリチウムやナトリウムなど電荷を担持する重要な核種の状態を観測することが、イオンの吸脱着メカニズム、すなわち電池の充放電メカニズムの解明に大きく役立ちます。
・最新のリチウムイオン電池や次世代電池であるナトリウムイオン電池、全固体電池などの電極内に吸蔵されたリチウム、ナトリウムの状態を解明しています。充放電により刻々と変化する内部環境をリアルタイムで観測するためには、電池の「その場観測(オペランド解析)」が必須となるため、電池観測のための高感度オペランドNMR法の開発を積極的に進めています。本手法により電池が過充電された際の金属析出メカニズムも解明できるため、安全性評価にも貢献できます。
・充放電メカニズムの解析から、新たな材料の設計指針を立て、それに基づいた負極材料の開発を行っています。炭素材料は以前から負極に用いられてきましたが、次世代電池用電極材料としても期待できることから、新たな炭素材料の開発を進めています。
主な研究業績
- Dynamic nuclear polarization -nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials. H. Ando, K. Suzuki, H. Kaji, T. Kambe, Y. Nishina, C. Nakano, K. Gotoh*, Carbon, 206, 84 (2023).
- Mechanisms for overcharging of carbon electrodes in lithium-ion/sodium-ion batteries analysed by operando solid-state NMR. K. Gotoh*, T. Yamakami, I. Nishimura, H. Kometani, H. Ando, K. Hashi, T. Shimizu and H. Ishida, J. Mater. Chem. A 8, 14472 (2020).
- Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes. R. Morita, K. Gotoh*, M. Fukunishi, K. Kubota, S. Komaba, T. Yumura, N. Nishimura, K. Deguchi, S. Ohki, T. Shimizu and H. Ishida, J. Mater. Chem. A 4, 13183 (2016).
使用装置
Bruker AVANCE NEO 400MHz NMR(固体測定専用)拡散測定システム付, Bruker AVANCE Ⅲ500MHz-NMR(固体対応)オペランド測定用特殊プローブ付
X線回折,X線光電子分光(XPS),熱分析,電子顕微鏡,ガス吸脱着装置,電気化学測定装置(充放電試験装置等),電池作製設備(グローブボックス等),高温熱処理炉(2200℃)
研究室の指導方針
社会人としてどのような分野でも力を発揮できる基礎力と、専門家として活躍できる知識経験の、両方を持った人になってもらうことを目的として指導します。定期的な研究室でのセミナーや報告会がありますが、実験については装置の都合により個々のスケジュールがかなり異なってくるので、自分自身で研究計画を立案し、実行してもらうことになります。国内外の学会での発表のほか、海外研究グループや企業と進めている多彩な共同研究にも積極的に参加してもらい、国際的な幅広い視野を持てる機会を提供したいと考えています。
[研究室HP] URL:https://www.jaist.ac.jp/nmcenter/labs/gotoh-www/
先端材料でエネルギー社会をリードする


先端材料でエネルギー社会をリードする
エネルギーナノ材料研究室 Laboratory on Energy Nanomaterials
教授:長尾 祐樹(NAGAO Yuki)
E-mail:
[研究分野]
プロトニクス(高分子、無機化学、錯体化学、物理化学)
[キーワード]
水素社会、燃料電池、蓄電池、エネルギー関連材料
研究を始めるのに必要な知識・能力
多様なバックグラウンドを歓迎します。今までに修めた学問を大事にしながら、新しいことに取り組む意欲を持ち続ける力が求められます。
この研究で身につく能力
週2回のゼミ(英語で行います、具体的には研究相談と文献紹介)を通して、教員や先輩の助けを借りながら、自ら調べ、考える力を身に着けていきます。英語の会話スキルの向上が期待できます。実践の場として、高分子化学、表面化学、電気化学、錯体化学等に関連した研究を行うことで次のスキルが身に付きます。1.問題発見と解決方法。2.材料合成や各種分析方法の習得。3.論理的思考に基づいたデータの解釈方法と性格やセンスに帰着させない基本的なプレゼンテーション技術。
【就職先企業・職種】 電力関連、エネルギー関連、材料メーカー、精密機器関連など(企業名はwebに記載)
研究内容
資源の少ない日本が持続的な発展をするためには、多様なエネルギー資源を確保することが喫緊の課題です。ありふれた水から水素や酸素を作り出し、二酸化炭素を資源と見立てて炭素材料を作り出すことは人類の夢です。世界で急速に進む脱炭素社会には水素社会が必要です。我々は水素社会を支える燃料電池、蓄電池、センサーやプロトンスイッチなどに応用可能なイオン伝導性高分子材料、無機材料、有機無機ハイブリッド材料の研究を行っています。我々と共に水素社会に貢献しましょう。
研究テーマ例
- 燃料電池、リチウムイオン電池の性能向上の研究
電池反応場の界面近傍の構造とイオン輸送を調べる基礎研究と、反応界面をデザインして電池の性能を向上させる応用研究をしています。 - 充電可能な水素電池の開発
プロトンを使った次世代蓄電池の開発をしています。 - イオン輸送を利用した触力覚センサの研究
五感やロボットへの応用研究として、ヒトの皮膚のように力にイオン輸送が応答する高分子組織構造を研究しています。 - 外場印加によるイオンスイッチの研究
青木助教が主体的に取り組んでいる、光などの外場によってイオン伝導のオン・オフを制御する研究です。
主な研究業績
- T.Honbo, Y. Ono, K. Suetsugu, M. Hara, A. Taborosi, K. Aoki, S. Nagano, M. Koyama, Y. Nagao, Effects of Alkyl Side Chain Length on the Structural Organization and Proton Conductivity of Sulfonated Polyimide Thin Films, ACS Appl. Polym. Mater., 6, 13217 - 13227 (2024).
- Y. Nagao, Proton-Conducting Polymers: Key to Next-Generation Fuel Cells, Electrolyzers, Batteries, Actuators, and Sensors (Review), ChemElectroChem, 11, e202300846 (2024).
- Y. Nagao, Advancing Sustainable Energy: Structurally Organized Proton and Hydroxide Ion-Conductive Polymers (Review), Curr. Opin. Electrochem., 44, 101464 (2024).
使用装置
材料分析装置 (IR, UV-Vis, NMR, GPC, XRD, TG-DTA)
電気化学装置(LCR, CV, in situ QCM, fuel cell, battery test system)
表面分析装置 (XPS, in situ GIXRS, XRR, white interference, AFM)
分子配向分析装置 (IR, pMAIRS, polarized microscope)
外部の放射光や中性子実験施設
研究室の指導方針
研究室への参加にあたり、平日は研究活動に専念し、セミナーへの出席をお願いします。フレキシブルですが、9時から17時の間でメリハリのある研究時間を推奨します。英語のセミナーや留学生との会話を通じ、英語力の向上を目指しましょう。研究テーマは指導教員との相談で決め、皆さんの研究への情熱を全力でサポートします。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/nagao-www/
リチウムイオン2次電池の急速充放電を実現する負極活物質を開発 ~バイオベースポリマー由来高濃度窒素ドープカーボン~

リチウムイオン2次電池の急速充放電を実現する負極活物質を開発
~バイオベースポリマー由来高濃度窒素ドープカーボン~
ポイント
- リチウムイオン2次電池の急速充放電技術の価値が国際的に高まっており、これに適した材料の開発が期待されている。
- 耐熱性バイオベースポリマーであるポリベンズイミダゾールを焼成することにより、高濃度窒素ドープカーボンを得ることに成功した。
- 得られた窒素ドープカーボンを負極活物質としてアノード型ハーフセルを構築し充放電試験を行ったところ、本活物質は急速充放電に対してグラファイトとの比較において大幅に優れた適性を示した。
- 急速充放電に適した電極材料として、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用展開が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 松見 紀佳教授(物質化学領域)、金子 達雄教授(環境・エネルギー領域)、バダム ラージャシェーカル講師(物質化学領域)、東嶺孝一技術専門員、Yueying Peng元研究員、Kottisa Sumala Patnaik(博士前期課程2年)は、リチウムイオン2次電池*1の急速充放電を可能にする新たな負極活物質の開発に成功した。 |
【研究背景と内容】
今日、次世代リチウムイオン2次電池開発においては、高容量化、高電圧化、難燃化など多様な開発の方向性が展開されている。なかでも最も重要性を増しているものとして、急速充放電の実現が挙げられる。現状、ガソリン車にガソリンスタンドで給油するためには数分を要するのみであるため、電気自動車(EV)が要する長い充電時間は、消費者の購買意欲を低減させている主要因の一つと考えられる。そのような状況にもかかわらず、多くの国々は将来的なガソリン車の生産中止の意向を決定しており、今後、急速充電に対応する関連技術の国際的な価値は極めて高いものとなっていくことが予想される。これらの背景のもと、米国エネルギー省(DOE:Department of Energy)においても超高速充電(XFC:extreme fast charging)の目標として15分以内での充電の実現を掲げてきた。
アノード(負極)側の活物質において、充放電速度の向上に適用可能な設計戦略としては、炭素系材料における層間距離の拡張によりイオンの拡散速度を上昇させることに加え、窒素などのヘテロ元素ドープが潜在的に有効な手法として検討されてきた。しかし、層間距離やヘテロ元素濃度を自在に制御する手法は確立されていない。
そのような背景のもと、本研究グループでは、含窒素型芳香環密度が高く高耐熱性を有するバイオベースポリマー*2のポリベンズイミダゾールを前駆体とすることにより、焼成後に高濃度窒素ドープハードカーボン*3を得た(図1)。バイオベースポリマーを前駆体とすることにより、低炭素化技術としての相乗的効果が期待される。得られた材料は17 wt%という高濃度の窒素を有していた。低分子前駆体の場合には焼成過程で多量の含ヘテロ元素成分が揮発してしまうが、高耐熱性高分子を前駆体とすることで大幅に窒素導入率を向上させることができた。
また、ポリベンズイミダゾールを800℃で焼成して得られた窒素ドープカーボンに関してXRD測定で層間距離(dスペーシング)を観測すると3.5Åであり、通常のグラファイトの3.3Åと比較して顕著に拡張した(図2A)。一般に、広いdスペーシングは系内のリチウムの拡散を促し、リチウム脱挿入の速度を向上させる。ラマンスペクトルはId/Ig比が0.98と極めて高く、(通常のグラファイトでは0.18)、効果的な欠陥の導入によりイオン拡散において好影響を有することが期待された(図2B)。また、XPSスペクトル(N1s)においては、窒素がグラファイティック窒素、ピロリジニック構造、ピリジニック構造等としてそれぞれ導入されている様子を観測した(図2C)。
得られた窒素ドープカーボンを負極活物質としてアノード型ハーフセル*4を構築し充放電試験を行ったところ、本活物質は急速充放電に対して優れた適性を示した。同様の充放電条件においてグラファイトと比較して大幅に優れた放電容量を示した(図3)。また、13分充電条件(0.74 Ag-1)においては1,000サイクル後に153 mAhg-1 (容量維持率89%)を示し、1.5分充電条件(7.4 Ag-1)においては1,000サイクル後に86 mAg-1 (容量維持率90%)を示すなど、良好な耐久性を示した。さらにフルセルにおいても好ましい充放電挙動を示した。
なお、本研究は、戦略的イノベーション創出プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
本成果は、Chemical Communications (英国王立化学会)オンライン版に11月25日(英国時間)に掲載された。
【今後の展開】
前駆体である高分子材料においては様々な構造の改変が可能であるほか、焼成条件の相違においても様々な異なる高濃度窒素ドープハードカーボンの化合物が得られ、さらなる高性能化につながると期待できる。
前駆体高分子には様々な有機合成化学的アプローチを適用可能であり、本研究が示すアプローチにより、急速充放電能を示す負極活物質材料における構造―特性相関の研究の進展が期待できる。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開を期待したい。
図2. (A) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)とグラファイトのXRDパターンの比較、(B) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)とグラファイトのラマンスペクトルの比較、(C) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)のXPS N1s スペクトル
図3. (A) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)及びグラファイトを用いて作製した負極型ハーフセルの充放電レート特性、(B) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)及びグラファイトを用いて作製した負極型ハーフセルの長期サイクル特性、(C) 各レートにおける(0.37, 0.74, 3.72, 7.44, 11.16, 18.60 Ag-1 )800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)を負極活物質としたハーフセルの長期サイクル特性
【論文情報】
雑誌名 | Chemical Communications |
題目 | Extremely Fast Charging Lithium-ion Battery Using Bio-Based Polymer-Derived Heavily Nitrogen Doped Carbon |
著者 | Kottisa Sumala Patnaik, Rajashekar Badam, Yueying Peng, Koichi Higashimine, Tatsuo Kaneko and Noriyoshi Matsumi* |
掲載日 | 2021年11月25日(英国時間)にオンライン版に掲載 |
DOI | 10.1039/d1cc04931c |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 バイオベースポリマー:
生物資源由来の原料から合成される高分子材料の総称。低炭素化技術として、その利用の拡充が期待されている。
*3 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*4 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和3年12月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/12/09-1.htmlリチウムイオン2次電池の急速充放電を実現する新しいナノシート系負極活物質の開発

リチウムイオン2次電池の急速充放電を実現する新しいナノシート系負極活物質の開発
ポイント
- リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。
- TiB2(二ホウ化チタン)粉末のH2O2による酸化処理、遠心分離、凍結乾燥により簡便に得られる二ホウ化チタンナノシートをリチウムイオン2次電池の負極活物質として適用した。
- 二ホウ化チタンナノシートを負極活物質としたアノード型ハーフセルで充放電挙動を評価した結果、比較的低い充放電レートの0.025 Ag-1では約380 mAhg-1の放電容量を示した。
- 当該アノード型ハーフセルにおいて、1 Ag-1 (充電時間約10分)の電流密度では、174 mAhg-1の放電容量を1000サイクル維持した(容量維持率89.4 %)。さらに超急速充放電条件(15~20 Ag-1)を適用すると、9秒~14秒の充電で50~60 mAhg-1の放電容量を10000サイクル維持するに至り(容量維持率80%以上)、高い安定性が確認された。
- 急速放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の先端科学技術研究科 松見紀佳教授(物質化学フロンティア研究領域)、ラージャシェーカル バダム元講師(物質化学フロンティア領域)、アカーシュ ヴァルマ元大学院生(博士前期課程修了)、東嶺孝一技術専門員らの研究グループとインド工科大学ガンディナガール校カビール ジャスジャ准教授、アシャ リザ ジェームス大学院生は、リチウムイオン2次電池*1において二ホウ化チタンナノシートの負極活物質への適用が急速充放電能の発現に有効であることを見出した。 |
【研究の内容と背景】
リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。しかしながら、その実現には固体中のリチウムイオンの拡散速度の向上や電極―電解質界面の特性、活物質の多孔性などの諸ファクターの検討を要している。これまで急速充放電用途のナノ材料系負極活物質としては、チタン酸リチウムのナノシートや酸化チタン/炭素繊維コンポジットなどが検討されてきたほか、新しい2次元(2D)材料*2への関心が広がりつつあり、グラフェン誘導体や金属カーバイド系材料にも検討が及んでいる。
本研究においては、TiB2(二ホウ化チタン)のH2O2による酸化処理、遠心分離、凍結乾燥による簡便なプロセスで作製可能なTiB2ナノシートをリチウムイオン2次電池負極活物質として適用し、アノード型ハーフセルを構築して急速充放電能について検討した。
合成は、共同研究者であるインド工科大学准教授カビール氏らが報告している手法*3に従い、TiB2粉末を過酸化水素水と脱イオン水との混合溶液に懸濁させ、24時間の攪拌後に遠心分離し、上澄みを-35oCで24時間凍結させた後に72時間凍結乾燥することにより粉末状のTiB2ナノシートを得た(図1)。得られた材料のキャラクタリゼーションは前述の手法に従い、XRD、HRTEM、FT-IR、XPS等の各測定により行った。
電池セルの作製において、負極の組成としてはTiB2ナノシートを55 wt%、アセチレンブラックを35 wt%、PVDF(ポリフッ化ビニリデン)を10 wt%を用い、NMP(N-メチルピロリドン)を溶媒とした懸濁液から銅箔集電体にコーティングした。電解液としては 1.0 M LiPF6 のEC/DEC (1:1 v/v)溶液を用い、対極にはリチウム箔を用いた。
TiB2ナノシートを負極活物質としたアノード型ハーフセル*4のサイクリックボルタモグラム(図2)においては、第一サイクルにおいてのみ0.65 V (vs Li/Li+)に電解液の分解ピークが現れたが、それ以降は消失した。リチウム脱離に相当するピークは2つ観測され、0.28 Vにおけるピークはリチウムが複数インターカレートしたTiB2からの脱リチウムピーク、0.45VにおけるピークはTiB2の再生に至る脱リチウムピークにそれぞれ相当する。約1.5 Vからの比較的高いリチウム挿入電位は、チタン酸リチウムやホウ素ドープTiO2とほぼ同様であった。
また、このアノード型ハーフセルの充放電挙動では、比較的低い充放電レートの0.025 Ag-1では約380 mAhg-1の放電容量を示した(図3)。
アノード型ハーフセルにおいて、1 Ag-1(充電時間約10分)の電流密度では、174 mAhg-1の放電容量を1000サイクル維持し、容量維持率は89.4 %を示した(図3)。さらに超急速充放電条件である15-20 Ag-1を適用すると、9秒~14秒の充電で50-60 mAhg-1の放電容量を10000サイクル維持するに至り、容量維持率は80%以上であった。
本成果は、ACS Applied Nano Materials (米国化学会)のオンライン版に9月19日に掲載された。なお、本研究は、文部科学省の「大学の世界展開力強化事業」採択プログラムに基づいた北陸先端科学技術大学院大学とインド工科大学ガンディナガール校(JAIST-IITGN)の協働教育プログラム(ダブルディグリープログラム)のもとで実施した。
【今後の展開】
TiB2ナノシートの積極的活用により、急速充放電能を有する次世代型リチウムイオン2次電池の発展に向けた多くの新たな取り組みにつながり、関連研究が活性化するものと期待される。
さらに活物質の面積あたりの担持量を向上させつつ電池セル系のスケールアップを図り、産業的応用への橋渡し的条件においても検討を継続する。
既に日本国内及びインドにおいて特許出願済みであり、今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | ACS Applied Nano Materials(米国化学会) |
題目 | Titanium Diboride-Based Hierarchical Nanosheets as Anode Material for Li-ion Batteries |
著者 | Akash Varma, Rajashekar Badam, Asha Liza James, Koichi Higashimine, Kabeer Jasuja * and Noriyoshi Matsumi* |
WEB掲載日 | 2022年9月19日 |
DOI | 10.1021/acsanm.2c03054 |
図1.TiB2ナノシートの合成とキャラクタリゼーション (a)バルクのTiB2粉末 (b)過酸化水素水(H2O2) (3% v/v)にTiB2を分散した黒色の分散液 (c) 24時間攪拌後のTiB2の溶解と遠心分離後の上澄みの使用 (d)凍結乾燥後の粉末のナノ構造 (e) FESEM像 (f) TiB2 粉末及び TiB2ナノシートのFTIRスペクトル (g)ホウ素のハニカム状平面にチタンがサンドイッチされた結晶構造 (h) Si/SiO2 ウエハに担持させたTiB2ナノシートの光学像 (i) TiB2ナノシートのHRTEM像。ポーラスなシート状構造を示す。 |
図2.TiB2ナノシートを負極活物質としたアノード型ハーフセルのサイクリックボルタモグラム (a) 電圧範囲0.01-2.5V ;掃引速度 0.1 mV/s (b) 電圧範囲0.5-2.5V ;掃引速度 0.1, 0.3, 0.5, 0.7, and 1 mV/s. |
図3.TiB2ナノシートを負極活物質としたアノード型ハーフセルの充放電挙動 (a)レート特性の検討結果 (b)充放電曲線 (c)長期サイクル特性 |
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
グラフェンや遷移金属ジカルコゲニドなどの2次元(2D)層状無機ナノ材料は、その優れた物理的および化学的特性のために最近注目されている化合物で、光触媒や太陽電池、ガスセンター、リチウムイオン電池、電界効果トランジスタ、スピントロニクスなどへの応用が期待されている。
James, Asha Liza; Lenka, Manis; Pandey, Nidhi; Ojha, Abhijeet; Kumar, Ashish; Saraswat, Rohit; Thareja, Prachi; Krishnan, Venkata; Jasuja, Kabeer
Nanoscale (2020), 12 (32), 17121-17131CODEN: NANOHL; ISSN:2040-3372. (Royal Society of Chemistry)
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和4年9月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/09/30-1.htmlリチウムイオン2次電池に高容量化と耐久性を容易にもたらす新型負極活物質(β-シリコンカーバイド系複合材料)の開発

リチウムイオン2次電池に高容量化と耐久性を容易にもたらす
新型負極活物質(β-シリコンカーバイド系複合材料)の開発
ポイント
- リチウムイオン2次電池の高容量化のためシリコン系負極が注目されているが、シリコン粒子の大きな体積膨張・収縮等の問題によって、安定した充放電が困難となっている。
- リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている閃亜鉛鉱型構造を有するβ-シリコンカーバイド/窒素ドープカーボン複合材料の簡易合成法を開発し、リチウムイオン2次電池用負極活物質として検証した。
- 合成した活物質を用いたアノード型ハーフセルでは1195mAhg-1の放電容量を300サイクルまで示し、本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても、高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
- 高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)、先端科学技術研究科 物質化学領域の松見 紀佳教授、バダム ラージャシェーカル講師、並びに東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程)のグループは、リチウムイオン2次電池*1の安定な高容量充放電を可能にする新規負極活物質の開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、近年、従来型負極であるグラファイトよりも大幅に大きな理論容量を示すシリコン系負極が多大な関心を集めている。一方で、シリコン粒子は充放電時の体積膨張・収縮が極めて大きく、充放電の際の粒子の破断や界面被膜の破壊、集電体からの剥離などの多様な問題により、一般に高容量を安定に発現することが非常に困難となっている。このような状況を改善するために、特殊なバインダー材料の開発などのアプローチが本研究グループも含め国内外において検討されてきた。
【研究の内容】
本研究においては、シリコン粒子に代わり、極めて安定な充放電サイクルを汎用のバインダー材料使用時においても示すシリコンカーバイド系活物質を開発した。ダイヤモンド型構造を有するシリコンにおいては、リチウム脱挿入に伴う大幅な体積膨張・収縮は避けがたいものであるが、閃亜鉛鉱型構造の無機化合物においては、リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている。その挙動にヒントを得つつ、閃亜鉛鉱型構造を有するβ-シリコンカーバイドと窒素ドープカーボン*2との複合材料を合成し、新規リチウムイオン2次電池用負極活物質として検証した。
合成法としては、(3-アミノプロポキシ)トリエトキシシランに水溶液中でアスコルビン酸ナトリウムを加え、シリコンナノ粒子分散水溶液を作製した。その後pH8.5においてドーパミンを、引き続いてメラミンを加えてから遠心分離、乾燥し、600oCもしくは1050oCの二通りの条件で焼成した(図1)。
得られた材料について、HRTEM、HAADF-STEM、XPS、XRD、Raman分光法等により構造を確認した(図2)。HRTEMからは、炭素系マトリックスにβ-シリコンカーバイドの結晶が埋め込まれている様子が観測された。HAADF-STEM HRTEMからは、β-シリコンカーバイドの(111)面に相当する0.25 nmの面間距離が観測され、マトリックス内に指紋状に分布する様子が観測された(図2(c))。
次に、合成した活物質を用いて負極を構築し、アノード型ハーフセル*3(Li/電解液/β-SiC)を作製し各種電気化学的評価を行った。サイクリックボルタモグラム*4においては、シャープなリチウムインターカレーションのピークに加えて、シリコン負極の場合と形状は異なるものの0.58 Vのブロードなリチウム脱インターカレーションのピークを共に示した。
また、充放電挙動においては、1050oCの焼成処理により合成した活物質(MAD1050)を用いた系では1195 mAhg-1の放電容量を300サイクルまで示した(図3(b))。本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に2月16日(英国時間)に掲載された。
なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | Journal of Materials Chemistry A |
題目 | Zinc blende inspired rational design of β-SiC based resilient anode material for lithium-ion batteries |
著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
掲載日 | 2022年2月16日(英国時間) |
DOI | 10.1039/D1TA08516F |
図2.(a,b)合成した活物質(MAD1050)のTEM像
(a)β-SiC粒子のHRTEM像、(c)β-SiC粒子のHAADF-STEM像 (d,e)赤色ボックス部位のFT/IFT、(f)面間距離プロファイル (g,h)黄色ボックス部位のFT/IFT、(i,j)緑色ボックス部位のFT/IFT |
図3.合成した各負極活物質を用いたアノード型ハーフセルの充放電特性(a/b/d)
及び比較データ(c;シリコン負極) |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*3 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/18-1.html学生のHASANさんの論文が、Altmetricによるスコアで上位5%に入る最も議論された論文の1つとして認定

学生のHASAN, Md. Mahmudulさん(博士後期課程3年、物質化学領域、長尾研究室)による、John Wiley & Sons社刊行のChemistrySelect誌に掲載された論文 "Christmas-Tree-Shaped Palladium Nanostructures Decorated on Glassy Carbon Electrode for Ascorbic Acid Oxidation in Alkaline Condition" が、Altmetricによるスコアで上位5%に入る最も議論された論文の1つとして雑誌編集部から認定されました。
■認定年月日
令和3年7月13日
■論文タイトル
Christmas‐Tree‐Shaped Palladium Nanostructures Decorated on Glassy Carbon Electrode for Ascorbic Acid Oxidation in Alkaline Condition
■研究者、著者
Md. Mahmudul Hasan, Yuki Nagao
■対象となった研究の内容
Christmas-tree-shaped Pd nanostructures were synthesized using a simple one-step electrodeposition method with no additives on a glassy carbon electrode (GCE) surface. Growth of the hierarchical nanostructures was optimized through the applied potential, deposition time, and precursor concentration. Comprehensive characterization techniques such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), and cyclic voltammetry (CV) were used to characterize structural features of the Christmas-tree-shaped Pd nanostructures. Our Christmas-tree-shaped Pd nanostructures showed excellent catalytic activity for ascorbic acid (AA) electro-oxidation in the alkaline condition. The modified electrode exhibited current density of 4.5 mA cm-2: much higher than that of unmodified GCE (0.6 mA cm-2). This simple electrodeposition technique with well-defined hierarchical Pd nanostructures is expected to offer new perspectives using Pd-based nanostructured surfaces in different research areas.
■認定にあたって一言
We are pleased to receive the award for one of the most-discussed articles in "ChemistrySelect". First and foremost, I want to thank Associate Professor Yuki Nagao for his valuable comments, guidelines, and advice. I am also grateful for the support of Nagao LAB members. Our study will hopefully aid in the development of hierarchical metal catalysts for electrocatalysis and energy conversion applications.


令和3年8月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/08/20-1.html金属を含まない極めて高い電気化学的耐久性を示す有機高分子系酸素還元反応触媒(カソード電極材料)の開発に成功

金属を含まない極めて高い電気化学的耐久性を示す有機高分子系
酸素還元反応触媒(カソード電極材料)の開発に成功
ポイント
- 1000回の電気化学サイクルを経ても高い電気化学的安定性を示す非金属型有機高分子系酸素還元反応触媒(カソード電極材料)の開発に成功した。同様の条件で失活する市販品とは対照的な特性である。
- 得られた材料は明確な構造を有しており、酸素還元反応の機構の解明にも寄与するアプローチである。
- 水溶液系のみならず、非水系(Li塩溶存下)においても優れた酸素還元反応触媒活性を示し、燃料電池のみならず、リチウム―空気電池をはじめとする金属―空気電池への適用にとっても有用と考えられる。
北陸先端科学技術大学院大学(JAIST)(学長・浅野哲夫、石川県能美市)の先端科学技術研究科物質化学領域の松見 紀佳教授、サイゴウラン パトナイク大学院生、ラーマン ヴェーダラージャン(元JAIST助教、現インド国立燃料電池研究所)らの研究グループはビスアセナフテンキノンジイミン(BIAN)骨格を有する新規π-共役系高分子(BP)(図1)を開発し、金属を含まない本材料が優れた酸素還元反応特性及び高い電気化学的耐久性を示すことを見出した。 今日、酸素還元反応は燃料電池及びリチウム―空気電池*1のデバイス作動における律速段階として知られており、その効率がデバイスの性能を左右することが広く認識されている。 成果は米国化学会のACS Applied Energy Materials オンライン版に3/15に掲載された。 |
<今後の展開>
本研究では、金属を含まない新たなカテゴリーの明確な構造を有する高分子系酸素還元反応触媒を戦略的に創出することに成功した。本アプローチでは今後合成手法のバリエーションによる更なる構造制御や異なる特性を有した活性点の随意なデザインが可能と考えられる。高温でのアニーリング処理が必要な材料と比較して厳しい条件を必要としない利点があり、これまでに報告されている非金属系酸素還元触媒として知られる最善の材料と同等の特性を示していることから、更なる発展が期待できる。
燃料電池及びリチウム―空気電池用カソード電極材料としての展開が期待される。
図1 BIAN構造を有するπ-共役系高分子(BP)の構造
図2 窒素雰囲気下及び酸素雰囲気下におけるGO/BPのサイクリックボルタモグラム
(At 50 mV/sec in 0.1M KOH (RE: Hg/HgO, CE:Pt wire, WE: Catalyst coated GCE)
図3 1000回の電気化学サイクルを経たBIAN系高分子の電気化学的安定性の検討
図4 1000回の電気化学サイクルを経たVulcan-XC(市販品;白金/炭素系触媒)の電気化学的安定性の検討
図5 DFT計算によるBIAN系高分子の最適化構造と電荷分布
<用語解説>
※1)リチウム―空気電池
リチウム―空気電池は金属リチウムを負極活物質、酸素を正極活物質とした充放電可能な電池である。リチウムイオン2次電池と比較すると、理論的に貯蔵可能なエネルギー容量は10倍程度と極めて高い。正極の活物質として空気中の酸素を利用すれば正極は容量を制限しないことから、次世代電池として多大な期待を集めている。
※2)サイクリックボルタンメトリー(サイクリックボルタモグラム)
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
平成30年3月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2018/03/19-1.html新たな高分子ネットワーク構築の手法を開発

新たな高分子ネットワーク構築の手法を開発
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/物質化学領域の長尾 祐樹准教授らの研究グループは、溶液中の混合分子の特徴を生かし、従来とは異なる構造の高分子ネットワーク(分子どおしのつながり)を作る手法を開発することに成功しました。この成果により、溶液中では合成が難しいとされてきた構造を有する高分子ネットワークの合成に挑戦できるようになりました。本研究は、アメリカ化学会の雑誌Langmuirに近日公開されます。
1. 研究の成果 | ||
人類の夢の一つに二酸化炭素から炭素材料を作り出すことが挙げられます。多くの研究者がこの課題に取り組んでおり、望ましい分子構造についての理解は日々進んでいます。溶液中での合成方法には限界があるために、合成手法自体の多様化が求められていました。 |
||
![]() 溶液混合と基板を足場にした積層合成の高分子ネットワーク構造の比較 |
||
なお、本成果は名古屋大学との共同開発成果であり、名古屋大学「分子・物質合成プラットフォーム」事業(文部科学省ナノテクノロジープラットフォーム事業)の支援を受けました。 |
||
2. 今後の展開 |
||
この成果により、溶液中の合成では得るのが難しい高分子ネットワークの構造を合成するための新しい合成手法を得ることができました。この成果を応用することで将来的には例えば、生物内では合成が可能であることがわかっていても、人の手による合成がまだ難しいとみなされている高分子ネットワークの構造の構築が可能となり、光合成に必要な触媒や燃料電池の触媒の高効率化への応用展開等が期待されます。 |
||
3. 用語解説 |
||
注1)ポルフィリン:環状構造を有する化合物で、誘導体には体の中で酸素を運搬するヘモグロビン等の多くの化合物が知られている。ポルフィリン誘導体は、有機合成化学の触媒や生体化学反応過程の追究に広く利用されている。 |
||
4. 論文情報 |
||
掲載誌:Langmuir |
平成28年6月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/06/17-1.html