研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。有機半導体の基礎研究と光エレクトロニクスへの応用


有機半導体の基礎研究と光エレクトロニクスへの応用
有機オプトエレクトロニクス研究室
Laboratory on Organic Optoelectronics
教授:村田 英幸(MURATA Hideyuki)
E-mail:
[研究分野]
有機EL・可視光無線通信・導電性材料
[キーワード]
有機EL素子の劣化機構解明、可視光無線通信用光アンテナ、導電性ペースト用フィラー
研究を始めるのに必要な知識・能力
出身学部が化学系の場合、有機化学や物理化学、物理系なら量子力学や固体物理学のいずれかの基礎知識が研究内容を理解するために必要です。専門知識は研究室に入ってから修得します。従って、学ぶ努力を継続する熱意と実行力が最も重要です。高校レベルの英語力は必要です。
この研究で身につく能力
研究室での研究活動を通じて自己研鑽を積み、自分で考えて自律的に行動できる研究者を育成することを目標としています。研究者として普遍的に重要な3つの能力が身につきます。
(1)研究を実践するために必要な専門知識を独習する能力
(2)設定した目標を達成するための計画立案能力
(3)研究成果の“価値”を伝えるためのコミュニケーション能力。
また、研究室の留学生との交流や国際共同研究、海外での学会発表などを通じて、国際的なセンスを磨く機会も多くあります。担当する研究テーマや努力の程度によって身につく専門知識は異なりますが、次の専門知識が得られます。
・光化学(励起状態のダイナミクス)、固体物性論(電荷注入と移動)、デバイス物理(有機デバイスの動作機構)
【就職先企業・職種】 総合電機メーカー、電機・電子機器・精密機器メーカー、印刷業、素材産業(化学、非鉄金属)
研究内容
村田研究室では、有機半導体に関する基礎研究の成果を、有機発光ダイオード(OLED)や可視光無線通信用の光アンテナなど、実用的なデバイス開発につなげることを行っています。民間企業との共同研究では、OLEDの精密な評価装置や有機半導体材料の真空昇華精製装置を開発しています。金沢市との共同研究では、金沢金箔を原料とした導電性ペースト用フィラー材料の開発を行っています。これら有機半導体デバイスの基礎研究を通じた社会貢献が目標です。
有機ELの劣化機構解析
有機ELディスプレイは高画質、低電力、薄型軽量、フレキシブルを特長とし、すでにテレビや携帯電話などで実用化されています。有機EL分野では、青色発光材料の耐久性向上が課題となっています。素子の長寿命化は、村田研究室の得意とするところであり、青色発光材料の劣化メカニズムを解明するとともに、高耐久性の青色発光有機EL材料を探索しています。また、精密な電子デバイスの作製から緻密な評価まで、一貫して研究を進める体制を整えており、これも私たちの強みとなっています。変位電流測定と電流ー電圧ー発光輝度特性を連続して高精度に測定できる新しい評価装置の開発にも成功しました。
金沢金箔を原料とする導電性ペースト用金属微粒子の開発
本研究では、金箔の新しい用途開拓を目指して、金箔を原料とする微粒子(金消粉)の導電性フィラーとしての応用を検討しています。これまでに、金消粉が導電性フィラーとして優れた材料であることを見出しました。そこで最近では、導電性フィラーの低コスト化に取り組んでいます。
可視光無線通信用の光アンテナの開発
可視光を使った無線通信は、近距離通信での活用が注目されています。我々は蛍光色素の特徴を生かした光無線通信用光アンテナの開発に挑戦しています。フェルスター型エネルギー移動(FRET)を光アンテナの発光材料に用いることで従来の光アンテナよりもはるかに高い利得と広い伝送帯域幅を実現し、より高速なデータ転送を実現しました。
主な研究業績
- C. He, S. Collins, H. Murata, Fluorescent antenna based on Förster resonance energy transfer (FRET) for optical wireless communications, Optics Express, 32, 17152 (2024).
- D. C. Le, D. D. Nguyen, S. Lloyd, T. Suzuki, H. Murata, Degradation of fluorescent organic light emitting diodes caused by quenching of singlet and triplet excitons, Journal of Materials Chemistry C, 8, 14873 (2020).
- V. Vohra, K. Kawashima, T. Kakara, T. Koganezawa, I. Osaka, K. Takimiya, H. Murata, Efficient inverted polymer solar cells employing favourable molecular orientation, Nature Photonics, 9, 403 (2015).
使用装置
真空蒸着装置(高真空対応2台、超高真空対応1台)
デバイス作製用グローブボックス
半導体評価システム
有機デバイス評価システム
逆光電子分光装置
研究室の指導方針
4年生までの学部教育が専門知識修得のための基礎を習得する場であるのに対して、大学院はさらに高度な知識を修得しながら、それを駆使して“研究を実践する場”であると考えています。研究がうまくいかず壁に突き当たったとしても、正面から向き合い試行錯誤して、困難を乗り越える経験をすることが最も重要です。最近は困難を回避しようとする人が多いように感じます。成功体験は今の自分に自信を与えますが、失敗の克服は新しい自分への飛躍をもたらします。一緒に困難を乗り越える体験をしてみませんか。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/murata/index.html
エレクトロニクスの機能的多様化を目指す化合物半導体デバイス技術


エレクトロニクスの機能的多様化を目指す
化合物半導体デバイス技術
化合物半導体エレクトロニクス研究室
Laboratory on Compound Semiconductor Electronics
教授:鈴木 寿一(SUZUKI Toshi-kazu)
E-mail:
[研究分野]
化合物半導体エレクトロニクス
[キーワード]
化合物半導体デバイス、異種材料融合技術、超高速デバイス、省エネルギーデバイス、デバイス計測技術
研究を始めるのに必要な知識・能力
必要な知識・能力ということではありませんが、ものごとの本質を理解したいという意欲、数学や物理学の基礎力とそれを支える論理性は、研究を進める際に重要であると考えています。
この研究で身につく能力
化合物半導体電子デバイスの作製技術および測定解析技術を身に付けながら、デバイス内の電子の挙動を物理的に考察して理解することができるようになると思います。こうした能力は、将来エレクトロニクスの広い分野で活躍するための素地となると考えています。また、産学連携を通じて産業界の問題意識を感じてもらうことも期待しています。さらに、日本語および英語によるプレゼンテーション能力の向上も目指します。
【就職先企業・職種】 総合電機、半導体・電子部品、半導体製造装置、通信機器、輸送機器、自動車
研究内容

化合物半導体高速トランジスタ

デバイスの周波数応答特性

異種材料基板上化合物半導体デバイス

異種材料閉じ込めによる二次元電子状態
<エレクトロニクスの機能的多様化に向けて>
現在のディジタルエレクトロニクスの主役であるSiデバイスは、微細化による性能向上を続けてきました。しかし、こうした「More Moore」の軸に沿った進歩の限界が意識されるようになっています。今後のエレクトロニクスの発展のためには、「More than Moore」の視点に基づく機能的多様化が必要であり、それに向けて重要な役割を果たすのが化合物半導体デバイスです。
<化合物半導体とは?>
III-V 族を中心とした化合物半導体は多彩な材料系であり、これまでもSi では不可能な様々な機能を有するデバイスに応用されてきました。特に、高い電子移動度と高い電子飽和速度を有する化合物半導体は高速電子デバイス応用に、また、直接遷移型の化合物半導体は光デバイス応用に好適であるため、化合物半導体を用いたデバイスは、高速アナログ・ミックスドシグナルエレクトロニクス、光エレクトロニクス分野で利用されてきました。これまで、GaAs 基板上格子整合材料が化合物半導体の第一世代として、InP 基板上格子整合材料が第二世代として大きな役割を果たしてきましたが、今後は、高In 組成InGaAs、InAs、Sb 系材料などのナローギャップ化合物半導体と、GaN、AlN などのワイドギャップ化合物半導体の重要性が高まると考えられます。これらナローギャップ半導体は中赤外光に対応するエネルギーギャップを、ワイドギャップ半導体は紫外光に対応するエネルギーギャップを有しており、それぞれの波長域における光デバイス応用に重要です。また、電子有効質量は概ねエネルギーギャップと比例関係にあり、ナローギャップ化合物半導体は小さい電子有効質量を有しています。電子有効質量が小さければ、高い電子移動度と高い電子飽和速度が得易いため、ナローギャップ半導体は超高速デバイス応用に有用です。ただし、高耐圧化に適したワイドギャップ半導体に対し、ナローギャップ半導体の耐圧は低く、充分なパワー性能を得ることが困難です。一方、GaN は電子有効質量が大きく、この点ではデバイス高速化に有利ではないように思われますが、大きい光学フォノンエネルギーと特有のバンド構造により、電子移動度こそ低いものの、高い電子飽和速度を有しているため、高速性能とパワー性能を併せ持ったデバイスへの応用が期待されます。
<本研究室の取り組み>
こうした特長を有する化合物半導体を適材適所にデバイス応用することは、エレクトロニクスの機能的多様化に向けて極めて重要です。さらに、化合物半導体と異種材料を融合集積する技術によって、より高度な機能的多様化の可能性も期待できます。こうした背景のもと、本研究室では、ナローギャップ/ ワイドギャップ化合物半導体エレクトロニクスの研究に取り組んでいます。次世代の超高速デバイスや省エネルギーデバイスを目指し、ナロー/ ワイドギャップ化合物半導体デバイス技術とそれらの異種材料融合技術の研究を進めながら、デバイス動作を深く理解するためのデバイス計測技術も開拓しています。
主な研究業績
- Low-frequency noise in AlTiO/AlGaN/GaN metal-insulator-semiconductor field-effect transistors with non-gate-recessed or partially-gate-recessed structures, D. D. Nguyen, Y. Deng, and T. Suzuki, Semicond. Sci. Technol. 38, 095010 (2023).
- Mechanism of low-temperature-annealed Ohmic contacts to Al-GaN/GaN heterostructures: A study via formation and removal of Ta-based Ohmic-metals, K. Uryu, S. Kiuchi, T. Sato, and T. Suzuki, Appl. Phys. Lett. 120, 052104 (2022).
- Electron mobility anisotropy in InAs/GaAs(001) heterostructures, S. P. Le and T. Suzuki, Appl. Phys. Lett. 118, 182101 (2021).
使用装置
分子線エピタキシー装置
電子線・紫外線リソグラフィー装置
パラメータアナライザ
ネットワークアナライザ
ダイナミックシグナルアナライザ
研究室の指導方針
・理学の心で工学を。ものごとの本質を理解することを大切にします。
・少しづつであっても、自分でよく考え、納得しながら前進することが重要であると考えています。
・学生と教員がよき共同研究者となり、お互いに成長することを目指します。
・毎週行う研究報告会・日本語輪講・英語輪講を通じ、エレクトロニクス分野で活躍するための基礎を固めます。
[研究室HP] URL:https://www.jaist.ac.jp/nmcenter/labs/suzuki-www/
液体から高機能性材料を創成し、生体・環境の見える化へ


液体から高機能性材料を創成し、生体・環境の見える化へ
プリンテッドバイオセンサー研究室
Laboratory on Printed Biosensors
講師:廣瀬 大亮(HIROSE Daisuke)
E-mail:
[研究分野]
酸化物、バイオセンサー、液体プロセス
[キーワード]
MOD法、薄膜トランジスタ、生体分子検出、バイオチップ、プリンテッドエレクトロニクス
研究を始めるのに必要な知識・能力
分野に囚われない研究を行うための好奇心・挑戦心、未解明の謎を楽しむ心。
専門知識は基礎から指導しますので、知識は問いません。どの分野からも歓迎します。一緒に頑張りましょう!
この研究で身につく能力
研究では様々な実験をすることになります。それによって分野に囚われない研究の着眼点や発想が身につきます。また、課題を解決するための論理的思考やタスクをこなす力も身につきます。学会やゼミの発表を通して、発表力・発信力も身につきます。
【就職先企業・職種】 半導体製造機器メーカー、電子部品会社、計測機器メーカー
研究内容
有機金属分解(MOD)法を基礎とした、モノづくりを行っています。この手法は“ 液体” から石(酸化物)を作製する技術であり、様々な電気的特性を示す酸化物を作り出せます。
さらに私たちはこのMOD法で作製した酸化物や中間体にこれまでにない特異的な特徴があることを発見しました。その特徴と半導体プロセスとを組み合わせることで、新たなセンシングデバイスやパターニング手法の研究・開発をしています。そして、なぜ特異的な特徴が現れるかの物性解析による解明も同時に進めています。
・高感度 - 酸化物センシングデバイス
コロナウイルスの感染拡大が世界的な問題となったことから、PCRやイムノクロマトに代わる迅速で高感度な菌・ウイルスの検査手法の需要が急速に高まってきています。
私たちは迅速で高感度に測定可能な酸化物薄膜トランジスタ型核酸センサーの研究・開発を進めています。図に、これまで作製したセンサーを示しています。この技術は核酸のみならず、多様な分子に適用可能であり、環境・衛生・農業・医療などの分野への応用も目指しています。
・MOD中間体の特性を生かしたパターニング
センサーなどの電子デバイスを作製するには、酸化物の精度の良いパターニングが必要となります。私たちはMOD法から酸化物を作製する際の中間体が変形性を示すことを発見しました。この特性を利用し、型押し成型による低エネルギー・低コストの酸化物の直接プリンティング手法を開発しました。この技術によって、簡単にサブミクロンスケールのパターンの作製が可能になりました。示した図は作製した酸化物パターンと、酸化物を積層した薄膜トランジスタアレイです。このように様々な酸化物の精度のよいパターンが作製できることがわかります。
主な研究業績
- Submicron titania pattern fabrication via thermal nanoimprint printing and Microstructural analysis of printable titania gels, D. Hirose, H. Yamada, T. Jochi, K. Ohara and Y. Takamura, Ceramics International, online,(2024)
- Rapid and Highly Sensitive Detection of Leishmania by Combining Recombinase Polymerase Amplification and Solution-Processed Oxide Thin-Film Transistor Technology, W. Wu, M. Biyani, D. Hirose and Y. Takamura, Biosensors, vol. 13, 8, p. 765,(2023).
- Origin of the thermal plasticity property of zirconium oxide gels for use in direct thermal nanoimprinting, D. Hirose, J. Li, Y. Murakami, S. Kohara and T. Shimoda, Ceramics International, vol.44, p. 17602,(2018).
使用装置
電子デバイス作製装置(フォトリソグラフィ装置、スパッタ装置ナノインプリント)、電気特性評価装置(半導体パラメータアナライザ、インピーダンスアナライザ)、形状評価装置(走査型電子顕微鏡、原子間力顕微鏡)、材料物性評価装置(TG-DTA、FT-IR,UV-vis、XRD、XPS、接触角計)
研究室の指導方針
本研究室では液体から機能性酸化物をつくるMOD技術を基礎にして、生体・環境の見える化を目指しています。身の回りのあらゆる分子をターゲットとして、社会や生活へ応用を目指しています。今まさに大きく成長している段階です。みなさんのアイデアと私たちの技術を組み合わせ、新たな見える化センサーを創成しましょう!!
研究では、個々の興味に沿ったテーマを設定します。目標に向け、課題を一つずつクリアできるように指導いたします。生活や就職活動についての不安を取り除きながら、これからの壁を乗り越える力を身につけられるようサポートします。
半導体ナノワイヤを舞台としたスピントロニクス研究


半導体ナノワイヤを舞台とした
スピントロニクス研究
ナノワイヤ X スピンデバイス研究室
Laboratory on Nanowires X Spin Devices
准教授:赤堀 誠志(AKABORI Masashi)
E-mail:
[研究分野]
半導体エピタキシャル成長、半導体ナノ構造、半導体スピントロニクス
[キーワード]
化合物半導体、強磁性体、微細加工、エレクトロニクス、スピントロニクス、半導体物性、低温物性
研究を始めるのに必要な知識・能力
本研究室で研究を始めるにあたって大事なのは、リアルに「もの」を扱うのが好きであることだと考えています。また、物理学(特に電磁気学、量子力学)の知識はあった方がよく、この他に半導体・固体物理、化学、プログラミングの知識があると研究を進める上で役に立つと考えています。
この研究で身につく能力
本研究室の研究では様々な装置を使います。それらの正しい使用法は論理的思考に基づいて考えられています。したがって、それらを理解し、自ら実践することにより、論理的な思考力が養われると考えています。また、実験的研究にはトラブルがつきもので、想定通りには結果が得られず、上手く進まないことも多々あります。ですが、トラブルの状況や得られている結果に関して、周りと協力しながら分析・考察し、研究が上手く進むように努力することにより、解決すべき課題を発見する力、そして発見した課題を解決する力が養われると考えています。
【就職先企業・職種】 電機・精密機械、IT・通信、素材
研究内容

図1.スピン電界効果トランジスタ

図2.トップダウン手法によるナノワイヤ、
ポイントコンタクト

図3.ボトムアップ手法によるナノワイヤ

図4.電気化学プロセスによるコアシェルナノワイヤ

図5.MnAs/InAs 複合構造

図6.非局所測定
従来のエレクトロニクスでは、チャージ(電荷)の制御により情報処理が行われてきました。これに対してスピントロニクスは、チャージだけでなくスピン(磁性)を制御することにより情報処理を行っていくものです。国際デバイスおよびシステムロードマップにおいても、スピントロニクス素子は重要な次世代デバイスの一つとして位置付けられています。半導体を用いる代表的なスピントロニクス素子は、InAs・InGaAs・InSb・InGaSbなど大きなスピン軌道結合を有する半導体と強磁性体との複合構造からなるスピン電界効果トランジスタです(図1)。この素子においては、半導体ナノワイヤを採用することにより、スピン軌道結合と弾性散乱によるスピン緩和が抑制されると期待されています。そこで本研究室では、以下に示すような、半導体ナノワイヤ構造および半導体- 強磁性体複合構造に関する実験的研究を行っています。
①半導体ナノワイヤ構造の作製
電子ビーム露光とエッチング加工を組み合わせたトップダウン手法(図2)と、分子線エピタキシャル成長を用いたボトムアップ手法(図3)に関する研究を進めています。トップダウン手法では高品質な半導体ヘテロ接合を用いることが可能ですが、コヒーレントな伝導のためにはエッジ形状の最適化や加工ダメージの抑制などの課題があります。ボトムアップ手法では半導体ヘテロ構造の利用は困難ですが、成長条件の最適化によりトップダウン手法では困難な良好な形状・微小な寸法を実現できる可能性があります。
②半導体- 強磁性体複合構造の作製
電気化学プロセスによる半導体(ZnO)/ 強磁性体(Co、Ni)コアシェルナノワイヤの形成(図4)や、分子線エピタキシャル成長による半導体(InAs) / 強磁性体(MnAs) 複合構造の形成(図5)に関する研究も行っています。これらの方法では連続的に半導体/ 強磁性体界面を形成するため、強磁性体から半導体へのスピン注入効率向上が期待されます。
③作製した構造の電気的評価・解析
超伝導マグネット付クライオスタットなどを用いて、低温・強磁場環境下での電気的評価・解析を進めています。面内磁場中での非局所配置における抵抗測定(図6)などにより、スピン注入・輸送・検出に関する知見を獲得することが可能です。これら知見を基に、未踏のスピン電界効果トランジスタの実現を目指します。
主な研究業績
- S. Komatsu, M. Akabori: “Spin-filter device using Zeeman effect with realistic channel and structure parameters” Jpn. J. Appl. Phys., Vol. 63, pp. 02SP14-1-5 (2024).
- Md. T. Islam, Md. F. Kabir, M. Akabori: “Low-temperature grown MnAs/InAs/MnAs double heterostructure on GaAs (111)B by molecular beam epitaxy” Jpn. J. Appl. Phys., Vol. 63, pp. 01SP40-1-5 (2024).
- K. Teramoto, R. Horiguchi, W. Dai, Y. Adachi, M. Akabori, S. Hara: “Tailoring Magnetic Domains and Magnetization Switching in CoFe Nanolayer Patterns with Their Thickness and Aspect Ratio on GaAs (001) Substrate” Physica Status Solidi B, Vol. 259, pp. 2100519-1-9 (2022).
- D. Q. Tran, Md. E. Islam, K. Higashimine, M. Akabori: “Self-catalyst growth and characterization of wurtzite GaAs/InAs core/shell nanowires” J. Crystal Growth, Vol. 564, pp. 126126-1-7 (2021).
使用装置
成膜装置(分子線エピタキシャル成長装置、原子層堆積装置、真空蒸着装置、スパッタ装置)
微細加工装置(電子ビーム露光装置、電界電離ガスイオンビーム装置、反応性イオンエッチング装置)
電気化学プロセス装置
電気計測装置(デバイスアナライザ、ホール効果測定装置、ロックイン計測システム)
極低温・強磁場装置(超伝導マグネット付He4クライオスタット、He3クライオスタット、希釈冷凍機)
研究室の指導方針
本研究室では、様々な装置を使って、半導体や強磁性体など「もの」をつくるところから、主に電気的評価・解析によりつくった「もの」を調べるところまで一貫して実験的研究を行います。まずテーマの近い学生でチームをつくり、毎日チームミーティングをしてもらうとともに、週一でスタッフを交えた全体ミーティングを行って、コミュニケーション力・プレゼンテーション力・判断力の育成・向上を図ります。また、全体ミーティングと同じ日に勉強会も行い、半導体・固体物理分野の知識習得や基礎学力の向上を図ります。
[研究室HP] URL:https://www.jaist-akabori-lab.com/
結晶が成長する様子を観察してメカニズムを探る


結晶が成長する様子を観察してメカニズムを探る
次世代シリコン太陽電池研究室
Laboratory on Next-Generation Silicon Photovoltaics
講師:前田 健作(MAEDA Kensaku)
E-mail:
[研究分野]
結晶成長、太陽電池、非線形光学
[キーワード]
その場観察、結晶粒界、双晶
研究を始めるのに必要な知識・能力
学部や高専で習う基礎的な物理や数学の知識
思い込みで実験結果を判断せず、公平な視点で研究に取り組む姿勢
この研究で身につく能力
研究活動を通して、実験装置(ガス制御機構、加熱機構、顕微鏡など)の使い方やデータの収集と解析方法が身につきます。
また、定期的なゼミ活動や随時のディスカッションを通して、コミュニケーション能力や問題解決能力が鍛えられます。
失敗と思えるような実験から新しい発見が生まれることはよくあります。普通は気付けないような特徴を注意深く読み取る力や俯瞰的かつ合理的に考察する力など、修了後に社会で活躍する際にも役立つ能力を鍛えて欲しいと願っています。
【就職先企業・職種】 製造業など
研究内容
エレクトロニクス、オプトエレクトロニクスの発展を進めるには、材料となる結晶の高品質化や高性能化が不可欠です。結晶とは原子が規則正しく整列した固体であり、融液や溶液などの環境相から徐々に大きく成長することで形成されます。「成長」という言葉は主に生物に対して使われますが、立派な人間に成るには成長過程が重要であることと同様に、高性能な結晶を得るには成長過程が重要となります。この成長過程を注意深く観察することでメカニズムを解明し、高機能結晶を育てる技術を開発します。
1.薄膜多結晶シリコンの形成過程のその場観察
太陽電池の基板材料には半導体のシリコンが広く用いられています。薄膜多結晶シリコンはガラス基板上の非晶質シリコンにパルス光(フラッシュランプアニール光)を当てることで作ることができ、インゴットを薄くスライスして作る結晶基板よりも生産性とコスト面で優れています。非晶質シリコンが多結晶化する過程を観察することで、太陽電池の劣化の原因となる組織の形成機構を解明し、その形成を抑制する技術を開発します。
2.レーザー波長変換素子(周期双晶結晶)の作製

Li2B4O7の双晶成長過程(左)、顕微鏡観察炉(右)
半導体リソグラフィの極微細化やレーザー加工の超高精度化に伴い、高エネルギー効率で小型の全固体レーザー光源の短波長化が求められています。全固体レーザーは固体レーザーを非線形光学結晶により波長変換することで実現でき、光源にガスを用いるよりも安定で小型な装置となります。
非線形光学結晶の分極を周期的に反転することで変換効率を向上でき、強誘電体に電界印加することで生産されています。本研究では非強誘電体においても周期構造を導入するために、双晶形成を用いた反転技術の開発に取り組んでいます。
3.化合物半導体の融液成長過程の観察
シリコンSiは地殻中で酸素に次いで2番目に多い元素であり、単結晶シリコンは半導体デバイスの基板材料として世界中で広く生産されています。化合物半導体(InSb, GaSb, GaAsなど)の生産量は少ないですが、これからのエレクトロニクスの発展に無くてはならない結晶であり、単結晶育成技術の開発は重要です。結晶が成長する様子を観察して、双晶や粒界などの欠陥がどのように形成されるのか、そのメカニズムを解明することを目指しています。
主な研究業績
- K. Hu, K. Maeda, H. Morito, K. Shiga, K. Fujiwara, In situ observation of grain-boundary development from a facet-facet groove during solidification of silicon, Acta Materialia, 153, 186(2018).
- K. Maeda, A. Niitsu, H. Morito, K. Shiga, K. Fujiwara, In situ observation of grain boundary groove at the crystal/melt interface in Cu, Scripta Materialia, 146, 169(2018).
- K. Maeda, S. Uda, K. Fujiwara, J. Nozawa, H. Koizumi, S. Sato, Y. Kozawa, T. Nakamura, Fabrication of Quasi-Phase-Matching Structure during Paraelectric Borate Crystal Growth, Applied Physics Express, 6, 15501(2013).
研究室の指導方針
研究活動は自主性を重んじる方針で、学生自身の発想が研究に活かせます。毎朝一度、研究室メンバー全員が集まるミーティングを行い、その日の各自の活動を報告します。ミーティングでは、簡単な研究の相談もでき、メンバー間のコミュニケーションも十分行えるシステムです。当番の学生が文献紹介を行う勉強会では、細部にわたる質問への回答が求められ、しっかりとした基礎学力が身につきます。学術会議などでの外部発表は、積極的に行います。また、博士前期課程期間中に、英語の論文を執筆し投稿できるよう指導します。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/ohdaira/
炭素1原子層厚のグラフェン膜を使った超低電圧・急峻動作のナノ電子機械スイッチ開発に成功 - 究極の低消費電力エレクトロニクスや集積センサシステム実現に期待 -

炭素1原子層厚のグラフェン膜を使った
超低電圧・急峻動作のナノ電子機械スイッチ開発に成功
- 究極の低消費電力エレクトロニクスや集積センサシステム実現に期待 -
ポイント
- 単層グラフェン膜で作製した両持ち梁を、機械的に上下させて安定動作するNEMS(ナノ電子機械システム)スイッチを世界で初めて実現
- スイッチング電圧<0.5 Vの超低電圧動作と急峻なオン・オフ切替え(電流スイッチング傾き≈20 mV/dec)を実現。従来の半導体技術を用いたNEMSスイッチに比べて約2桁の低電圧化を達成
- 制御電極表面に単層の六方晶窒化ホウ素原子層膜を備えることで、従来のグラフェンNEMSスイッチの問題であったグラフェン膜張り付き(スティクション)を解消し、5万回のオン・オフ繰り返し動作を実現
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域の水田 博教授、マノハラン ムルガナタン元JAIST講師、デンマーク工科大学のゴク フィン ヴァン博士研究員(元JAIST博士研究員)らは、単層グラフェン[用語解説1](原子1層厚の炭素原子シート)膜で作製した両持ち梁を、0.5V未満の超低電圧で機械的に上下させ、5万回繰り返しても安定動作するNEMS(ナノ電子機械システム)[用語解説2]スイッチの開発に世界で初めて成功しました。本デバイスを用いれば、スイッチオフ状態での漏れ電流を原理的にゼロにすることが可能となり、現在のエレクトロニクス分野で深刻な問題となっている集積回路やセンサシステムの待機時消費電力[用語解説3]の飛躍的な低減が実現し、今後のオートノマス(自律化)ITシステムの実現に向けた革新的パワーマネジメント技術として期待されます。 |
【背景と経緯】
現在のIT技術は、シリコン集積回路の基本素子であるMOSFET(金属酸化物半導体電界効果トランジスタ)の堅調な微細化に支えられ発展を遂げてきました。最新のマイクロプロセッサでは、数十億個という膨大な数の高速MOSFETをチップに集積することで、大量のデータを瞬時に計算・処理しています。しかし、この半導体微細化の追求に伴って、MOSFETのオフリーク電流(トランジスタをスイッチオフした状態での漏れ電流)の増大が深刻な問題となっています。オフリーク電流によりシステム待機時の消費電力(スタンバイパワー)は急増し、現代の集積回路システムにおいてはシステム稼動時の消費電力(アクティブパワー)と同等の電力消費となっています。スタンバイパワーを低減するために、現在、デバイス・回路・システム全てのレベルにおいてさまざまな対策が検討されています。このうちデバイスレベルでは、トンネルトランジスタや負性容量電界効果トランジスタなどいくつかの新原理のスイッチングトランジスタが提案され、研究開発が進められていますが、未だ従来のMOSFETを凌駕するオフリーク電流特性を実現するには至っていません。
【研究の内容】
水田教授、マノハラン元講師らの研究チームは、原子層材料であるグラフェンをベースとしたナノメータスケールでの電子機械システム(Nano Electro-Mechanical Systems: NEMS)技術による新原理のスイッチングデバイスを開発してきました。2014年には、2層グラフェンで形成した両持ち梁を静電的に動かし、金属電極上にコンタクトさせて動作するグラフェンNEMSスイッチの原理実験に成功しています。しかし、このスイッチではオン・オフ動作を繰り返すうちにグラフェンが金属表面に張り付く(スティクション)問題が生じ、繰り返し動作に限界がありました。
今回、研究チームは、制御電極表面に単層の六方晶窒化ホウ素[用語解説4]原子層膜を備えることで(図1参照)、グラフェンと電極間に働くファンデルワールス力[用語解説5]を低減させ、スティクションの発生を抑制して安定したオン・オフ動作を5万回繰り返すことに世界で初めて成功しました(図2参照)。また、素子構造の最適化を併せて行うことでスイッチング電圧が0.5 V未満という超低電圧を達成し、従来の半導体技術を用いたNEMSスイッチに比べて約2桁の低電圧化を実現しました。同時に、従来のNEMSスイッチでは不可避であったオン電圧とオフ電圧のずれ(ヒステリシス)の解消にも成功しました。
5万回を超える繰り返し動作を経ても、5桁近いオン・オフ電流比や、電流スイッチング傾き≈20 mV/decの急峻性が維持され、それらの経時劣化が極めて小さいことも確認されました。
本成果は、2022年12月22日にWiley社が発行する材料科学分野のトップジャーナルである「Advanced Functional Materials」に掲載されました。
本成果を含めて、水田教授は「ナノメータスケールにおける電子-機械複合機能素子の研究」の業績で2018年度科学技術分野の文部科学大臣表彰科学技術賞 研究部門を受賞しています。
【今後の展望】
これらの優れた性能と信頼性の高さから、本新型NEMSスイッチは、今後の超高速・低消費電力システムの新たな基本集積素子やパワーマネジメント素子として大いに期待されます。さらに、今回の新型スイッチの作製においては、大面積化が可能なCVD[用語解説6]グラフェン膜とhBN膜を採用しており、将来の大規模集積化と量産への展望も広がります。
図1.開発に成功した超低電圧動作グラフェンNEMSスイッチの(a)作製方法, (b)構造, (c)CVDグラフェン膜とhBN膜のラマンスペクトル, (d)作製した素子のSEM(電子顕微鏡)写真
図2.オン・オフの繰り返し動作測定結果:(a)印加電圧(上)と電流応答(下)、(b)繰り返し測定直後と(c)25,000回繰り返し後のオン・オフ電流特性。特性の経時劣化は極めて小さい。
【論文情報】
掲載誌 | Advanced Functional Materials (Volume32, Issue52) |
論文題目 | Sub 0.5 Volt Graphene-hBN van der Waals Nanoelectromechanical (NEM)Switches |
著者 | Manoharan Muruganathan, Ngoc Huynh Van, Marek E. Schmidt, Hiroshi Mizuta |
掲載日 | 2022年12月22日 |
DOI | 10.1002/adfm.202209151 |
【用語解説】
2004年に発見された、炭素原子が蜂の巣状の六角形結晶格子構造に配列した単原子シート。
半導体集積回路作製技術によって形成されたナノメータスケールの機械的可動構造を有するデバイス。
電源に接続された集積回路・システムが、電源の切れている状態でも消費する電力。
グラフェンのユニットセルの2個の炭素原子の代わりに、窒素原子(N)とホウ素原子(B)で蜂の巣状格子構造を構成する化合物。電気的に絶縁体である。
原子や分子の間に働く力(分子間力)の一種。
さまざまな物質の薄膜を形成する蒸着法の一つで、基板物質上に目的とする膜の成分元素を含む原料ガスを供給し、化学反応・分解を通して薄膜を堆積する方法。
令和5年1月10日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/01/10-1.htmlJAIST社会人セミナー平成30年度第2回「co-café @JAIST」アンビエントエレクトロニクス ~少し未来(さき)を予測するためのセンサー~
下記のとおり、平成30年度第2回「co-café@JAIST」を開催しますので、ご案内します。
産学官連携推進センターでは、地方創生/地域活性化の推進を目的に、昨年度から社会人人材育成事業としてJAIST社会人セミナーを実施しています。
JAIST社会人セミナーでは、①co-café@JAIST(異業種・異分野の産学連携交流イベント)、②地域人材育成セミナー、③社会人向けデザインスクールという3つの事業を行っています。
今回の「co-café@JAIST」は、本学の最先端技術の紹介や、本学の若手教員と地域企業とのニーズ・シーズの出会い場とすることを目的とした産学官連携の交流イベントです。
多くの方のご参加をお待ちしております。
日 時 | 平成30年5月9日(水)18:30 ~ |
会 場 | 北陸先端科学技術大学院大学 産学官連携本部 産学官連携推進センター 金沢駅前オフィス(金沢市本町2-15-1 ポルテ金沢9階) |
開催内容 | ・18:30~ ミニセミナー テーマ:アンビエントエレクトロニクス ~少し未来(さき)を予測するためのセンサー~ 講 師:北陸先端科学技術大学院大学 応用物理学領域 酒井 平祐 助教 ゲスト:株式会社山岸製作所 代表取締役社長 山岸 晋作 氏 ・19:00~ 交流会 |
参加申込 | 下記PDFの参加申込フォームに必要事項をご記入の上、FAXまたはE-mailでお申込みください。 (定員:40名、参加無料 ※交流会のみ有料/参加費1,000円) |
お問合わせ |
北陸先端科学技術大学院大学 産学官連携本部 産学官連携推進センター 担当:松本 【TEL】0761-51-1432 【Fax】0761-51-1427 【E-mail】co-cafe@jaist.ac.jp |
原子スケールナノテクノロジーで、革新的エネルギー・環境デバイスを開拓!


原子スケールナノテクノロジーで、
革新的エネルギー・環境デバイスを開拓!
R7年10月以降に入学する学生の受け入れは行いません
水田研究室 MIZUTA Laboratory
教授:水田 博(MIZUTA Hiroshi)
E-mail:
[研究分野]
サイレントボイスセンシング、超高感度センサ、熱制御素子
[キーワード]
グラフェン、ナノ電子機械システム(NEMS)、雷センサ、においセンサ、熱整流デバイス、バレートロニクス、量子デバイス、極限構造作製、第一原理計算
研究を始めるのに必要な知識・能力
水田研究室では物性物理、電気・電子工学、機械工学、化学、コンピュータ、IoT/AIの融合領域研究を行っていますので、これらのどれか1つ(あるいは複数)の基礎を修得していることが必要です。さらに、その専門を広げて行く好奇心旺盛な人が適しています。
この研究で身につく能力
水田研究室では、グラフェンをはじめとする新奇な原子層材料をベースに、NEMS(ナノ電子機械システム)技術と1ナノメートル精度の超微細加工技術を駆使して、超高感度センサデバイス、超低消費電力スイッチ、熱整流素子、バレートロニクスデバイスなどを開発しています。これらの研究を通して、①電子線直接描画や最先端ヘリウムイオンビーム技術による極微デバイス作製技術、②環境制御型・高周波プローブステーションや希釈冷凍機などを用いた極限電気特性測定、③第一原理計算からデバイス・回路シミュレーションに至る設計・解析技術、などを幅広く修得することができます。また、欧州を中心に海外研究機関と緊密に連携し、学生・スタッフが頻繁に交流しているため、研究を進める中で自然に国際的コミュニケーションスキルとリーダーシップ能力を身につけていくことが可能です。
【就職先企業・職種】 ICT企業、製造業、国立研究開発法人
研究内容
水田研究室では、グラフェンや極薄シリコン膜をはじめとする新奇な原子層材料と、原子スケール精度の超微細加工技術を駆使して、超高感度センサ、超低消費電力NEMS(ナノ電子機械システム)スイッチ、バレートロニクス、熱フォノンエンジニアリングなどを開発し、グローバルな環境・エネルギー問題に貢献することを目指しています。
具体的には以下の4テーマを中心に研究を推進しています。

図1.

図2.

図3.
①サイレントボイスセンシングの研究
従来のセンサ技術では検出が難しい自然界や生体の様々な微小信号(サイレントボイス(声なき声))を検出する革新的センサ素子の研究を行っています。落雷の予測を可能とする大気中電界センサ(図1右)や、疾病の予兆検出を目的とした超低濃度の皮膚ガス(におい)センサ(図1左)など、素子の原理探索から試作、測定データ解析技術の研究、さらに実用化研究まで、産業界とも連携して精力的に推進しています。
②超低電圧動作グラフェンNEMSスイッチの研究
グラフェンやhBN膜など異種原子層材料をファンデルワールス積層させたNEMS素子を作製し、その電気・機械的な動作の解明と超低電圧・急峻動作スイッチ(図2)の研究を行っています。シリコンMOSFETの理論限界を超える急峻スイッチング特性と0.5V未満の超低電圧動作を実現しています。
③ナノスケール熱制御技術の研究
最先端技術ヘリウムイオンビームミリング技術を用いて宙吊りグラフェン上に直径10nm以下のナノ孔周期的構造を形成します。特に非対称構造における熱整流素子(図3右)の実現を目指しています。
④原子層材料によるバレートロニクスの研究
バレー自由度を新たな情報担体として利用するバレートロニクスは、従来のエレクトロニクスを超える将来の情報処理技術として期待されています。原子層材料を積層した様々な構造におけるベリー曲率発生(図3左)を理論と実験の両面から探求しています。
主な研究業績
- J. Sun, M. Muruganathan, and H. Mizuta, ‘ Room temperature detection of individual molecular physisorption using suspended bilayer graphene’, Science Advances vol.2, no.4, e1501518 (2016) DOI:10.1126/sciadv.1501518
- A. Kareekunnan, T. Agari, A. M. M. Hammam, T. Kudo, T. Maruyama, H. Mizuta, and M. Muruganathan, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, ACS Omega 6, 34086-34091 (2021) DOI: 10.1021/acsomega.1c05530
- F. Liu, M. Muruganathan, Y. Feng, S. Ogawa, Y. Morita, C. Liu, J. Guo, M. Schmidt and H. Mizuta, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, Nano Futures 5(4), 045002 (2021) DOI: https://doi10.1088/2399-1984/ac36b5
使用装置
電子線リソグラフィー、走査型電子顕微鏡、
電界電離ガスイオン源(GFIS)微細加工装置、ヘリウムイオン顕微鏡(産業技術総合研究所)
環境制御型高周波プローバー、マルチガス種対応プローバー、
第一原理・量子輸送シミュレータ
研究室の指導方針
最先端のナノテクノロジーを駆使して、現在のCMOS技術を越える‘More than Moore’ & ‘Beyond CMOS’世代のエマージングテクノロジ開拓を目指しています。「まだ世界で誰も実現したことのない機能のデバイスをこの手で初めて開発してみたい!」という意欲のあるあなた、ぜひ一緒に研究しましょう。また、欧州・アジアを中心に海外研究機関に滞在しての研究活動も積極的に推進していますので、国際的に活躍したい方も大歓迎です。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/mizuta-lab/
学生のXUさんがEM-NANO 2025においてStudent Awardを受賞
学生のXU, Yuanzheさん(博士後期課程3年、ナノマテリアル・デバイス研究領域、大島研究室)が、The 10th International Symposium on Organic and Inorganic Electronic Materials and Related Nanotechnologies(EM-NANO 2025)において、Student Awardを受賞しました。
EM-NANO 2025は、有機・無機エレクトロニクス材料とナノテクノロジーに関する国際シンポジウムで、令和7年6月11日~14日にかけて、福井県福井市のAOSSA(福井県県民ホール)にて開催されました。
同シンポジウムでは、全体講演(Plenary lectures)や招待講演、特別セッションのほか、開催10回目を記念する式典も行われ、エレクトロニクス分野における最新の研究成果について活発な議論が行われました。
※参考:EM-NANO 2025
■受賞年月日
令和7年6月14日
■研究題目、論文タイトル等
Microscopic study of Kanazawa gold leaves
■研究者、著者
Yuanzhe Xu, Satoshi Ichikawa (大阪大学) , Kohei Aso, Hideyuki Murata, Yoshifumi Oshima
■受賞対象となった研究の内容
超薄膜(約100~200 nm)である金沢金箔の組織変化を調査しました。常温で処理されたにもかかわらず、焼鈍や熱間圧延を行わなくても、面心立方(FCC)金属において強い{001}テクスチャが形成されることは、長年の謎でした。今回、EBSDとTEMを用いて、No. 4金箔において[101]方向に沿って幅約100nmのスリップバンドが形成され、{011}-<011>スリップシステムと一致することを発見しました。この滑り系はFCC金属では稀な現象であり、超薄膜による活性化が原因と考えられます。この現象と交差滑り活動が、ハンマー加工中の{001}組織の形成を促進しています。
■受賞にあたって一言
It is a great honor to receive the "Student Award" at EM-NANO2025. I am truly encouraged by this recognition from the committee, which strengthens my determination to further explore the unique deformation mechanisms of Kanazawa gold leaf. As this research is closely tied to the cultural and scientific heritage of Kanazawa and the Hokuriku region, receiving this award at a local conference is especially meaningful to me. This achievement would not have been possible without the invaluable support and guidance of my supervisor, Prof. Yoshifumi Oshima, and the generous assistance of Specially Appointed Professor Satoshi Ichikawa from the Research Center for Ultra-High Voltage Electron Microscopy, Osaka University. I would also like to thank Senior Lecturer Kohei Aso and all the laboratory members for their generous support in both research and daily life.
令和7年7月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/07/17-2.html応用物理学領域の村田教授がベトナム教育訓練省より"Medal For the Cause of Education"を受賞
応用物理学領域の村田 英幸教授にベトナム教育訓練省(Ministry of Education and Training)より "Medal For the Cause of Education"が授与され、2019年5月2日にベトナム交通通信大学(University of Transport and Communications(UTC))において受賞式が行われました。
今回の受賞は、村田教授によるUTCとの有機エレクトロニクス分野における共同研究の推進と、UTCから本学に受入れた博士前期課程、博士後期課程学生及び短期留学生への教育活動を通じたベトナム高等教育の発展と推進に対する貢献が認められたものです。受賞式には、ベトナム教育訓練省の幹部、ベトナム交通通信大学の学長・副学長と教授陣、ベトナム国家大学の教授陣及びこれらの大学の学生を含む多くの方々が出席しました。
[参考]
* University of Transport and CommunicationsのHPでの紹介記事
■受賞年月日
令和元年5月2日
(受賞決定年月日 平成30年12月25日)
■受賞にあたっての一言
ベトナム教育訓練省からMedal For the Cause of Educationをいただいたことを大変光栄に思います。このメダルは、有機エレクトロニクス分野における本学とベトナム交通通信大学との共同研究活動を通じたベトナムの高等教育への貢献が評価されたものです。ベトナムからの留学生として本学で博士の学位を取得され、帰国後に大学の教員となられた方々が共同研究において重要な役割を担われました。また、本学側から共同研究に係わられた酒井 平祐講師をはじめとする研究室各位に深く感謝いたします。今後も有機エレクトロニクス分野での研究を通じてベトナムと本学、ひいては我国との関係強化に貢献していく所存です。
令和元年5月27日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/05/27-01.htmlナノマテリアル・デバイス研究領域セミナー
日 時 | 令和5年8月3日(木)14:00~17:00 |
場 所 | マテリアルサイエンス研究棟4棟8階 中セミナー室 |
講演題目 |
(1)「触媒およびその応用に向けたナノ構造材料の微細構造と新奇特性」
Microstructures and novel properties of the nano-structure materials for catalysts and other applications (2)「透過型電子顕微鏡によるVO2の金属-絶縁体転移の制御」
Manipulating metal-insulator transition of VO2 in transmission electron microscopy |
講演者 | 鄭州大学 物理・マイクロエレクトロニクス学院 (1) 教授 郭 海中 (Guo, Haizhong)氏 (2) 教授 程 少博 (Cheng, Shaobo)氏 |
言 語 | 英語 |
お問合せ先 | 北陸先端科学技術大学院大学 共通事務管理課共通事務第三係 (E-mail:ms-secr@ml.jaist.ac.jp) |
学生のXIONGさんが、国際シンポジウムEM-NANO2023においてStudent Awardを受賞

学生のXIONG, Weiさん(博士後期課程2年、ナノマテリアル・デバイス研究領域、大島研究室)が第9回有機・無機エレクトロニクス材料とナノテクノロジーに関する国際シンポジウム(EM-NANO2023)において、Student Awardを受賞しました。
EM-NANO2023は令和5年6月5日~8日にかけて金沢市で開催されました。先端的な材料やそれを用いたデバイスに関する研究に関する講演が約300件あり、そのうち、学生発表が約140件ありました。この中で優れた発表を行った学生10名に対し学生優秀賞が授与されました。
*参考:The 9th International Symposium on Organic and Inorganic Electronic Materials and Related Nanotechnologies (EM-NANO2023)
■受賞年月日
令和5年6月7日
■研究題目、論文タイトル等
引張り変形のその場透過電子顕微鏡法によるMoS2ナノシートのリップル構造評価
■研究者、著者
XIONG, Wei
■受賞対象となった研究の内容
2次元材料の構造的な新しさの一つに、2次元材料の伸縮による原子レベルの波紋構造の形成がある。しかし、このような構造に関する実験的な報告はほとんどない。
本研究では、2つの電極間に吊り下げたMoS2ナノシートを伸張できるin-situ透過型電子顕微鏡(TEM)ホルダーを開発し、MoS2ナノシートの原子レベルの波紋構造を観察することに成功した。得られたTEM像を解析したところ、波紋構造はアームチェア方向に沿って形成されていることがわかった。幾何学的位相解析(GPA)法を用いてTEM像を解析することで、波紋構造の周期と振幅を推定することができた。0.26%、0.51%、0.77%、1.02%の引張ひずみでリップル構造の周期と振幅を推定した。その結果、MoS2ナノシートは引っ張りに対して非線形な力学応答を示すことがわかった。
■受賞にあたって一言
It's my honor to receive the "Student Award" in EM-NANO2023. Participating in this academic conference has benefited me a lot. I have listened to many excellent presentations and read many creative posters at this conference. The experiences and conversations during this trip made me think more deeply about my research. I will also put the inspiration and ideas I got at this conference into practice in my future experiments. For this honor, I would like to express my sincere gratitude to my supervisor, Prof. Yoshifumi Oshima, his profound knowledge gave me strong support in my study and research, his peaceful personality made me feel no pressure to get alone with him in life. I also want to thank Dr. Lilin Xie, a graduate of our lab, his research work has given me great convenience and confidence, and it has a great weight in this award I have received. Also, I'd like to thank assistant professor Kohei Aso and the laboratory members for their help in my life, study and research.
令和5年6月15日
サスティナブルイノベーション研究領域の水田教授が応用物理学会からフェロー称号を受理

サスティナブルイノベーション研究領域の水田 博教授に公益社団法人応用物理学会からフェローの称号が授与され、表彰を受けました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を行っています。公益性の高い学会として広く活動を展開し、社会連携事業にも取り組んでいます。
*参考:公益社団法人応用物理学会ホームページ
■フェローの概要等
「応用物理学会フェロー表彰」制度は、同学会の会員表彰制度の一環として、2006年に創設されました。この表彰制度は、同学会における継続的な活動を通じて、学術・研究における業績、産業技術の開発・育成における業績、教育・公益活動を通した人材育成や教育における業績などにより、応用物理学の発展に貢献した在籍累計年数10年以上の正会員を対象とし、特に貢献が顕著であると認められた会員を表彰するものです。また、フェローの人数は同学会個人会員数の3%程度と定められています。
*参考:第16回(2022年度)応用物理学会フェロー表彰者
■授与日
令和4年9月20日
■表彰内容
ナノメータスケール電子-機械複合機能素子の研究
■水田教授からの一言
本フェロー表彰の対象となった研究は、企業から大学に異動した2003年頃に「従来の電子デバイスの中に機械的に動くパーツを入れたら面白いことができるのでは?」という単純な発想で開始したものです。約20年にわたり東工大、サウサンプトン大、本学と職場を移しながら継続し、特に本学ではグラフェンなど原子層材料を用いて、気相単分子センシングやナノスケール熱制御素子などの極限機能素子について原理探索から社会実装までを進めてきました。英国で働いた期間も長かったのですが、その間、応用物理学会では200件超の発表、分科会・研究委員会幹事、シンポジウム世話人、また応物主催/共催の国際学会の実行委員長・論文委員長など、微力ながら学会の活動に参画させていただきました。これらはひとえに学内外の多くの方々からいただいた多大なご支援、特に研究室の同僚の方々・学生の皆さんのご協力の賜物です。この場をお借りして心より御礼を申し上げます。
*水田教授は2012年に英国物理学会(IOP)フェローの称号も受理しています。
![]() 表彰を受けた水田教授(左) |
![]() |
![]() |
![]() |
記念盾とフェローバッジ |
令和4年9月21日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/09/21-1.html物質化学領域の長尾准教授の研究課題が村田学術振興財団の研究助成に採択
公益財団法人 村田学術振興財団の研究助成に物質化学領域 長尾 祐樹准教授の研究課題が採択されました。
村田学術振興財団では、エレクトロニクスを中心とする自然科学の研究及び国際化にともなう法律、経済、社会、文化等に係る諸問題に関する人文・社会科学の研究に対して研究助成が行われています。
*詳しくは、村田学術振興財団ホームページをご覧ください。
■研究者名
物質化学領域 長尾 祐樹准教授
■採択期間
令和3年7月~令和4年6月
■研究課題名
分子配向制御による全固体電池の界面デザイン
■研究概要
高分子は柔軟さや自己修復性が付与可能なため、将来的には、折り曲げ可能な固体電池の開発が期待されています。この実現には、電解質に対する電極および活物質の界面設計が不可欠です。界面の特徴の1つに、高分子特有の主鎖や官能基の分子配向等の構造変化がイオン伝導性に強い影響を与えるケースが報告され始めています。長尾准教授の研究グループでは、燃料電池に応用可能なプロトン伝導性高分子薄膜の界面におけるプロトン伝導性と分子配向の相関について研究を行ってきました。例えば、高プロトン伝導性高分子であるNafionは、界面の影響を受けた薄膜では配向構造を示すことが明らかにされています。さらに、酸化物界面と金属界面ではその配向構造が異なります。その構造の違いによってプロトン伝導度も異なります。これらの研究はまだ体系的に実施されておらず、特にデバイスや電池において重要な知見となる金属系材料や炭素系材料などの導電性表面における、高プロトン伝導性高分子界面のプロトン伝導性は十分に明かにされていない状況です。
本研究では、全固体蓄電界面のイオン伝導性や分子配向を同定することで、全固体電池の性能向上と共に課題となるイオンの拡散律速を抑制する次世代蓄電池の界面をデザインすることを目指します。
令和3年7月12日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/07/12-1.htmlダイヤモンドを用いた広帯域波長変換に成功 ~新しい量子センシング技術の糸口に~

![]() ![]() ![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンドを用いた広帯域波長変換に成功
~新しい量子センシング技術の糸口に~
強い光と物質の相互作用に関する研究は、1960年にレーザーが開発されて以降、非線形光学分野として発展してきました。その中でも特に活発に研究されているのが高調波発生です。非線形光学結晶にレーザー光を照射した際に、その周波数の整数倍の光が放出される現象で、2倍の周波数の光が発生する場合を第二高調波発生、3倍の場合を第三高調波発生と呼びます。レーザー光の波長を変換する際などに用いられます。そして近年は、光共振器や光導波路などの光通信用技術としてダイヤモンド非線形光学が進展してきました。 本研究では、ダイヤモンドの表面近傍に窒素−空孔(NV)センターと呼ばれる欠陥を導入してダイヤモンド結晶の対称性を操作し、第二高調波、第三高調波発生など、広帯域の波長変換を行うことに成功しました。 この実験で波長変換の効率を評価したところ、第二高調波が第三高調波と同程度の高効率で生成されていました。その理由として、第二高調波がダイヤモンドの表面に極めて近い深さ約35nm(nmは10億分の1メートル)の領域で発生し、第三高調波の駆動力となっていることが明らかになりました。 また、このダイヤモンド中NVセンターの非線形光学効果により、波長1350~1600nmの赤外光が、波長450~800nmの可視~近赤外光にわたる広い帯域で波長変換でき、短い波長ほどその変換効率が高いことも判明しました。 ダイヤモンド中NVセンターによる第二高調波発生、すなわち電場振幅の二乗に比例する2次の非線形光学効果が可能となれば、ダイヤモンド結晶では今までできなかった電場による屈折率変調(電気−光学効果)なども可能となり、ダイヤモンド非線形光学の新領域を開拓できます。さらに、第二高調波発生や電気−光学効果などを利用した新しい量子センシングの開発への貢献も期待されます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 先端科学技術研究科 応用物理学領域
安 東秀准教授
【研究の背景】
天然のダイヤモンド単結晶は、地球のマントルにおいて超高温かつ超高圧下で生成されます。高純度のダイヤモンド単結晶は希少で高価なため、産業応用は限られていました。しかし、20世紀中頃から、不純物濃度が極めて低い高純度ダイヤモンド単結晶が人工的に安価に作製できるようになり、エレクトロニクスや光学分野で応用されるようになりました。
高純度ダイヤモンド単結晶は結晶学的に対称性が高く、空間反転対称性を持つ(対称点を中心に結晶を反転させると結晶構造が重なる)ため、非線形光学の観点では2次の非線形感受率注1)がゼロとなり、2次の非線形光学効果が発現しません。そのため、光学分野でのダイヤモンドの研究開発は、光カー効果注2)や2光子吸収注3)など、もっぱら3次の非線形光学効果を基に光共振器や光導波路に関する研究が行われてきました。応用上でも重要である2次の非線形光学効果の研究はほとんど行われて来なかったのです。しかし、最近の研究で、高純度ダイヤモンド単結晶に窒素−空孔(Nitrogen-Vacancy: NV)センター注4)と呼ばれる格子欠陥を導入することにより、欠陥準位を介したマイクロ波による発光制御が可能になり、この原理を用いた量子センシング注5)の研究が活発になっています。
今回、本研究チームは、高純度ダイヤモンド単結晶の表面近傍にNVセンターを導入してダイヤモンド単結晶の対称性を操作し、第二高調波注6)および第三高調波の発生について研究しました。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ赤外域の波長で瞬く超短パルスレーザー注7)を、NVセンターを導入した高純度ダイヤモンド単結晶に照射し、表面近傍から発生した第三高調波に加えて、第二高調波を世界で初めて観察することに成功しました。
具体的には、波長1350nmの赤外パルスレーザー光を励起光として照射すると、第二高調波が1/2波長の約675nmに、また第三高調波が1/3波長の約450nmに発生することが明らかになりました(参考図1)。この時、レーザーを照射されたダイヤモンド単結晶は紫色(赤色と青色の混成色)に発光していることが分かります(参考図1挿入写真)。
従来のダイヤモンド中NVセンターの研究では、連続発振グリーンレーザー(波長532nm)を照射した際に、NVセンターの欠陥準位を介した発光が、約660nmを中心とした波長領域に現れることが分かっています。このような既知の発光である可能性を取り除き、今回観測された約675nmの発光が第二高調波発生であることを確かめるため、励起レーザーの波長を掃引して波長変換特性を調べました。その結果、励起レーザーの波長の変化に応じて、第二高調波だけでなく第三高調波の発光波長が逐次変化することが確かめられました(参考図2)。これにより、今回観測された発光は、常に660nmを中心とした波長領域に観測される従来の欠陥準位を介した発光ではなく、欠陥により結晶の対称性が崩れることによる2次の非線形光学効果、すなわち第二高調波発生であることが明らかになりました。さらに、その変換効率は短波長ほど大きくなり、最高で5x10-5に達することが分かりました。今回、第二高調波がダイヤモンドの表面近傍約35nmの非常に薄い領域から発生していることを鑑みても、極めて高い変換効率であることが分かります。
また、励起レーザーの偏光角を回転させることで、第二高調波と第三高調波の発光強度の変化を調べたところ、それらの偏光角依存性はNVセンターを導入する前の高純度ダイヤモンドのパターンとは明らかに異なることが分かりました(参考図3)。特に、NVセンターを導入したダイヤモンドでは、第二高調波と第三高調波のパターンが若干の回転を除けば非常に似ていることが分かり(参考図3bとc)、これらのことから、第三高調波は第二高調波が駆動力になっていることも示唆されました。
【今後の展開】
本研究チームは、2次の非線形光学効果である第二高調波発生や電気−光学効果を用いた量子センシング技術を深化させ、最終的にダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングの研究を進めています。今後は、フェムト秒パルスレーザー技術が持つ高い時間分解能と、走査型プローブ顕微鏡注8)が持つ高い空間分解能とを組み合わせ、ダイヤモンドのNVセンターから引き出した2次の非線形光学効果が、電場や温度のセンシングに応用できることを示していきます。さらに、今回の成果は、ダイヤモンドNVセンターにより、2次の非線形光学効果のみならず、4次、6次以上の高次の非線形光学効果の開発に貢献することが期待されます。
【参考図】
図1.本研究に用いた実験手法と結果
NVセンターを導入したダイヤモンドに波長1350nmの励起光を照射し、その発光スペクトルを分光器で測定すると、波長約675nmに第二高調波(SHG)が、また約450nmに第三高調波(THG)が発生することが分かった。これは、エネルギーω(波長にすると1350nm)の2光子からエネルギー2ω(波長にすると675nm)の第二高調波がNVセンターによる結晶の対称性の崩れから発生していることに相当する(挿入図)。
図2.変換効率の発光波長依存性
第二高調波(SHG)と第三高調波(THG)の変換効率を励起レーザーの波長を変化させて記録した。
図3.発光強度の励起光偏光角依存性とエネルギーダイヤグラム
高純度ダイヤモンド(Pure diamond)(a)およびNVセンターを導入したダイヤモンド(NV diamond)において、第二高調波(SHG) (b)と第三高調波(THG) (c)の発光強度の励起光偏光角依存性をプロットしたもの。(d) 第二高調波発生から第三高調波発生へ向かうエネルギーダイヤグラムを示す。
【用語解説】
注1) 非線形感受率
物質の光への応答は、パルスレーザー光のように光電場振幅が大きくなると振幅に比例せず、非線形な非線形光学効果となる。非線形感受率は非線形光学効果の大きさを特徴づける光学定数である。
注2) 光カー効果
媒質中に光が入射した際に、媒質の屈折率が光強度に比例して変化する現象で、1875年にJohn Kerrによって発見された3次の非線形光学効果(電場振幅の三乗に比例する効果)の一種である。
注3) 2光子吸収
二つの光子が同時に媒質に吸収される現象で、3次の非線形光学効果の一種である。
注4) 窒素−空孔(NV)センター
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)センター」は、ダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NVセンターには、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NVセンターを持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
注5) 量子センシング
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
注6) 第二高調波
二つの同じ周波数(波長)を持つ光子が非線形光学結晶に入射すると、入射した光子の2倍の周波数(半分の波長)の光を発生する現象のこと。2次の非線形光学効果(電場振幅の二乗に比例する効果)の一種である。
注7) 超短パルスレーザー
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注8) 走査型プローブ顕微鏡
小さいプローブ(探針)を試料表面に近接させ、探針を表面に沿って動かす(走査する)ことで、試料の原子レベルの表面構造のみならず、温度や磁性などの物理量も画像化できる顕微鏡である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)による支援を受けて実施されました。
【掲載論文】
題名 | Second-harmonic generation in bulk diamond based on inversion symmetry breaking by color centers. (色中心による反転対称性の破れに基づくバルクダイヤモンドの第二高調波発生) |
著者名 | Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase |
掲載誌 | ACS Photonics |
掲載日 | 2021年3月18日 |
DOI | 10.1021/acsphotonics.0c01806 |
令和3年3月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/03/18-1.html学生の中村さんが令和2年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞

学生の中村 航大さん(博士前期課程1年、環境・エネルギー領域、大平研究室)が令和2年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。
北陸・信越支部発表奨励賞は、応用物理学会北陸・信越支部が開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的として授与されるものです。
今回、令和2年度応用物理学会北陸・信越支部学術講演会は、11月28日にオンラインで開催されました。
■受賞年月日
令和2年11月28日
■発表題目
封止材無しn型フロントエミッタ型結晶Si太陽電池モジュールの電圧誘起劣化
■講演の概要
近年、太陽光発電システムの導入が急増しているが、そのほとんどは、モジュールに封止材を有している。封止材を有した結晶シリコン(c-Si)太陽電池モジュールは、いくつか問題点があり、その一つである電圧誘起劣化(PID)は、太陽電池モジュールのアルミフレームとセル間の電位差に起因して性能が低下する現象である。PIDは、Na+侵入や電荷蓄積が封止材を経由して起きるため、封止材を無くせばこの問題は解決できると考えられる。本研究では、今後の普及が期待される、n型c-Siを基板に用い、光入射側にp型エミッタ層があるn型フロントエミッタ型c-Si太陽電池モジュールを作製し、封止材の有無がPIDにおよぼす影響を調査した。封止材の無いモジュールでは、SiNx膜からの電子移動やNa+の侵入の経路が存在しないため、性能低下が抑制できた。また、わずかに電荷蓄積型のPIDが見られたのは、リーク電流の経路を介してSiNx膜から電子が流出することにより正電荷が蓄積し、表面再結合が増大したためと考えられる。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。ご指導いただいた、大平圭介教授、Huynh Thi Cam Tu特任助教ならびに研究室のメンバーには厚く御礼申し上げます。本受賞を励みに、今後もより一層精進して参りたいと思います。
令和2年12月7日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/12/7-2.html