研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。学生のPUNYASLOKAさんとPATNAIKさんがCEAT2023においてBest Presenter Awardを受賞
学生のPUNYASLOKA, Saibrataさん(博士後期課程2年、物質化学フロンティア研究領域、松見研究室)とPATNAIK, Kottisa Sumalaさん(博士後期課程1年、物質化学フロンティア研究領域、松見研究室)がThe clean energy and technology conference(CEAT)2023において、Best Presenter Awardを受賞しました。
CEAT2023は、クリーンで再生可能なエネルギーの研究、開発、応用、提唱に関わる問題に焦点を当てた国際会議です。マレーシアのマラヤ大学が主催し、本学やマレーシア国立大(UKM)等との共催で、令和5年6月7日から6月8日にかけて、現地とオンラインでのハイブリッド形式にて開催されました。
同会議は、クリーンエネルギーと技術、電動モビリティの分野において、アカデミア及び産業界との国際的な意見交換のプラットフォームを提供することを目的として開催され、マレーシア国内及び国際運営委員会の審議により、口頭発表の中から優れた発表を行った学生に対し、Best Presenter Award(優秀講演賞)が授与されました。
CEAT2023は、International Symposium on Electric Mobility (ISEM)と併催で行われました。
※参考:CEAT2023ホームページ
■受賞年月日
令和5年6月8日
【PUNYASLOKA, Saibrataさん】
■研究題目
Study of Storage and Rate Capability of Lithium-Ion Secondary Batteries Using Bithiophene Containing Imine-Based Conjugated Polymer as Anodic Active Material
■研究者、著者
Saibrata Punyasloka, Noriyoshi Matsumi
■受賞対象となった研究の内容
ドナーアクセプター構造を有する共役系高分子をリチウムイオン二次電池用負極活物質として用いることにより、急速充放電能において好ましい特性が発現することが見出された。また、充電メカニズムにおけるキャパシティヴな寄与及びインターカレーションによる寄与に関しても電気化学的に分析しつつ、本系における挙動の詳細な知見を明らかにした。
■受賞にあたって一言
I would like to thank the 6th Clean Energy and Technology Committee for considering me for the award. I also would like to take this opportunity to extend my sincere and heartfelt gratitude to Prof. Noriyoshi Matsumi for his constant guidance. Further, I would also like to thank all the members of the Matsumi Lab, friends, and family for their continual support. I see this award as a motivation and encouragement which will push me forward in my research career and help me achieve greater heights.
Thank you.


■研究題目
Preparation of Anodic Active Materials Suitable for High-Rate Charge-Discharge by Pyrolysis of Poly(benzimidazole/amide) Copolymers
■研究者、著者
Kottisa Sumala Patnaik, Bharat Srimitra Mantripragada, Rajashekar Badam, Koichi Higashimine, Xianzhu Zhong, Tatsuo Kaneko and Noriyoshi Matsumi
■受賞対象となった研究の内容
ポリ(ベンズイミダゾール/アミド)共重合体を前駆体とした焼成により得た窒素ドープカーボンにおいては、層間距離がポリベンズイミダゾール由来の窒素ドープカーボンと比較してさらに拡張し、リチウムイオン二次電池の負極活物質として、イオン拡散能や急速充放電能においてさらに優れた特性が観測された。また、本材料を用いて構築したフルセルも良好に作動した。
■受賞にあたって一言
I would like to take this opportunity to thank the 6th Clean Energy and Technology Conference (CEAT) jury members for bestowing me with this award. I would like to take this opportunity to thank Matsumi Sensei for his invaluable guidance and support all the time. I would also like to thank all our colleagues in Matsumi lab, family members, friends, and loved ones who helped me receive this award. This award motivates me to do more hard work and inspires me to perform better in the future. I hope my research work can benefit society at large in the future.
令和5年8月7日
液体金属ナノ粒子を活用するがん光免疫療法の開発に成功

液体金属ナノ粒子を活用するがん光免疫療法の開発に成功
ポイント
- 免疫賦活化作用を有する多機能性の液体金属ナノ粒子の開発に成功
- 当該液体金属ナノ粒子がEPR効果により腫瘍に集積し、マウスに移植したがんの可視化と、免疫賦活化ならびに光熱変換によるがん治療が可能であることを実証
- 当該ナノ粒子と近赤外光を組み合わせた新たながん診断・治療技術の創出に期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 物質化学フロンティア研究領域の都 英次郎准教授の研究グループは、液体金属ナノ粒子*1を活用した新しいがん光免疫療法の開発に成功した(図1)。 |
ガリウム・インジウム(Ga/In)合金からなる室温で液体の金属(液体金属)は、高い生体適合性と優れた物理化学的特性を有することが知られており、とりわけナノ粒子化した液体金属をバイオメディカル分野に応用する研究に大きな注目が集まっている。都准教授の研究チームでも、免疫賦活化作用のある物質を液体金属に組み合わせ、がん患部に選択的に送り込むことができれば、免疫による高い抗腫瘍作用の発現が期待できるだけでなく、生体透過性の高い近赤外光*2を用いることで、患部の可視化や光熱変換を利用した、新たながんの診断や治療が実現できるのではないかと考え、研究をスタートさせた。
図1. 近赤外光が液体金属ナノ粒子に当たり、免疫細胞
(T細胞と樹状細胞)を活性化している様子(イメージ)
研究チームは、液体金属をがん患部まで送り、免疫細胞を賦活化させるために、液体金属表面に免疫チェックポイント阻害薬(抗PD-L1抗体*3)、免疫調整薬(イミキミド*4)、蛍光試薬(インドシアニングリーン*5)、ポリエチレングリコール-リン脂質複合体*6を吸着させたナノ粒子の作製を試みた。Ga/In液体金属、イミキミド、インドシアニングリーン、ポリエチレングリコール-リン脂質複合体の混合物に超音波照射後、抗PD-L1抗体を添加し、一晩培養するだけで、球状ナノ粒子の構造を水中で安定的に維持可能な簡便なナノ粒子を形成できることを見出した。この方法で調製した液体金属ナノ粒子は、10日以上の粒径安定性を有していること、細胞に対し高い膜浸透性を有し毒性が無いこと、近赤外光照射により発熱が起こることが確認できたため、がん患部の可視化と治療効果について試験を行った。
大腸がんを移植して1週間後のマウスに、液体金属ナノ粒子を投与し、24時間後に740~790 nmの近赤外光を当てたところ、がん患部だけが蛍光を発している画像が得られ、当該ナノ粒子がEPR効果*7によりがん組織に取り込まれていることが分かった(図2A)。そこで、当該ナノ粒子が集積した患部に対して808 nmの近赤外光を照射したところ、免疫賦活化と光熱変換による効果で14日後には、がんを完全に消失させることに成功した(図2B)。
図2.(A) 液体金属ナノ粒子の標的腫瘍内における蛍光特性
(B) 液体金属ナノ粒子による抗腫瘍効果(腫瘍は完全消失) |
さらに、液体金属ナノ粒子の細胞毒性と生体適合性を評価した。2種類の細胞[マウス大腸がん由来細胞(Colon-26)、ヒト胎児肺由来正常線維芽細胞(MRC5)]を培養する培養液中に、液体金属ナノ粒子を、添加量を変えて投与・分散させ、24時間後に細胞内小器官であるミトコンドリアの活性を指標として細胞生存率を測定した結果、細胞生存率の低下は見られず、細胞毒性はなかった。また、液体金属ナノ粒子をマウスの静脈から投与し、生体適合性を血液検査(1週間調査)と体重測定(約1ヵ月調査)により評価したが、いずれの項目でも液体金属ナノ粒子が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発した液体金属ナノ粒子が、がん診断・免疫療法の基礎に成り得ることを示すだけでなく、ナノテクノロジー、光学、免疫学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、ドイツの化学・生物系トップジャーナル「Advanced Functional Materials」誌(Wiley社発行)に7月28日(現地時間)に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
【論文情報】
掲載誌 | Advanced Functional Materials(Wiley社発行) |
論文題目 | Light-Activatable Liquid Metal Immunostimulants for Cancer Nanotheranostics |
著者 | Yun Qi, Mikako Miyahara, Seigo Iwata, Eijiro Miyako* |
掲載日 | 2023年7月28日 |
DOI | 10.1002/adfm.202305886 |
【用語解説】
室温以下あるいは室温付近で液体状態を示す金属のこと。例えば、水銀(融点マイナス約39℃)、ガリウム(融点約30℃)、ガリウム-インジウム合金(融点約15℃)がある。
800~2500 nmの波長の光。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
免疫チェックポイント阻害剤の一つ。がん細胞や抗原提示細胞が発現するPD-L1に結合することによりT細胞上のPD-1との相互作用を阻害する。この結果、T細胞への抑制シグナル伝達が阻害され、T細胞の活性化が維持され、抗腫瘍作用が発現される。
樹状細胞を活性化させることが知られており、早期の基底細胞皮膚がんや特定の皮膚疾患の治療に用いられる薬物。
肝機能検査に用いられる緑色色素のこと。近赤外光を照射すると近赤外蛍光を発することができる。
ポリエチレングリコールとリンを含有する脂質(脂肪)が結合した化学物質。脂溶性の薬剤を可溶化させる効果があり、ドラッグデリバリーシステムによく利用される化合物の一つ。
100nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみがん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
令和5年8月4日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/08/04-1.html大学見本市2023~イノベーション・ジャパンに本学が出展
8月24日(木)・25日(金)の2日間、東京ビッグサイト南展示棟(東京都江東区有明)で国内最大規模の産学マッチングイベントである「大学見本市2023~イノベーション・ジャパン」が開催されます。
本学からは以下の2件が出展します。
ご来場の際にはぜひお立ち寄りください。
日 時 | 8月24日(木) 10時00分~17時30分 8月25日(金) 10時00分~17時00分 |
会 場 | 東京ビッグサイト 南展示棟 南1ホール(東京都江東区有明3丁目11番1) |
大学等 シーズ展示 |
超越バイオメディカルDX研究拠点 物質化学フロンティア研究領域 松村和明 教授 【小間番号】H-56 高田健司 助教 【小間番号】C-68 |
詳細はこちらをご覧ください。
・イノベーション・ジャパン2023公式サイト
・イノベーション・ジャパン2023出展課題一覧
物質化学フロンティア研究領域の都准教授らの論文がAdvanced Science誌の扉絵に採択

物質化学フロンティア研究領域の都 英次郎准教授らの「阿吽の呼吸で癌を倒す!-灯台下暗し:最強の薬は腫瘍の中に隠されていた-」に係る論文が、Advanced Science誌の扉絵に採択されました。
なお、本研究は、科研費基盤研究(A)(23H00551)、科研費挑戦的研究(開拓)(22K18440)、科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Advanced Science, Volume 10, Issue20
扉絵掲載日:2023年7月26日
■著者
Yamato Goto, Seigo Iwata, Mikako Miyahara, Eijiro Miyako*
■論文タイトル
Discovery of Intratumoral Oncolytic Bacteria Toward Targeted Anticancer Theranostics
■論文概要
腫瘍組織から強力な抗腫瘍作用のある複数の細菌[A-gyo(阿形)、UN-gyo(吽形)、AUN(阿吽)と命名]の単離に成功しました。なかでもAUN(A-gyoとUN-gyoからなる複合細菌)は、様々な癌腫に対して高い抗腫瘍活性を示すだけでなく、近赤外光を照射すると、標的とする腫瘍内で強い蛍光を発現することが明らかになっています。
扉絵詳細:https://onlinelibrary.wiley.com/doi/10.1002/advs.202370131
論文詳細:https://onlinelibrary.wiley.com/doi/10.1002/advs.202301679
令和5年7月28日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/07/28-1.html第2回 超越バイオメディカルDX研究拠点エクセレントコアセミナー

セミナーを下記のとおり開催しますので、ご案内します。
開催日時 | 令和5年7月21日(金) 15:00~17:00 |
場 所 | JAISTイノベーションプラザ 2F シェアードオープンイノベーションルーム (要予約:定員30名) |
講 師 | LECOMMANDOUX, Sébastien, Ph.D. Professor of University of Bordeaux, France |
講演題目 | 「Biomimetic protein bioconjugates for biomaterials and artificial organelles design 」 |
使用言語 | 英語 |
参加申込・ お問合せ |
下記の担当へ前日までにお申し込みください。 (参加費無料) 北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点長 松村 和明 (E-mail:mkazuaki@jaist.ac.jp) |
eMEDX(イーメディックス)見学会 ~超越バイオメディカルDX研究拠点の力で生まれる未来~
下記のとおり、超越バイオメディカルDX研究拠点(eMEDX/イーメディックス)の見学会を開催しますので、ご案内します。
経済産業省令和3年度「産学連携推進事業費補助金(地域の中核大学の産学融合拠点の整備)」(Jイノベプラットフォーム型)の補助事業の採択を受け今年度より開設された当研究拠点は、DX・スタートアップ人材の育成、バイオメディカルベンチャーの創出を含む地域社会の発展に積極的に貢献し、他地域からの企業誘致などを通じて、能美市旭台に位置するいしかわサイエンスパークの活性化にもつながる取り組みです。データ駆動型の最先端DXを基盤として、疾病の超早期診断、創薬ツール、再生医療用バイオマテリアル、機能性食品、アンチエイジングなど多彩な業種・業界と協働して研究開発を行うための設備や体制を構築します。
当見学会では、施設紹介や研究所見学、担当教員による研究紹介などを通じて、当研究拠点について周知することを目的としています。本学のバイオメディカル研究の最先端を紹介する貴重な機会となりますので、ぜひご参加ください。
日 時 | 令和5年6月19日(月) 15:00~17:00 |
場 所 | 北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点(eMEDX/イーメディックス) 2Fシェアードオープンイノベーションルーム (石川県能美市旭台2-13/いしかわクリエイトラボ向かい) |
定 員 | 約30名 事前申込制 |
プログラム | 第1部 施設紹介および見学会(撮影可) 第2部 研究紹介および拠点活用事例紹介 第3部 個別面談 詳細は、別紙開催概要をご覧ください。 |
申込方法 | メールの件名と本文に「eMEDX見学会参加希望」と明記し、 ・所属 ・参加者氏名 ・メールアドレス(連絡先) ・個別相談会 希望する or 希望しない ・個別相談を希望する場合は、本学教員またはURAの氏名 上記をご記入のうえ、下記申込み先にお送りください。 |
申込締切 | 令和5年6月12日(月) |
申込み・ 問合せ先 |
北陸先端科学技術大学院大学 未来創造イノベーション推進本部 担当:山廣、竹田 E-mail:emedx@ml.jaist.ac.jp |

建物外観

最先端の研究を実現するオープンラボ

ワークスペースも完備

交流のためのシェアード
イノベーションルーム
令和5年6月8日
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2023/06/08-1.html阿吽の呼吸で癌を倒す! -灯台下暗し:最強の薬は腫瘍の中に隠されていた-

阿吽の呼吸で癌を倒す!
-灯台下暗し:最強の薬は腫瘍の中に隠されていた-
ポイント
- 腫瘍組織から強力な抗腫瘍作用のある複数の細菌(A-gyo、UN-gyo、AUNと命名)の単離に成功
- なかでもAUN(A-gyoとUN-gyoからなる複合細菌)は、様々な癌腫に対して高い抗腫瘍活性を示すだけでなく、近赤外光を照射すると、標的とする腫瘍内で強い蛍光を発現
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 物質化学フロンティア研究領域の都 英次郎准教授の研究グループは、マウス体内の腫瘍組織から強力な抗腫瘍作用のある複数の細菌の単離に成功した。 |
近年、低酸素状態の腫瘍内部で選択的に集積・生育・増殖が可能な細菌を利用した癌標的治療に注目が集まっている。しかし、従来の癌細菌療法は、基本的には抗癌剤の運搬という、いわゆる従来型のドラッグデリバリーシステムの概念を出ない。また、薬効も十分であるとはいえない。さらに、従来の癌細菌療法は、抗癌活性を発現するためには、遺伝子工学を用いた微生物の操作・改変が必須である。なお、米国や欧州ではヒトへの臨床試験が行われ第3相試験に進んでいる例もあるが、使用される細菌は、多くの場合、遺伝子組換えによって弱毒化したサルモネラ菌やリステリア菌であり、体内で再び強毒化するリスクを常に伴っている。
一方、腫瘍組織内に細菌が存在していることは古くから知られており、近年の研究では、腫瘍の種類ごとに独自の細菌叢が保有されていることが分かっている。また、このような腫瘍内細菌叢が抗癌剤の補助あるいは阻害の要因になっていることも明らかになっている。しかし、腫瘍内から直接細菌を取り出し、細菌そのものを癌の治療薬として活用する研究は皆無であった。
本研究では、マウス生体内の大腸癌由来腫瘍組織から主に3種類の細菌の単離・同定に成功し、これらの細菌にA-gyo(阿形;Proteus mirabilis*1)、UN-gyo(吽形;Rhodopseudomonas palustris*2)、そしてAUN(阿吽;A-gyoとUN-gyoから成る複合細菌)とそれぞれ命名した(図1)。これらの細菌を、大腸癌を皮下移植した担癌モデルマウスの尾静脈に投与したところ、低酸素状態の腫瘍環境内で高選択的に集積・生育・増殖が可能で、かつ高い抗腫瘍効果を示すことを発見した。とりわけ、AUNは、単回投与にも関わらず、A-gyoとUN-gyoの協奏作用により細胞障害性の免疫細胞を効果的に賦活化し、大腸癌、肉腫(サルコーマ)、転移性肺癌、薬物耐性乳腺癌といった様々な癌種に対して強力な抗腫瘍活性を示すことが明らかとなった(図2A)。また、AUNは、生体透過性の高い近赤外光*3によって標的とする腫瘍内で近赤外蛍光を発現することが分かった(図2B)。さらに、マウスを用いた生体適合性試験(血液学的検査、組織学的検査、細菌コロニーアッセイなど)を行った結果、いずれの検査からもAUNそのものが生体に与える影響は極めて少ないことが分かった。
これらの成果は、今回発見した細菌を用いた癌の診断・治療法の基礎に成り得るだけでなく、細菌学や腫瘍微生物学などの研究領域への新しい概念の創出として貢献することを期待させるものである。
本成果は、学際的オープンアクセスジャーナル「Advanced Science」誌(Wiley社発行)のオンライン版に2023年5月8日に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
図1. AUN(A-gyoとUN-gyoから成る複合細菌)がまさに
"阿吽の呼吸"によって癌細胞を倒している様子(イメージ)
図2. (A) AUNによる抗腫瘍効果(腫瘍は完全消失)
(B) AUNの標的腫瘍内における蛍光特性
【論文情報】
掲載誌 | Advanced Science(Wiley社発行) |
論文題目 | Discovery of Intratumoral Oncolytic Bacteria Toward Targeted Anticancer Theranostics |
著者 | Yamato Goto, Seigo Iwata, Mikako Miyahara, Eijiro Miyako* |
掲載日 | 2023年5月8日 |
DOI | 10.1002/advs.202301679 |
【用語解説】
酸素の存在下および不在下の両方の環境で生存可能な腸内細菌科に属するグラム陰性桿菌(通性嫌気性菌)。運動性、鞭毛を有する数マイクロメートルの棒状の形態を有する。寒天培地上では、Swarming(群化)により独特の波状のコロニー(白色)を形成する特性がある。
酸素の有無に関わらず生存可能な通性嫌気性の紅色非硫黄細菌に属し、運動性のある数マイクロメートルの棒状のグラム陰性桿菌。また、バクテリオクロロフィルから成る光捕集タンパク質を介した光合成を行う。
800~2500 nmの波長の光。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
令和5年5月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/05/08-1.html第1回 超越バイオメディカルDX研究拠点エクセレントコアセミナー

セミナーを下記のとおり開催しますので、ご案内します。
開催日時 | 令和5年4月21日(金) 16:00~17:30 |
場 所 | JAISTイノベーションプラザ 2F シェアードオープンイノベーションルーム (要予約:定員30名) |
講 師 | 1.Dr. Helmut Thissen Director of CSIRO's Biomedical Materials Translational Facility (BMTF) 2.Dr. Robin Rajan Assistant professor, Japan Advanced Institute of Science and Technology |
講演題目 | 1.「Translation of medical device technologies - what we have learned」 2.「Exploring the Molecular Mechanisms of Protein Aggregation Inhibition with Sulfobetaine Polymer Derivatives」 |
使用言語 | 英語 |
参加申込・ お問合せ |
下記の担当へ前日までにお申し込みください。 (参加費無料) 北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点長 松村 和明 (E-mail:mkazuaki@jaist.ac.jp) |
物質化学フロンティア研究領域の後藤教授の論文がCarbon誌の表紙に採択

ナノマテリアルテクノロジーセンターの後藤和馬教授(物質化学フロンティア研究領域)の論文が、米国炭素学会機関紙「Carbon」の表紙(front cover)に採択されました。
本研究は、後藤研究室および京都大学、岡山大学による共同研究の成果です。
■掲載誌
Carbon, Vol. 206, Page 84-93.
掲載日:2023年3月25日
■著者
Hideka Ando(特別研究学生、後藤研究室), Katsuaki Suzuki, Hironori Kaji, Takashi Kambe, Yuta Nishina, Chiyu Nakano, Kazuma Gotoh
■論文タイトル
Dynamic nuclear polarization - nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials
■論文概要
炭素材料は、化学反応の触媒や燃料電池・二次電池の電極、バイオマテリアルなど多種多様な分野での応用が期待されている。本研究ではNMR(核磁気共鳴分光法)による炭素材料の表面構造分析の感度を改善するため、信号強度増幅剤を用いた動的核偏極NMRを用いた。これまで不可能と考えられていた炭素表面上の微量のメチル基、水酸基などの表面官能基の検出に成功し、炭素材料の性質に大きな影響を及ぼす表面構造の微細な違いが検出可能となった。
表紙詳細:https://www.sciencedirect.com/science/article/pii/S0008622323001549
論文詳細:https://doi.org/10.1016/j.carbon.2023.02.010
令和5年3月31日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/03/31-1.html物質化学フロンティア研究領域セミナー「電池界面における誘電体を介した高速電荷移動」
日 時 | 令和5年3月16日(木)15:00~16:00 |
場 所 | マテリアルサイエンス系4棟8階 中セミナー室 |
講演題目 | 電池界面における誘電体を介した高速電荷移動 |
講演者 | 岡山大学 学術研究院自然科学学域(工学部) 准教授 寺西 貴志 氏 |
言 語 | 日本語 |
お問合せ先 | 北陸先端科学技術大学院大学 共通事務管理課共通事務第三係 (E-mail:ms-secr@ml.jaist.ac.jp) |
● 参加申込・予約は不要です。直接会場にお越しください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2023/03/10-1.html触媒インフォマティクスにおけるデータ問題とは(コメンタリー)
国立大学法人北陸先端科学技術大学院大学
国立大学法人北海道大学
触媒インフォマティクスにおけるデータ問題とは(コメンタリー)
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科物質化学フロンティア研究領域の谷池俊明教授は、北海道大学(総長・寳金清博、北海道札幌市)大学院理学研究院化学部門の髙橋啓介教授と共同で、触媒インフォマティクスの実践における最大の課題であるネガティブデータの欠損についてのコメンタリー(Commentary)論文を発表した。 |
物質、材料研究開発におけるデータ駆動型アプローチ、いわゆるマテリアルズインフォマティクスは、創世の時を終え、近年、研究開発の現場において爆発的に普及しつつある。その最大の課題として、原資となる高品質かつ大規模な実験データの入手が極めて難しいことがあげられる。谷池教授、髙橋教授らの研究グループは、これまで、ハイスループット実験[*1用語解説]を基盤として触媒インフォマティクスを開拓し、当該分野におけるデータの質と規模の問題に正面から取組んできた。
本論文では、触媒を中心とする既存の材料データにまつわる種々の問題、特に、低性能な触媒や合成の失敗など、功利的な視点ではネガティブと捉えられるデータの著しい欠落に関して、その原因や影響、将来的な対策等をまとめた。本論文により、当該分野や関連分野を含む研究者にデータ駆動型アプローチにおけるこれらのデータ問題への理解を深めてもらい、データ、特にネガティブデータの公開に対するマインドセットの修正につながることを期待したい。
本成果は、2023年2月27日(米国東部標準時間)にSpringer Nature発行「Nature Catalysis」のオンライン版に掲載された。
なお、本研究は、科学技術振興機構(JST)戦略的創造研究推進事業CREST研究領域「多様な天然炭素資源の活用に資する革新的触媒と創出技術」(研究総括:上田渉)における「実験・計算・データ科学の統合によるメタン変換触媒の探索・発見と反応機構の解明・制御」(研究代表:髙橋啓介)の支援を受けて行われた。
【論文情報】
掲載誌 | Nature Catalysis (Springer Nature) |
論文題目 | The value of negative results in data-driven catalysis research |
著者 | Toshiaki Taniike, Keisuke Takahashi |
掲載日 | 2023年2月27日(米国東部標準時間)にオンライン版に掲載 |
DOI | 10.1038/s41929-023-00920-9 |
【用語解説】
*1 ハイスループット実験
実験の回転速度をスループットと呼ぶ。ハイスループット実験とは高度な並列化や自動化によってスループットを劇的に改善した手法を指す。
令和5年3月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/03/08-1.html動的核偏極磁気共鳴法による炭素材料表面の微細構造の解析に世界で初めて成功 -次世代の炭素材料の開発と利用促進に貢献-

![]() ![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 国立大学法人京都大学 国立大学法人岡山大学 |
動的核偏極磁気共鳴法による炭素材料表面の微細構造の解析に世界で初めて成功
-次世代の炭素材料の開発と利用促進に貢献-
ポイント
- 次世代の炭素材料として、グラフェンや薄膜炭素といった材料が注目されている。炭素材料は、化学反応の触媒や燃料電池等の電極触媒としてだけでなく、ドラッグデリバリーシステムなどのバイオマテリアル分野を含め、多種多様な分野での応用が期待されている。
- NMR(核磁気共鳴分光法)による炭素材料の表面構造分析の感度を改善するため、信号強度増幅剤を用いた動的核偏極磁気共鳴法により、これまで同手法では不可能と考えられていた炭素表面の微量なメチル基、水酸基などの表面官能基の検出に成功した。
- これにより、炭素材料の性質に大きな影響を及ぼす表面構造の微細な違いが検出可能となった。
- 今後の炭素材料の表面構造制御ならびに様々な用途に応じた炭素材料の開発とその炭素材料の利用促進に貢献できる。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)ナノマテリアルテクノロジーセンターの後藤和馬教授、岡山大学大学院自然科学研究科の安東映香大学院生は、京都大学化学研究所の梶弘典教授、鈴木克明助教ならびに岡山大学学術研究院自然科学学域の神戸高志准教授、異分野融合先端研究コアの仁科勇太研究教授らと共同で、動的核偏極磁気共鳴法(DNP-NMR)による炭素材料の微細表面構造解析に成功した。これまで不可能とされていたDNP-NMR法による炭素表面のメチル基や水酸基などの表面官能基の信号の大幅な増幅に成功し、炭素材料の性質に大きな影響をおよぼす微量のメチル基、水酸基の観測に成功した。今後の炭素材料の表面構造制御ならびに様々な用途に応じた炭素材料の開発とその炭素材料の利用促進に貢献できる。 |
【研究の背景】
次世代炭素材料の一つとしてグラフェンや薄膜炭素が注目されており、その応用に関して数多くの研究が行われています。グラフェンや薄膜炭素材料の作製にはいくつかの方法があり、黒鉛を化学的に酸化して炭素層を剥離することで、酸化グラフェンを得る方法などが知られています。この酸化グラフェンは触媒となる金属ナノ粒子を担持する[用語解説]ことや、ポリマーやカーボンナノチューブなどと複合化ができるため、化学反応の触媒、燃料電池等の電極触媒としてだけでなく、ドラッグデリバリーシステムなどのバイオマテリアル分野を含め、多種多様な分野での応用が期待されています。
このような炭素材料の表面には数多くの欠陥構造があり、そこには水酸基やカルボキシル基、エポキシ基、メチル基などの表面官能基が存在していることが知られています。炭素材料の性質はこの表面官能基の種類や結合量により、大きく変わることも知られています。よって、この表面官能基の状態を把握し、制御することが材料開発において重要となります。従来、炭素材料の表面官能基についてはX線光電子分光法(XPS)や昇温脱離法(TPD)といった分析手段により解析されてきましたが、これらの方法では分析の感度は良いものの、精度に課題がありました。一方、本研究で用いた核磁気共鳴分光法(NMR)[用語解説]では、官能基の種類の分析は高精度で行えるものの、従来の方法では検出感度が低いという問題があり、高精度かつ高感度な炭素材料の表面構造の分析手段が望まれていました。
【研究の内容】
本研究では、NMR による分析の感度を改善するために、近年溶液中の分子の水素(1H)原子や炭素(13C)原子を高感度で観測する技術として注目されている、動的核偏極(DNP)[用語解説]という手法を用いた分析を試みました。NMRは、磁場中に置かれた原子核が特定の周波数の電磁波(ラジオ波)を吸収する現象を利用することによって、対象原子の状態を観測する分析手段で、化学物質の同定や病院のMRI検査などに広く用いられています。DNP-NMRは、測定したい試料にマイクロ波(MW)を同時に照射することで、試料中に含まれる信号強度増幅に用いるラジカル分子[用語解説]の磁化を原子核に移し、NMRの信号強度を最大で200倍以上に増幅させる画期的手法です。しかし、炭素材料はマイクロ波を吸収し効率的な磁化移動を阻害する上に、マイクロ波吸収による温度上昇も生じることからDNP効果が減少するという問題があるため、これまでDNP-NMRを用いた炭素材料の信号強度増幅は不可能とされてきました。
これに対し、本研究では、DNPによる信号強度増幅を可能にするため、DNP測定で用いられる信号強度増幅用のラジカルと溶媒の組み合わせを、従来のTEKPol/有機溶媒系からAMUPol/水系に変更し、水酸基やカルボキシル基の存在により親水性が増していると考えられる炭素表面へラジカル分子の接近を可能とすることで、DNPによる信号強度増幅を実現しました。また、炭素材料自体がその欠陥構造内に所有している内在ラジカルを用いたDNP信号強度増幅現象を発現することも観測しました。この手法により、従来の一般的NMR測定ではほとんど観測できなかった酸化グラフェン末端のメチル基を、1H-13C CP/MAS 固体NMR法[用語解説]にて明確に観測することに成功しました。このとき、信号強度増幅は10倍以上となります。また、スクロースを焼成して作製した無定形炭素材料[用語解説] においても、水酸基の信号強度の10倍以上の増幅を達成しました。
本研究により、今後DNP-NMRを用いて炭素材料の微細表面構造の解析が進むことが期待されます。DNP-NMRを用い、炭素材料の表面構造に残存する微少量の表面官能基の存在を明らかにすることで、それぞれの炭素材料の表面状態の違いを解明することができ、これにより、各種触媒元素の担持への適合性などを知ることができるようになると期待されます。適合性が判明することによって、多種多様な分野の各種用途に最適化した薄膜炭素材料の開発に大きく貢献できることが期待されます。
本研究成果は、2月14日にElsevier社が発行する学術雑誌「Carbon」のオンライン版に掲載されました。また、3月25日に出版予定の当該誌206号において、表紙(front cover)に採択されることになりました。
【論文情報】
論文題目 | Dynamic nuclear polarization - nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials |
雑誌名 | Carbon |
著者 | Hideka Ando, Katsuaki Suzuki, Hironori Kaji, Takashi Kambe, Yuta Nishina, Chiyu Nakano, Kazuma Gotoh |
WEB掲載日 | 2023年2月14日 |
出版予定日 | 2023年3月25日 |
DOI | 10.1016/j.carbon.2023.02.010 |
図 DNP-NMRによる観測(信号強度増幅は10倍以上となる。)
【用語説明】
担持:他の物質を固定する土台となる物質のことを担体といい、担持は、その土台に金属などの物質を付着させること。金属をグラフェン上に担持した触媒は、水酸化触媒や酸化触媒として工業的にも利用されている。
NMR (Nuclear Magnetic Resonance) :核磁気共鳴分光法。試料を磁場中に置き、電磁波を照射すると、元素ごとに特定の周波数を吸収する「共鳴」現象が生じる。周波数を観測することで水酸基、カルボキシル基、メチル基などを分別して検出が可能なため、有機化合物の分析などに広く用いられている。
DNP (Dynamic Nuclear Polarization):動的核偏極。NMR測定時にマイクロ波を照射することで測定核近傍のラジカルの磁化を測定対象原子核に移動させる手法。NMRでの共鳴信号検出の際のエネルギー準位間の電子の占有数差を大きく変化させることにより、通常のNMR信号に比べて数倍から最大で200倍以上の信号強度を得ることができる。
ラジカル:不対電子を持つ原子や分子。共有電子対を形成していないため、極めて不安定かつ反応性が高い状態である。
1H-13C CP/MAS 固体NMR:体交差分極(CP)マジック角回転(MAS)NMR法。1H元素の磁化を13C元素に特定条件下で移動させ、さらに試料全体を数kHz以上の超高速回転で回転させることにより、炭素のNMR信号を高感度、高精度で検出する実験手法。
無定形炭素材料:黒鉛やダイヤモンド、カーボンナノチューブなどのような規則的構造をもつ炭素材料とは異なり、結晶構造を持たない非結晶性炭素。但し、非結晶性ではあるが完全に規則構造が無い訳ではなく、ある程度炭素の層状構造や内部細孔などが存在することが知られている。無定形炭素の一種である難黒鉛化性炭素(ハードカーボン)はリチウムイオン電池・ナトリウムイオン電池の負極として用いられている。
令和5年3月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/03/07-1.html物質化学フロンティア研究領域の松村教授らの論文がJournal of Materials Chemistry B誌の表紙に採択
松村研究室(物質化学フロンティア研究領域)、本郷研究室(サスティナブルイノベーション研究領域)、兵庫県立大学大学院工学研究科 遊佐真一准教授らの論文が英国王立化学会(Royal Society of Chemistry)のJournal of Materials Chemistry B誌の表紙(Back cover)に採択されました。
本研究成果は、松村研究室、本郷研究室および兵庫県立大学との共同研究によるものです。また、本研究は、科研費「学術変革領域研究(A)公募研究」の支援により実施されました。
■掲載誌
Journal of Materials Chemistry B, 21 February 2023, Issue 7,Page 1381 to 1600
掲載日:2023年2月15日
■著者
Nishant Kumar (博士後期課程3年、松村研究室), Kenji Oqmhula(博士後期課程2年、本郷研究室), Kenta Hongo, Kengo Takagi(兵庫県立大学),Shin-ichi Yusa(兵庫県立大学), Robin Rajan, Kazuaki Matsumura
■論文タイトル
Mechanistic insights and importance of hydrophobicity in cationic polymers for cancer therapy
■論文概要
カチオン性高分子に疎水性部位を導入することで飛躍的にガン細胞への障害性が向上することを確認し、そのメカニズム解明の一端として、合成高分子とガン細胞の細胞膜への相互作用の向上を分子動力学シミュレーション等で明らかにしました。
この研究結果は、今後の新しい高分子抗ガン剤の分子設計の指針となることが期待されます。
表紙詳細:https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb90030d
論文詳細:https://pubs.rsc.org/en/content/articlelanding/2023/tb/d2tb02059a/unauth
令和5年2月16日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/02/16-2.html【2/28(火)開催】第3回物質化学フロンティアシンポジウム

開催日時 | 令和5年2月28日(火)15:00~17:45 |
実施方法 | 現地開催、ネット配信(ハイブリッド開催) |
会 場 | 北陸先端科学技術大学院大学 知識科学系講義棟 2F 中講義室(石川県能美市旭台1-1) 及び WebEx |
講演者 | 招待講演者 出口 茂 海洋研究開発機構 生命理工学センター長 大久保 將史 早稲田大学 先進理工学部 教授 本学講演者 Robin RAJAN 助教(物質化学フロンティア領域) Athchaya SUWANSOONTORN 研究員(サイレントボイスセンシング国際研究拠点) |
言 語 | 日本語(英語使用可) |
申込み | 以下の申込フォームより、参加ご希望の方は2/27(月)までにお申し込みください。 https://forms.gle/mSRpYcDVFmyhxQ729 |
リチウムイオン2次電池の急速充放電を促すリチウムボレート型のバイオマス由来バインダーを開発

リチウムイオン2次電池の急速充放電を促す
リチウムボレート型のバイオマス由来バインダーを開発
ポイント
- リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。
- リチウムイオン2次電池のグラファイト負極用バインダーとして、カフェ酸*1とLiBH4(水酸化ホウ素リチウム)との脱水素カップリング重合によりリチウムボレート型水溶性ポリマーを合成した。
- 本負極バインダーを適用した系では、低い最低被占軌道(LUMO)を持つポリマーによりホウ素を含むSEI(固体電解質界面)が形成され、界面抵抗が低減することが分かった。また、同バインダーを用いることにより、負極内におけるリチウムイオンの拡散係数の向上が観測された一方、リチウム挿入反応の活性化エネルギーは減少することが観測された。
- このことから、従来負極バインダーとして使用されているPVDF(ポリフッ化ビニリデン)やCMC-SBR(カルボキシメチルセルロース-スチレン - ブタジエンゴム)をバインダーとした系と比較して急速充放電条件において顕著な適性を示した。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の物質化学フロンティア研究領域 松見紀佳教授、ラージャシェーカル バダム元講師、アヌシャ プラダン研究員、宮入諒矢元大学院生、高森紀行大学院生(博士後期課程2年)は、リチウムイオン2次電池*2の急速充放電を促すリチウムボレート型バイオベースバインダーの開発に成功した。 |
【研究の内容と背景】
リチウムイオン2次電池の開発においては、高容量化やサイクル耐久性の向上、高電圧化など様々な開発課題解決に向けた取組みが行われているが、それと同時に急速充放電の実現に向けた技術開発についても高い関心が集まっている。しかしながら、その実現には固体中のリチウムイオンの拡散速度の向上や電極―電解質界面の特性、活物質の多孔性などの諸ファクターの検討を要している。
今回、本研究においては、カフェ酸とLiBH4(水酸化ホウ素リチウム)をテトラヒドロフラン溶液中で脱水素カップリング重合することによって、リチウムボレート型バイオベースポリマーを合成した(図1)。合成によって得られたポリマーは水溶性であり、環境負荷の少ない水系スラリーからの負極作製が可能であった。また、得られたポリマーの構造はNMR、XPS、SEM等の各測定によって決定した。
まず、合成によって得られたポリマーを負極バインダーとして用い、アノード型ハーフセル*3を構築し、性能を評価した。本バインダーを用いた系においては、PVDF(ポリフッ化ビニリデン)やCMC-SBR(カルボキシメチルセルロース-スチレン - ブタジエンゴム)を用いた系と比較して、リチウム挿入反応のピークにおけるオーバーポテンシャルが20 mV-100 mV低下し、よりスムーズな電極反応が示唆された。また、Randles-Sevcik式から、負極におけるリチウムイオンの拡散係数を算出すると7.24 x 10-9 cm2s-1であり、PVDFやCMC-SBR系バインダーと比較して有意に高い値であった。
さらに、インピーダンス測定を経て算出したリチウム挿入反応の活性化エネルギーは、本バインダー系において22.6 kJ/molであり、PVDF(28.78 kJ/mol)やCMC-SBR系(58.34 kJ/mol)バインダーと比較して有意に低下した。
次に、充放電試験の結果、1C*4条件において100サイクル時点で放電容量は本バインダー系では343 mAhg-1であり、PVDFで278 mAhg-1、CMC-SBRで188 mAhg-1であった(図2)*5。さらに、急速充電条件(10C)においては、本バインダー系では73 mAhg-1、PVDFで40 mAhg-1、CMC-SBRで17 mAhg-1であり、本バインダーの急速充放電条件における適性が示された(図2)。本バインダー系では1200サイクル(10C)まで安定した充放電挙動を示し、1200サイクル時点の容量維持率は93%であった。
また、動的インピーダンス(DEIS)測定を行ったところ、本バインダー系におけるSEI(固体電解質界面)抵抗はPVDFやCMC-SBR系バインダーと比較して有意に低下した(図3)。これは、充放電試験後に電池セルを分解し負極を分析したところ、XPSによる測定においてホウ素を含有したSEI形成が観測されたことから、SEI抵抗の低減に大いに寄与していると考えられる(図3)。
1200サイクル(10C)充放電後においても、負極を分解し、SEM(走査型電子顕微鏡)の断面像を観察したところ、PVDFバインダーの場合の体積膨張は15.49%であったが、本バインダー系では8.50%に抑制された。さらに本負極バインダーを用いたフルセルにおいても良好に作動した。
本成果は、ACS Materials Letters (米国化学会)のオンライン版に1月9日に掲載された。
本研究は、内閣府の戦略的イノベーション創造プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
【今後の展開】
バインダーを含む負極コンポジットの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業的応用への橋渡し的条件において検討を継続する。
すでに国内特許出願済みであり、今後は、企業との共同研究を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | ACS Materials Letters (米国化学会) |
題目 | Extreme Fast Charging Capability in Graphite Anode via a Lithium Borate Type Biobased Polymer as Aqueous Polyelectrolyte Binder |
著者 | Anusha Pradhan, Rajashekar Badam*, Ryoya Miyairi, Noriyuki Takamori and Noriyoshi Matsumi* |
掲載日 | 2023年1月9日 |
DOI | 10.1021/acsmaterialslett.2c00999 |
図1.(A) 高分子バインダーの合成スキーム
(B) MALDI-TOF MSスペクトル (C) DFT計算によるポリマーの最適化構造 (D) 1H NMR スペクトル (E) 13C NMR スペクトル (F) XPS スペクトル(Li 1s 及びB 1s) |
図2.充放電試験結果
(a) 1C. (b) 10 C.種々の負極バインダー使用時の充放電曲線(0.01-2.1V at 1C ) (c) CAB. (d) PVDF (e) CMC-SBR |
図3.動的インピーダンススペクトル
(a) 本バインダー使用時 (b) PVDF使用時 (c) フィッティングに用いた等価回路 (d) CMC-SBR使用時 (e) RSEI 抵抗の比較 (f) XPS スペクトルB 1s (g) XPS スペクトルO 1s |
【用語説明】
カフェ酸は、ケイ皮酸のパラ位及びメタ位がヒドロキシ化された構造を持つ芳香族カルボン酸で、フェニルプロパノイドの1種である。カフェ酸はリグニン生合成の重要な中間体であるため、全ての植物に含まれている。
電解質中のリチウムイオンがイオン伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
バッテリー容量に対する充放電電流値の比であり、バッテリーの充放電特性(充放電するときの電流の大きさや放電能力・許容電流)を表す。1Cとは1時間で満充電状態から完全に放電した状態になる時の電流値を表し、この数字が高ければ高いほど大きな電流を出力できる。
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和5年2月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/02/01-1.html【12/20(火)開催】JAIST 物質化学フロンティアシンポジウム 2022
開催日時 | 令和4年12月20日(火)8:50~16:00 |
実施方法 | 現地開催、ネット配信(ハイブリッド開催) |
会 場 | 北陸先端科学技術大学院大学 知識科学系講義棟 2F 中講義室(石川県能美市旭台1-1) 及び WebEx |
講演者 | 招待講演者 北浦 守 山形大学理学部 教授 小笠原 一禎 関西学院大学 理学部 化学科 教授 高垣 敦 九州大学大学院工学研究院応用化学部門 准教授 鎌田 慶吾 東京工業大学 科学技術創成研究院 フロンティア材料研究所 准教授 四反田 功 東京理科大学理工学部先端化学科 准教授 本学講演者 上田 純平 准教授(物質化学フロンティア領域) 西村 俊 准教授(物質化学フロンティア領域) BHARDWAJ,Rahul 研究員(サイレントボイスセンシング国際研究拠点) 青木 健太郎 助教(物質化学フロンティア領域) |
言 語 | 日本語(英語使用可) |
申込み | 以下の申込フォームより、参加ご希望の方は12/19(月)までにお申し込みください。 https://forms.gle/fJDY6dHquNWDWcss5 |