研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。「天然繊維に新風、保湿性抜群 超!しっとり新繊維"サク・レ"」を開発 -日本固有バイオマスからの新機能繊維-
「天然繊維に新風、保湿性抜群 超!しっとり新繊維"サク・レ"」を開発
-日本固有バイオマスからの新機能繊維-
ポイント
- 従来の機能性繊維には乾燥肌には痒みを与えるなどの問題点があった
- 独自の技術でサクランとレーヨンを混合紡糸することに成功
- 新繊維は従来のレーヨン繊維の抱水率を遥かに上回る抱水性・保湿性を示すことが分かった
- サクランの導入によりレーヨンの表面構造が変化することを発見
- 新機能繊維として高い保湿性能を持つ「しっとり」とした下着やベビー服の実用化へ期待
北陸先端科学技術大学院大学(JAIST、学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の金子達雄教授らは、グリーンサイエンスマテリアル株式会社(GSM、社長金子慎一郎、熊本県熊本市)およびオーミケンシ株式会社(社長石原美秀、大阪市中央区)とともに、レーヨンに日本固有種微生物スイゼンジノリから抽出される超高分子サクラン(発見者:岡島麻衣子研究員)を練り込む独自技術を開発し、従来のレーヨンより抱水性を26%も向上させる新素材の作製に成功しました。伊藤忠商事子会社の株式会社ロイネ(社長・木下昌彦、大阪府箕面市)が主に乾燥肌・ベビー向け下着として製品化・販売を目指します。 ![]() ![]() 写真 サク・レ(左:実体像、右:走査型電子顕微鏡像「レーヨンのスムーズな表面がサクランでおおわれている」) そこで、衣料品製造販売会社のロイネがこのサク・レ30%と綿混紡ベア天竺を試作したところ、その吸放湿性は綿ベア天竺よりも20%高まることが分かりました。この吸放湿性は肌と衣服間の保湿性と関係するため、サク・レを用いることで高い保湿性能を持つ「しっとり」とした下着やベビー服の実用化を目指します。肌と接触する衣類の保湿性は快適な着心地の実現のため非常に重要であるため、サク・レは、今後特に乾燥肌や肌の弱い乳幼児の中でニーズが高まると期待されます。 |
<開発の背景と経緯>
藻類などの植物体に含まれる分子を用いて得られるバイオマス注1)材料の中には、材料中にCO2を長期間固定できるため、持続的低炭素社会の構築に有効であるとされています。北陸先端科学技術大学院大学の研究チームはこれまで、淡水性の藍藻であるスイゼンジノリから高保湿力を持つ繊維質である超高分子「サクランTM」注2)を開発してきました。
近年、従来化学繊維を改良することで開発される新機能繊維が注目され我々のQOL向上に役立っています。しかし化学繊維は敏感肌や乾燥肌の痒みの原因となる場合もあり天然素材、例えば綿やレーヨン注3)、シルク等の優れた保湿性能が見直されています。しかし、従来のレーヨンの保湿力は限界があり、これが下着や裏地に使用された場合、乾燥肌や敏感肌の方々に更に心地よく着用してもらうためには保湿力向上の改善が望まれています。
<作製方法>
「セルロースをビスコース法で溶解した原液に独自技術でサクランを混合し、レーヨン繊維にサクランを練り込みます。
<今回の成果>
レーヨン繊維にサクランを練り込む条件の最適化を行い混紡糸を作製しました。これにより、レーヨン繊維の表面構造がサクランの導入により変化し、ナノスケールの凹凸が発生していることが走査型電子顕微鏡注4)により分かりました(参考図1)。これから、もともとスムーズであったレーヨンの表面にサクランが存在していることが確認できます。さらに、このサク・レ(0.1%)に水を少量添加したところ水を2.78倍程度吸収することが偏光顕微鏡注5)観察により分かりました。この値はレーヨンのみの観察結果2.16倍と比較すると、サクラン添加により28%程度吸水量が向上したということとなります(参考図2)。
実際に、従来のレーヨン繊維の抱水率を遥かに上回る抱水性・保湿性を持つことが分かりました。またサクランはレーヨン繊維中に練り込まれているためレーヨン繊維の持つ独特なソフトな風合いは損なわれず、かつサクランの超保水機能によって、従来品より遥かにしっとりとした感触が付与され、洗濯耐久性も維持されました。そこで、衣料品製造販売会社のロイネがこのサク・レ30%と綿混紡ベア天竺を混編したところ、その吸放湿性はベア天竺よりも20%高まることが分かりました。
<今後の展開>
この吸放湿性は肌と衣服間の保湿性と関係するため、サク・レを用いることで高い保湿性能を持つ「しっとり」とした下着やベビー服の実用化を目指します。肌と接触する衣類の保湿性は快適な着心地の実現のため非常に重要であるため、サク・レは、今後特に乾燥肌や肌の弱い乳幼児の中でニーズが高まると期待されます。
<参考図>
![]() |
サク・レの実体像 |
従来レーヨン | 0.1% サクラン+レーヨン |
![]() |
![]() |
図1 サク・レの走査型電子顕微鏡像 レーヨンのスムーズな表面(左図)がサクランでおおわれている(右図)
![]() |
![]() |
図2 サク・レの偏光顕微鏡像 水添加により繊維の直径が平均約15ミクロン(左図)から平均約25ミクロン(右図)に増加したことが分かる。また、水添加後も分子配向による繊維の着色が維持されていることが分かる。
<用語説明>
注1)バイオマス(例 スイゼンジノリ)
生物資源(bio)の量(mass)を表す概念で、一般的には「再生可能な、生物由来の有機性資源で化石資源を除いたもの」をバイオマスと呼ぶ。本研究で取り扱ったスイゼンジノリ(ラン藻の一種であり学名はAphanothece sacrum)は日本固有のバイオマスの一種であり、世界でも極めて希な食用ラン藻である。また、スイゼンジノリは江戸時代から健康維持のために食され、当時は細川藩および秋月藩における幕府への献上品とされてきた。大量養殖法が確立されている。
注2)サクラン
スイゼンジノリが作る寒天質の主成分である。硫酸化多糖類の一つでスイゼンジノリから水酸化ナトリウム水溶液により抽出される。サクランの重量平均絶対分子量は静的光散乱法で2.0 x 107 g/mol と見積もられている。現実的には原子間力顕微鏡によりサクラン分子が13μm の長さを持つことが直接観察されている。天然分子で10μm 以上の長さにも達するものを直接観察した例はこれが初めてとされる。サクランという名称はスイゼンジノリの種名の語尾を多糖類の意味の "-an" という接尾後に変換したもので、北陸先端科学技術大学院大学の岡島麻衣子によって発見され名付けられた。現在もその金属吸着性や高保水性などに関する研究が進められており、吸水高分子として応用が進められている。
注3)レーヨン
絹に似せて作った再生繊維であり光線(英:ray)と綿 (cotton) を組み合わせた言葉である。パルプなどのセルロースを水酸化ナトリウムなどのアルカリと二硫化炭素に溶かしてビスコースにし、酸の中で紡糸(湿式紡糸)して製造する。ポリエステルなど石油を原料とした化学繊維と異なり、加工処理したあと埋めると土に還る。そのため、レーヨン自体は環境に負荷をかけない繊維とされる。絹に似た光沢・手触りが特徴。洋服の裏地などに用いられる。
注4)走査型電子顕微鏡
電子顕微鏡の一種。電子線を絞って電子ビームとしてサンプルに照射し、そこから放出される二次電子、反射電子等を検出する事でサンプルの表面の構造を微細に観察できる。細い電子線で試料を走査(scan)し、電子線を当てた座標の情報から像を構築して表示する。観察試料は高真空中(10-3Pa以上)に置かれ、この表面を電界や磁界で絞った電子線(焦点直径1-100nm程度)で走査する。走査は直線的だが、走査軸を順次ずらしていくことで試料表面全体の情報を得る。
注5)偏光顕微鏡
光学顕微鏡の一種。試料に偏光を照射し、偏光および複屈折特性を観察するために用いられる。偏光特性は結晶構造や分子構造と密接な関係があるため、鉱物学や結晶学の研究で多く用いられる。他、高分子繊維の研究などにも用いられる。一般には特定方向に偏波させることのできる二枚のフィルター(偏光板)をお互いに直交させて使用する。これにより光は通らなくなるが、屈折率に方向依存性のある高分子繊維などが二枚の偏光板の間に存在すると、この高分子繊維だけが観察可能となる。さらに、特殊なカラーフィルターを組み合わせることで高分子繊維内部の分子配向の方向を色調変化により判定することが可能となる。
平成29年7月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/07/07-1.html最高水準のリチウムイオン輸率を示す液状電解質の開発に成功 ― 次世代高容量電極への活用に期待 ―

最高水準のリチウムイオン輸率を示す液状電解質の開発に成功
― 次世代高容量電極への活用に期待 ―
ポイント
- 高イオン伝導度と0.9以上の高リチウムイオン輸率を併せ持つ高性能リチウムイオン輸送性電解質の開発に成功した。
- 本電解質は電気化学的安定性においても優れ、実際にハーフセル(Li/電解質/Si)を構築し充放電試験を行ったところ、可逆的な充放電挙動と共に非常に高い放電容量(>2500mAh/g)を示した。
- 安全志向の高性能電解液として、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・浅野哲夫、石川県能美市)の先端科学技術研究科物質化学領域の松見紀佳教授、ラーマン ヴェーダラージャン助教らはリチウムイオンを90%以上高選択的に輸送する液状電解質の開発に成功した。 |
<今後の展開>
セル構成や充放電条件を最適化し、最も優れた特性を有する蓄電デバイスの創出に結びつける。
安全志向の高性能電解液として、リチウムイオン2次電池のみならず広範な蓄電デバイス(リチウムイオンキャパシタ、マグネシウム電池、金属―空気電池等)への応用が見込まれる。
図1.
(a) イオン液体/メシチルジメトキシボラン体積比とリチウムイオン輸率の関係
(b) イオン液体/メシチルジメトキシボラン系(v/v = 1/2)の直線走査ボルタモグラム
(c) Li/電解質/Si型セル[1-アリル-3メチルイミダゾリウム FSI/メシチルジメトキシボラン(v/v = 1/2)]の充放電曲線 (0.3 C)
(d) Li/電解質/Si型セル[1-アリル-3メチルイミダゾリウム FSI/メシチルジメトキシボラン(v/v = 1/2)]の充放電における各サイクルのクーロン効率
<用語説明>
リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン輸率:
系内におけるすべてのイオン種の移動において、リチウムイオンが移動する割合。系内を移動するイオンがすべてリチウムイオンである場合には1となる。
電位窓:
電解質材料を安定に使用可能な電位の範囲。電池の作動電圧よりも広い電位窓を有する電解質が求められる。高電圧の電極系の発達に伴い、より広い電位窓を示す電解質材料が求められつつある。
平成29年7月4日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/07/04-1.html多糖類から「ゼロ複屈折ポリマー」の開発に成功

多糖類から「ゼロ複屈折ポリマー」の開発に成功
1. 発表者 |
||||
檀上 隆寛 (東京大学 大学院農学生命科学研究科 生物材料科学専攻 博士課程) ロジャース 榎本 有希子 (東京大学 大学院農学生命科学研究科 生物材料科学専攻 特任助教(当時)/ 国立研究開発法人産業技術総合研究所 構造材料研究部門 主任研究員(現在)) 島田 光星 (北陸先端科学技術大学院大学 マテリアルサイエンス研究科 博士課程) 信川 省吾 (北陸先端科学技術大学院大学 マテリアルサイエンス研究科 助教(当時)/ 名古屋工業大学 大学院物質工学専攻 有機分野 助教(現在)) 山口 政之 (北陸先端科学技術大学院大学 先端科学技術研究科マテリアルサイエンス学系 教授) 岩田 忠久 (東京大学大学院農学生命科学研究科 生物材料科学専攻 教授/JST-ALCA ホワイトバイオテクノロジー・岩田チーム 研究代表者) |
||||
2. 発表のポイント |
||||
|
||||
3. 発表概要 |
||||
多糖類の1つであるプルランを出発原料とし、プルランの持つ特徴的な分子構造を保持したまま、簡単なエステル化により、光学特性に非常に優れたゼロ複屈折ポリマーの開発に成功しました。開発したゼロ複屈折ポリマーは、添加剤を一切加えることなくゼロ複屈折を発現するとともに、全ての可視光領域に対して、複屈折がゼロである優れた光学特性を持ち、機械物性、耐熱性、耐水性、成形加工性にも優れています。また、置換するエステル基の種類を変えることにより、ゼロ複屈折から高複屈折を持つさまざまな光学フィルムを作製することも可能であることから、偏光板保護フィルム(注4)や位相差フィルム(注5)として、多方面での利用が期待されます。
|
||||
4. 発表内容 |
||||
液晶ディスプレイは、スマートフォン、タブレットPC、液晶テレビなどに広く用いられています。液晶ディスプレイの基本構成材料の1つである偏光板を保護する目的で、さまざまなポリマー保護フィルムが使われています。一般的なポリマー保護フィルムは、セルローストリアセテート、シクロオレフィン樹脂、アクリル系樹脂などのポリマーから製造されていますが、その複屈折をゼロに近づけるために、多くの添加剤が混ぜられています。
本研究グループは今回、多糖類の一種であるプルランから、添加剤を全く必要としない「ゼロ複屈折ポリマー」の開発に成功しました。 原料として用いたプルランは、微生物によって生合成される水溶性多糖類の1つで、グルコースが2つのα-1,4結合と1つのα-1,6結合を規則正しく繰り返すことにより長くつながった、階段状の非常に珍しい分子構造を持っています(図1)。プルランは主に、食品添加剤、可食性フィルムや医療用カプセルなどとして利用されていますが、これまでプラスチックの原料として用いられることはありませんでした。 今回、プルランの特徴的な分子構造に着目し、分子構造中に存在する3つの水酸基(-OH)をエステル基に置換してプルランアセテートに変えることにより、特徴的な分子構造を残したままで、ゼロ複屈折を発現させることに成功しました(図2)。 開発したゼロ複屈折ポリマーは、ゼロ複屈折の発現に、添加剤を一切必要としません。これは、プルランの持つ特徴的な階段状の分子構造のため、分子配向が抑制されたためであると考えられます。また、熱延伸を施しても、分子配向の緩和が容易に起こることから、ゼロ複屈折の延伸フィルムも得られることがわかりました。さらに、このゼロ複屈折ポリマーは、全ての可視光領域(波長=380~750nm)において、ゼロ複屈折を示すことも発見しました。機械物性、耐熱性、耐水性、成形加工性にも優れていることから偏光板保護フィルムや位相差フィルムとして、さまざまな分野での利用が期待されます。 今後は、溶融押出成形などの工業手法により、ゼロ複屈折フィルムの作製を行いたいと考えています。自然界には、人工的には決して作り出すことができない、さまざまな特徴的な分子構造を持つ多糖類が存在します。今後は、それらの特徴的な構造を保持したまま、新規な高機能・高性能ポリマーの開発を行いたいと考えています。今回の成果を糸口として、石油由来の原料を使用しない、バイオベースのプラスチック創出技術を確立することで、二酸化炭素の排出削減につながることが期待されます。 本研究は、JST戦略的創造研究推進事業先端的低炭素化技術開発(ALCA)と文部科学省科学研究費補助金 基盤研究A(研究代表者:岩田忠久)の一環として行われました。深く感謝いたします。 |
||||
5. 発表雑誌 |
||||
雑誌名:Scientific Reports 論文タイトル:Zero birefringence films of pullulan ester derivatives 著者:Takahiro Danjo, Yukiko Enomoto-Rogers, Hikaru Shimada, Shogo Nobukawa, Masayuki Yamaguchi and Tadahisa Iwata* (*責任著者) DOI番号:10.1038/srep46342 URL: www.nature.com/articles/srep46342 日本時間4月18日(火)午後6時(イギリス時間18日(火)午前10時)に公開されました。 |
||||
6. 用語解説 |
||||
注1 プルラン デンプンを原料として黒酵母によって生合成される水溶性多糖類。グルコースが2つのα-1,4結合と1つのα-1,6結合を規則正しく繰り返した分子構造を持つ(図1)。 注2 エステル化 多糖類の水酸基(-OH)を、アセチル基(-OCOCH3)やプロピオニル基(-OCOCH2CH3)などのエステル基に化学的手法により置換すること。 注3 ゼロ複屈折ポリマー 物体中を光が透過する際、光の振動方向によって進む速度が異なる現象を複屈折と呼ぶ。一般にポリマーフィルムにおいても、分子が配向することにより複屈折が生じる。ゼロ複屈折ポリマーとは、種々の方法により複屈折をなくしたポリマーのこと。 注4 偏光板保護フィルム 液晶ディスプレイなどに用いられる偏光板を保護するために貼られるポリマーフィルム。このフィルムの複屈折は、可能な限りゼロであることが望ましい。 注5 位相差フィルム 光学補償フィルムの1つで、複屈折による光学的な歪みや視角方向による変調が原因で起こる表示の着色等を防止するために貼られるポリマーフィルムのこと。 |
||||
7. 添付資料 |
||||
|
平成29年4月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/04/19-1.htmlシリセン上へのケイ素の蒸着により金属的な二次元状ケイ素を形成

シリセン上へのケイ素の蒸着により金属的な二次元状ケイ素を形成
-シリセンと良好な界面をもつ金属的な新コンタクト材料として期待-
ポイント
- シリセンはグラフェンのケイ素版と言える原子層物質。このシリセンにケイ素を蒸着した結果、構造と電子状態の異なる層が新たに形成された。
- 新たに形成された二次元状ケイ素は、シリセンとは異なる金属的な性質をもつ。
北陸先端科学技術大学院大学(JAIST)(学長・浅野 哲夫、石川県能美市)の先端科学技術研究科応用物理学領域の高村 由起子准教授、アントワーヌ・フロランス助教らは、UCL-JAIST協働研究指導プログラムの修了生であるトバイアス・ギル博士とともに、ユニバーシティ・カレッジ・ロンドン(UCL)、ブルックヘヴン国立研究所と共同で、二ホウ化物上のシリセンにケイ素を蒸着することで金属的な電子状態をもつ新しい二次元状のケイ素の同素体が形成されることを発見しました。 |
<今後の展開>
シリセンにケイ素を付与することで形成された金属的な新しい二次元状ケイ素は、隣接するシリセンの電子状態に影響を与えることなく、原子レベルで急峻な界面を形成しており、シリセンをデバイス化する際のコンタクト材料として期待されます。今後は、伝導特性の測定などを通して実際にどのような電気的コンタクトが形成されているのかを調べたいと考えています。
<論文>
"Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2"( 二ホウ化ジルコニウム上シリセンの上にエピタキシャル成長された金属的なケイ素の原子層物質)
DOI: http://iopscience.iop.org/article/10.1088/2053-1583/aa5a80
Tobias G Gill, Antoine Fleurence, Ben Warner, Henning Prüser, Rainer Friedlein, Jerzy T Sadowski, Cyrus F Hirjibehedin, and Yukiko Yamada-Takamura
2D Materials 4, 021015 (2017).
LCN(London Centre for Nanotechnology)ニュース
https://www.london-nano.com/research-and-facilities/highlight/metallic-atomically-thin-layered-silicon
平成29年2月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/02/21-1.htmlSi版グラフェン「シリセン」が凸凹な表面上で成長することを発見
Si版グラフェン「シリセン」が凸凹な表面上で成長することを発見
ポイント
- シリセンはグラフェンのケイ素版と言える原子層物質で、これまで実験的な合成報告は、原子レベルで平坦な単結晶表面上に限られていた。
- 今回の成果により、シリセンは凸凹な表面上でも起伏を乗り越えて横方向に成長し、シートを形成することが明らかとなった。
北陸先端科学技術大学院大学(JAIST)(学長・浅野 哲夫、石川県能美市)先端科学技術研究科応用物理学領域のアントワーヌ・フロランス助教、高村 由起子准教授らは、原子レベルで平坦な表面上にしか成長しない、と考えられていた二次元材料「シリセン」を凸凹な表面上にも成長させることに成功しました。 |
<今後の展開>
今回の成果は、シリセンが単に原子レベルで平坦な基板上に吸着したケイ素原子による再構成構造ではなく、凹凸を乗り越えてシートを形成する真の二次元材料であることを証明しており、大面積かつ究極に薄いケイ素系超薄膜材料として応用研究への展開が期待できる。
<論文>
"Insights into the spontaneous formation of silicene sheet on diboride thin films"
(二ホウ化物薄膜上へのシリセンの自発的形成機構に関する洞察)
DOI: http://dx.doi.org/10.1063/1.4974467
Antoine Fleurence and Yukiko Yamada-Takamura
Applied Physics Letters 110, 041601 (2017).
平成29年2月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/02/1-1.html極めて低い白金担持量で高酸素還元反応性触媒の開発に成功

極めて低い白金担持量で高酸素還元反応性触媒の開発に成功
ポイント
商用の酸素還元反応性触媒よりも大幅に低い白金担持量で商用系に匹敵する性能を示す酸素還元反応触媒の開発に成功した。本研究は、アルコール類などの犠牲試薬を一切用いない光還元法により白金ナノ粒子を炭素/TiO2上に析出させた最初の例であり、白金ナノ粒子系酸素還元反応触媒のグリーンな合成法としても特色を有している。今回作製した材料は、商用系の1/15から1/20ほどの白金担持量であるにもかかわらず、特定反応比活性(specific activity)※1 において商用系を上回る電気化学触媒活性を示した。
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/物質化学領域の松見紀佳教授、ラーマン ヴェーダラージャン助教、ラージャシェーカル バダム博士、及び田中貴金属工業株式会社(岡谷一輝氏、松谷耕一氏)の共同研究グループは極めて低い白金担持量で商用系触媒に匹敵する高酸素還元性を示す低コスト型電気化学触媒の開発に成功した。 論文タイトル:Sacrificial Reducing Agent Free Photo-Generation of Platinum Nano Particle over Carbon/TiO2 for Highly Efficient Oxygen Reduction Reaction <今後の展開> |
図1. | (A)Photo-Pt- Graphite-TiO2、Photo-Pt-CNT-TiO2 のサイクリックボルタモグラム (B)サイクリックボルタモグラムから算出したECSA(電気化学有効表面積)値と商用材料との比較 (C)Photo-Pt-Graphite-TiO2、Photo-Pt-CNT-TiO2 の直線走査ボルタモグラムと商用材料との比較 (D)各材料系の質量比活性(mass activity)及び特定反応比活性(specific activity) |
<開発の背景と経緯>
燃料電池などのエネルギーデバイスのカソード電極材料において、現状では不可欠となっている白金/炭素系材料の作製においては、ポリオール系犠牲試薬や界面活性剤の使用、高温反応条件の適用など、比較的環境的負荷の大きな手法の適用が一般的となっている。これらの状況を踏まえて、水をメディアとしたグリーンな手法でこれらの材料群を作製する手法の開発は工業的に魅力的である。
加えて、商用系には一般に相当量の白金が含有されており、白金を担持させる炭素材料種を検討することにより白金の導入量を低減させることが検討されてきた。
本研究では光還元的析出法を検討することで、水中において疑似太陽光のみを光源として炭素/TiO2上への白金ナノ粒子の析出が可能であることが見出された。犠牲試薬や界面活性剤を利用しない本手法は白金ナノ粒子本来の高い電気化学触媒活性を発現させ、少量の白金担持量において高酸素還元反応性が達成された。
<合成方法・評価方法>
まず、グラファイト、カーボンナノチューブ、グラフェンオキシド等の各炭素材料を脱イオン水中で約2時間超音波照射し、均一分散液を調整した。分散液に市販のアナターゼ型TiO2を加え、さらに15分間超音波照射した。その後、塩化白金酸水溶液を加え、攪拌条件下で疑似太陽光を5時間照射した。得られた分散液を濾過した後、脱イオン水で洗浄して常温下で真空乾燥した。
作製した各コンポジット材料における白金含有量をICP-MSにより測定したところ、1.6-4.3wt%であった。また、各材料の透過型電子顕微鏡(TEM)による分析により、各系において白金ナノ粒子が均一に分散していることが示唆された。炭素材料として伝導度の高いカーボンナノチューブを用いた場合には白金ナノ粒子の平均サイズは1nmほどであり、特にサイズの小さい白金ナノ粒子がTiO2部位から遠距離の部分まで分布することが分かった。一方、官能基密度が高く伝導度が低いグラフェンオキシドが炭素材料として用いられた場合には、白金ナノ粒子はほぼTiO2上にのみ分布し、その粒径も比較的大きかった (2-6nm)。
得られた各材料をXPSにより分析したところ、とりわけTiO2/カーボンナノチューブ系に白金ナノ粒子を析出させた系においてPt 4fピークの顕著なシフトが観測され、強い金属―基盤間の相互作用が存在していることが示唆された。
電気化学評価は回転ディスク電極を用いたサイクリックボルタンメトリー※4、直線走査ボルタンメトリー※5により行った。0.1M HClO4 aq.を電解液とし、グラッシーカーボン電極上に作製した電気化学触媒をコートしたものを作用極、白金を対極、RHE (reversible hydrogen electrode)電極を参照極とした。窒素雰囲気下において 50mVs-1の掃引速度で測定を行い、回転ディスク電極の回転速度は400-3600rpmの範囲とした。
<今回の成果>
本系では水をメディアとし、疑似太陽光照射により炭素/二酸化チタン上に犠牲試薬を用いずに簡便に白金ナノ粒子を析出させる新手法の開発に成功した。本手法では水系反応メディアのpH調整も必要なく、常温での短時間の反応により作製が可能であり、工業的に魅力的である。また、炭素材料系の伝導性に応じて白金が析出し分布する基礎的に興味深い知見を得ることができた。
本材料系で達成された電気化学触媒活性は、特定反応比活性(specific activity)において比較対象の商用材料を上回るなど、トータルな特性として既存の最善の商用材料に匹敵する性能を示した。このような特性が商用系の1/15~1/20の白金含有量で達成されたことは特筆に値し、低コスト型エネルギーデバイスの開発にとって意義深い成果であると考えられる。
※1 | 特定反応比活性:Pt単位面積あたりの酸素還元電流密度。 |
※2 | ECSA(電気化学有効表面積):水素吸着によるピークの積算電荷量を白金の単位活性面積当たりの吸着電荷量で除するこ とで活性白金表面積を求め算出する。 |
※3 | 質量比活性:Pt単位重量あたりの酸素還元電流密度。 |
※4 | サイクリックボルタンメトリー(サイクリックボルタモグラム):電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。 |
※5 | 直線走査ボルタンメトリー:電極電位を連続的に変化させ、流れる電流値を測定する。サイクリックボルタンメトリーのような電位の往復を伴わない測定法。 |
平成28年11月15日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/11/15-1.html世界最高の検出感度を示すフッ化物イオンセンシング材料 ポリボロシロキサンの創出に成功

世界最高の検出感度を示すフッ化物イオンセンシング材料
ポリボロシロキサンの創出に成功
ポイント
デンタルケアなどライフサイエンス分野で高い有用性を有しながら人体に有害なフッ化物イオンのセンシングにおいては、数十年来世界中で活発な研究が進められ、これまで一定以上の検出感度が得られていなかったが、このたび松見研究グループは、新たにポリボロシロキサンを創出し、一般的な商用系(LaF3)センシング材料を用いた検出感度(10-6 Mオーダー)程度を大幅に上回る、世界最高の検出感度(10-10 Mオーダー)を水溶液系において達成することに成功した。
本材料は、塩化物イオン、臭化物イオン等の負イオンへの検出能力と比較して、フッ化物イオンに対して極めて高い検知能力を示した。
また、ケイ酸ガラス構造に対応した一次元構造高分子としてポリシロキサンが広く知られているが、本研究ではケイホウ酸ガラスに対応した一次元構造高分子の合成に成功した。
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科 /物質化学領域 の松見紀佳教授、 ラーマン ヴェーダラージャン助教、プーフップ プニート博士らの研究グループでは、世界最高の検出感度を示す フッ化物イオンセンシング材料の創出に成功した。(図1) |
図1 出発物質(左)と合成したポリボロシロキサンの化学構造(右)
図2 SiOB型モデル化合物のDFT計算結果
【参考】
<開発の背景と経緯>
3級ホウ素原子は空のp軌道の存在を活用して様々な機能材料の創出研究に用いられてきた。ユニークな軌道間相互作用を利用した新規共役系高分子の創出のほか、ホウ素の高いアニオントラップ能を活用して高いリチウムイオン輸送選択性を有するリチウムイオン2次電池用電解質材料の創出にも結び付いてきた。ホウ素の高いアニオン受容能はイオンセンシング分野においても期待を集め、とりわけフッ化物イオンやシアン化物イオンなどの環境的に有害なアニオンの検出能の向上のための分子設計が望まれてきた。
3級ホウ素原子を主鎖に有する機能性高分子材料の合成法として、ヒドロボラン種をモノマーとしたヒドロボレーション重合や脱水素カップリング重合が有効であることが知られているが、本系においてはロジウムまたはパラジウム触媒を用いてジフェニルシランジオールとメシチルボランとの脱水素カップリング重合を行うことにより、目的の新規ポリボロシロキサンの合成を試みることとした。
<合成方法・評価方法>
合成はTHF溶液中、ロジウムもしくはパラジウム触媒存在下で等モル量のメシチルボランとジフェニルシランジオールを48時間反応させることにより行われた。重合物をヘキサンで抽出して精製し、数平均分子量40000を超えるポリマーが80%の収率で得られた。構造は1H-, 11B-, 29Si-NMRにより決定した。また、重合の交互性に関してはモデル化合物の生成挙動から明らかにした。
フッ化物イオンセンシング能はポテンショメトリー法により評価した。ポリボロシロキサンをTHF溶液からグラッシーカーボン電極上にキャストし、これを作用極とした。Ag/AgClを参照極、白金を対極、Na2HPO4 0.1 M水溶液を電解液として室温で測定を行った。
<今回の成果>
生成ポリマー及びモデル化合物のNMR構造解析により、交互共重合型ポリシロキサンが生成していることが支持された。ポリマーとモデルのいずれにおいても11B-NMR、29Si-NMRは単一のピークを示したほか、メシチルボランとトリフェニルシラノールとの反応では、両化合物間の縮合生成物が93%の収率で得られた。
ポテンショメトリー測定においては、10-10 Mのフッ化物イオンをセンシング可能であることに加え(図3)、フッ化物イオンの10倍の濃度変化に対して-23 mVの勾配で系の開放電圧が広範囲で変化し、フッ化物イオン検出の良好な検量線を与えることが分かった(図4)。
また、他のアニオン種に対する選択性も極めて高い(塩化物イオンに対して約60倍、臭化物イオンに対して約30倍の選択性)ことが選択性係数の算出結果(KF,ClSSM = 0.0161, KF,BrSSM = 0.0376)から明らかとなった(図4)。
【用語】
*ポテンショメトリー測定・・・ボルタンメトリー、クーロメトリーと同様に電気化学の主たる測定法の1つで、一定電流(もしくは電流なし)の条件下で電位を測定する手法
*DFT計算・・・電子系のエネルギーなどの物性を電子密度から計算する理論(密度汎関数理論)に基づく計算法
図3.フッ化物イオンの滴定におけるポテンショメトリー測定結果
(Disodium Hydrogen Phosphate, RE: Ag/AgCl, WE: GC, CE: Pt)
図4.様々なアニオンの滴定におけるポテンショメトリー測定結果
(Disodium Hydrogen Phosphate (pH=8), RE: Ag/AgCl, WE: GC, CE: Pt)
平成28年9月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/09/28-1.html環境・エネルギー領域 金子達雄教授の研究課題が、 環境省の平成28年度バイオマスプラスチックの二酸化炭素削減効果及び信頼性等検証事業に採択
環境・エネルギー領域 金子達雄教授の研究課題が、 環境省の
平成28年度バイオマスプラスチックの二酸化炭素削減効果及び信頼性等検証事業に採択
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域 金子達雄教授の研究課題が、環境省の平成28年度バイオマスプラスチックの二酸化炭素削減効果及び信頼性等検証事業に採択されました。
本事業は、エネルギー起源CO2削減に資すると想定されるバイオマスプラスチックの用途におけるCO2削減効果や信頼性を検証し、バイオマスプラスチック導入に当たってのコスト面、調達面、規制面等における課題とその対策を検討するなど、バイオマスプラスチックの活用を促進する事業です。平成28年度は7件の応募のうち、2件が採用されました。
■事業名
芳香族系超高耐熱バイオマスプラスチックの二酸化炭素削減効果及び信頼性等検証事業
■事業期間
平成28年10月1日~平成31年3月31日(予定)
■事業概要
4-アミノ桂皮酸を原料とした芳香族系超高耐熱バイオマスプラスチックにより、300℃程度以上の高い耐熱性が求められる自動車の金属部材等に取って代わるプラスチック材料を開発することで、軽量化による燃費の削減など省エネルギー効果、二酸化炭素削減効果をねらいます。具体的には、硬い分子骨格を持つ芳香族系高分子を用いて超高耐熱バイオマスプラスチックの改良と性能の最適化を行い、その用途抽出、信頼性評価、二酸化炭素削減効果の定量化、社会実装に当たっての課題抽出・方策提案を行います。
■コメント
われわれの先導する研究である高耐熱植物由来プラスチックに関し、その実用化を後押しする研究プロジェクトが環境省により採択され、本研究の重要性が広く認識されつつあることを喜ばしく思います。地球環境改善に貢献できるようより一層尽力する所存です。
平成28年9月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/09/27-1.html非正多角形細孔を持つ多孔高分子材料の開拓に成功
非正多角形細孔を持つ多孔高分子材料の開拓に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の江 東林教授らの研究グループは、非正多角形細孔を有する高分子材料の開拓に成功した。 |
1. 研究の成果 | |||
今回研究開発された新種の多孔性高分子は2次元高分子注1) である。2次元高分子は、規則正しい分子骨格構造を有し、無数の細孔が並んでいるため、二酸化炭素吸着、触媒、エネルギー変換、半導体、エネルギー貯蔵など様々な分野で活躍され、新しい機能性材料として大いに注目されている。江教授らは、世界に先駆けて基礎から応用まで幅広い研究を展開し、この分野を先導してきた。
これまでの2次元高分子は、他の多孔性材料と同様に、正多角形を有する細孔だった(図1の1)。例えば、正六角形や正方形、正三角形などを有する2次元高分子が開発され、その細孔サイズや環境を制御することで、様々な機能が発現されている。しかし、規則正しい構造を有し、かつ非正多角形細孔を作り出す2次元高分子は皆無だった。非正多角形を有する細孔は、形が合った特定の分子だけに対して吸着能を示し、また、特定の基質だけに対して触媒するなど特異な形状に基づいた機能の発現が期待されているが、その開発が困難であった。 ![]() 図1.1)従来の正多角形細孔を有する高分子の設計。2)今回開発した非正六角形細孔を有する多孔材料の設計。3)今回開発した非正方形細孔を有する多孔材料の設計。 また、六角形の場合、3組の対辺を長さの異なる2種類の成分で構築することに成功した(図1の2)。この場合、対辺の比率を1:2あるいは2:1に合わせ ることが重要なポイントとなる。いずれの場合も、規則正しい配列構造を有し、サイズの異なる非正六角形細孔を設計してつくることができるようになった。 さらに、本研究では、六角形に加え、四角形にも適用できることを実証した(図1の3)。四角形の場合、対辺が2組になるため、長さの異なる2種類の成分と分岐点の1成分からなる3成分で重合することで、非正方形細孔を有する多孔材料の合成に成功した。 以上の設計原理は、長さの異なる成分に限られることがなく、機能の異なる成分にも適用できることを実証した。例えば、電子ドナーとアクセプターを組み合わせて、特異な電子配列構造を作り出せる。この場合、正多角形材料に比べて、非正多角形材料の電気伝導が1800倍も高くなったことが分かった。これらの多孔性高分子は1グラムで、2000平米という巨大な表面積を持っており、ガス吸着と分離への応用が期待されている。 多成分から構成された多孔性材料は、構造に複雑性をもたらしている。また、材料の多様性にも大きく寄与する。例えば、六角形の場合、従来の正六角形では、分岐点1成分と辺10成分の組み合わせでは、最大10種類の異なる多孔材料が合成できる。これに対して、多成分設計原理を用いれば、何と210種類の異なる多孔材料を作ることが可能となった。 |
|||
2. 今後の展開 |
|||
今回の研究成果は、2次元高分子分野に新たな設計原理を確立し、これまでになかった新種の多孔材料の誕生に繋がった。今後、これらの特異な多孔構造をベースに、ガス吸着や分離、触媒、光・電子などの機能に関して、様々な革新的な材料の開発がより一層促進される。
|
|||
3. 用語解説 |
|||
注1) 2次元高分子:共有結合で有機ユニットを連結し、2次元に規定して成長した多孔性高分子シートの結晶化による積層される共有結合性有機構造体。
|
|||
4. 論文情報 |
|||
掲載誌:Nature Communications
論文タイトル:Multiple-component covalent organic frameworks(多成分共有結合性有機骨格構造体) 著者:Ning Huang(北陸先端科学技術大学院大学博士研究員), Lipeng Zhai(北陸先端科学技術大学院大学特別研究学生), Matthew Addicoat (ドイツ ライプツィヒ大学博士研究員), Thomas Heine (ドイツ ライプツィヒ大学教授), Donglin Jiang(北陸先端科学技術大学院大学教授) 掲載予定日:7月27日18時にオンライン掲載 DOI: 10.1038/NCOMMS12325 |
平成28年7月27日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/07/27-1.html欠陥修復した酸化グラフェンから優れた電気特性をもつバンド伝導の観察に成功

![]() ![]() ![]() ![]() |
大阪大学 北陸先端科学技術大学院大学 名古屋大学 公益財団法人科学技技術交流財団 あいちシンクロトロン光センター |
欠陥修復した酸化グラフェンから
優れた電気特性をもつバンド伝導の観察に成功
~高結晶性グラフェン薄膜のスケーラブル製造への道筋を開拓~
研究成果のポイント | ||
|
<概要> 大阪大学大学院工学研究科の根岸良太助教、小林慶裕教授、北陸先端科学技術大学院大学の赤堀誠志准教授、名古屋大学大学院工学研究科の伊藤孝寛准教授、あいちシンクロトロン光センター渡辺義夫リエゾン副所長らの研究グループは、還元過程において微量の炭素源ガス(エタノール)を添加した高温(1100℃以上)加熱還元処理により欠陥構造の修復を促進させることで飛躍的に酸化グラフェンの結晶性を向上させ、還元処理をした酸化グラフェン薄膜においてグラフェン本来の電気伝導特性を反映したバンド伝導の観察に初めて成功しました。(図1)
このバンド伝導の発現により、還元処理をした酸化グラフェン薄膜としては現状最高レベルのキャリア移動度(~210cm2/Vs)を達成しました。 本成果によって、酸化グラフェンは、還元処理によりグラフェン薄膜の生成が可能なため、グラフェンを利用した電子デバイスやセンサーなど様々な応用が期待されています。 本研究成果は、日本時間 7月1日(金) 午後6時に英国の科学オープンアクセス誌「Scientific Reports (Nature Publishing Group)」に公開されます。 ![]() 図1 酸化グラフェンの還元法に対する(a)従来法と(b)本手法との比較。(c)低結晶性と(d)高結晶性グラフェンにおける電子・ホールの流れる様子の違い。処理温度の異なるエタノール還元処理後の酸化グラフェン薄膜の伝導度における観察温度存性(e)900℃、(f)1130℃。伝導機構モデルに基づく伝導度の温度依存性解析から、1130℃の高温エタノール加熱還元処理した酸化グラフェン薄膜では観察温度が室温~40Kの範囲においてバンド伝導が観察されている((f)のグラフ)。 |
<研究の背景> | |||
![]() その発見者であるガイム、ノボセロフはその重要性から2010年にノーベル賞を受賞しています。大量合成可能な酸化グラフェンは、還元処理によりグラフェンを形成させることが可能なため、グラフェンの合成における出発材料として、世界中で大変注目されています。 しかしながら、酸化グラフェンは非常に多くの欠陥構造を有するため、還元処理後に得られるグラフェン薄膜のキャリア移動度(トランジスタ性能の指標となり、物質を伝搬する電子・ホールの速さ:速いほどトランジスタ性能が良い)はせいぜい数cm2/Vsに留まっていました。 現在、最も結晶性の高いグラフェンの合成方法は、HOPG(高配向性のグラファイト)からスコッチテープで一枚ずつ剥離して基板へ転写する方法です。しかしながら、この方法では得られるグラフェン片のサイズは数μm程度と小さい上に、小さなフレークを幾重にも重ねてデバイスとして利用可能な薄膜にしなければなりません。これは至難の作業です(図2(a))。 一方、酸化グラフェンは親水性のため水によく分散させることができるので、その水溶液を基板上に滴下して水分を飛ばし還元するだけで、容易に厚さ1-3層分の薄いグラフェン薄膜を形成させることが可能となります(図2(b))。そのため、グラフェンを大量に合成する原料として、酸化グラフェンの合成法や還元法が世界中で研究されています。
酸化グラフェンからグラフェンを生成するためには還元処理が必須となりますが、一般的な化学還元や真空・不活性ガス(アルゴンなどカーボンと化学反応を起こさないガス)中での加熱還元処理では、酸化過程で形成した欠陥構造が還元後も多く残るため、これまで薄膜のキャリア伝導機構は電子が局在したホッピング伝導※7を示すことが知られていました。 ![]() 図3 処理温度の異なるエタノール還元処理後の酸化グラフェン薄膜およびグラファイト(HOPG)からのX線吸収微細構造スペクトル。1130℃の高温エタノール還元処理では非占有準位であるπ*とσ*のピーク強度比が900℃処理よりも完全結晶であるグラファイトで観察された強度比に近い値を示しており、酸化グラフェンの高結晶化に伴いバンド(電子)構造が理想的なグラフェンに近づいていることが分かる。 図1(c),(d)の伝導機構に対する模式図で示すように、薄膜内に欠陥構造が多い場合(図1(c))、欠陥構造がキャリア(電子・ホール)の流れに対して大きな壁となります。キャリアは熱エネルギーの助けを借りてこの障壁を乗り越えるようにホッピング伝導します。これは、キャリアにとって大きなエネルギーを必要とし、著しい移動度の低下を引き起こします。一方で、欠陥構造の領域が減少すると障壁の高さが低下し(図1(d))、キャリアの流れはスムーズになり、グラフェンの結晶性を反映したバンド伝導を示すことが期待されます。 |
|||
<研究の内容> | |||
本研究グループは、1-3層(厚さ:~1nm)からなる極めて薄い酸化グラフェン薄膜をデバイス基板上へ塗布し、エタノール添加ガス雰囲気で1100℃以上の高温加熱還元処理を行うことにより(図1(b))、高移動度の薄膜形成に成功しました。還元処理をしたグラフェン薄膜における電気伝導度の温度特性解析から、バンド伝導が観察されました。低結晶性を示す低温(900℃)でのエタノール還元処理では、電子の流れ(図1(e)のグラフ:Y軸)は観察温度Tの-1/3乗(X軸)に対して線形に変化しており、この振る舞いはホッピング伝導モデルで説明することができます。一方、高結晶性を示すグラフェン薄膜が生成される高温条件(1130℃)では、観察温度が室温から40Kの範囲で伝導度(図1(f)のグラフ:Y軸)がTの-1/3乗に対して非線形的変化を示し、バンド伝導モデルで説明することができます。これは、カーボン原材料となるエタノールガスの添加により、酸化過程で生成した欠陥構造の修復が効率的に促進し、グラフェンの結晶性が飛躍的に向上していることを意味しています。実際、バンド伝導の発現を裏付けるデータとして、X線吸収微細構造スペクトル※8 を実施して電子構造※9 の視点からもこの物性を実証しました(図3)。さらに、ミクロ領域の構造解析法である透過型電子顕微鏡※10 観察からも、結晶性の向上を明らかにしました(図4)。
![]() 図4 処理温度の異なるエタノール加熱還元処理後の酸化グラフェン薄膜の透過型電子顕微鏡像(a)900℃、(b)1100℃。処理温度1100℃では炭素原子の蜂の巣構造を反映した輝点が周期的に配列しており、結晶性が飛躍的に向上していることが分かる。 |
|||
<本研究成果が社会に与える影響(本研究成果の意義)> | |||
酸化グラフェンは、還元処理によりグラフェン薄膜の生成が可能なため、グラフェンを利用した電子デバイスやセンサーなど様々な応用が期待されています。本研究の成果は、グラフェンの優れた物性を活用したスケーラブルな材料開発の進展において重要なマイルストーンとなります。
|
|||
<特記事項> | |||
本研究成果は、日本時間 7月1日(金) 午後6時に英国の科学オープンアクセス誌「Scientific Reports (Nature Publishing Group)」に公開されます。
タイトル:"Band-like transport in highly crystalline graphene films from defective graphene oxides" 著者名:R. Negishi, M. Akabori, T. Ito, Y. Watanabe and Y. Kobayashi なお本研究は、JSPS科研費PJ16K13639, 26610085, JST育成研究 A-STEP No. AS242Z02806J, AS242Z03214M, 大阪大学フォトニクス先端融合研究センター、「低炭素研究ネットワーク」京都大学ナノテクノロジーハブ拠点、北陸先端科学技術大学院大学ナノテクノロジープラットフォーム事業の一環として行われ、京都大学 大学院理学研究科 倉田博基教授、大阪工業大学教育センター 山田省二教授、大阪大学大学院理学研究科 髙城大輔助教、あいちSRセンター 仲武昌史氏、北陸先端科学技術大学院大学 村上達也氏の協力を得て行われました。 |
|||
<用語説明> | |||
※1 欠陥構造
グラフェンは炭素原子が蜂の巣状(ハニカム状)に結合したシート状の物質であり、欠陥構造とはこのハニカム状の構造の変形や、カーボンそのものが欠損した穴、カーボンがそれ以外の元素(酸素など)と結合した状態等を指す。 ※2 酸化グラフェン
酸化処理によりグラファイトから化学的に剥離させた厚さ1原子層分のシート状の材料。水や有機溶媒に溶け、液体として取り扱うことができるため、任意基板へ塗布するだけでグラフェン薄膜を容易に大面積で作成することができる。しかし、酸化処理により多くの欠陥構造や酸素含有基を含むため、その伝導特性は高配向性グラファイト(HOdivG)から得られるグラフェンと比較して著しく低い。このことが酸化グラフェン材料のデバイス応用に向けて大きなボトルネックとなっている。 ※3 バンド伝導
キャリアが周期的電子構造を持つ固体結晶内を波として伝搬する伝導機構。 ※4 キャリア移動度
固体物質内におけるキャリア(電子・ホール)の動きやすさを表わし、トランジスタ性能の基本的な指標となる。 ※5 還元処理
グラファイトの酸化処理により合成された酸化グラフェンは多くの酸素含有基を含むため絶縁性を示す。電子デバイスへの応用には、これら酸素含有基を取り除くための還元処理が必須となる。 ※6 スケーラブル
製造プロセスやネットワークシステムなどにおいて現時点では小規模なものであるが、リソースの追加により大規模なものへ拡張できる能力。 ※7 ホッピング伝導
キャリアが固体結晶内の欠陥構造などに起因した局在電子準位を熱エネルギーの助けを借りて移動する伝導機構。 ※8 X線吸収微細構造スペクトル
X線を物質に照射するとX線の吸収に伴い観察対象となる原子の電子が放出し、周辺に位置する原子によって散乱・干渉が起きる。このようなX線の吸収から原子の化学状態や電子構造を調べることができる。 ※9 電子構造
固体内の原子・分子の配置に起因した電子の状態。周期的な結晶構造を持つ物質では、物質中の電子のエネルギーと運動量の関係が物質間の相互作用のためにエネルギー状態が帯状に広がったバンド構造を持つ。 ※10 透過型電子顕微鏡
観察の対象となる物質に電子を照射し、それを透過してきた電子を観察する顕微鏡。原子スケールで固体結晶の構造解析が可能。 |
平成28年7月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/07/01-1.html世界初 バイオ由来透明メモリーデバイスの作製
世界初 バイオ由来透明メモリーデバイスの作製
ポイント | |||
|
|||
|
<開発の背景と経緯> | |||
植物などの生体に含まれる分子を用いて得られるバイオプラスチックの中には、材料中にCO2を長期間固定できるため、持続的低炭素社会の構築に有効であるとされています。しかし、バイオプラスチックのほとんどは柔軟なポリエステルで耐熱性や力学物性が劣るため、その用途は限られ、主に使い捨て分野で使用されているのが現状です。 研究チームはこれまで、剛直な構造の桂皮酸(シナモン系分子)の中でも天然にはほとんど存在しないシナモン類であるアミノ桂皮酸(特別な放線菌が作る抗生物質に含まれる)を大腸菌で生産する手法を開発し、続く光照射と化学重合によりすべての透明プラスチックの中で最高レベルの耐熱温度(390℃以上)とヤング率(剛性の指標である10GPa)のバイオプラス地区を開発してきました。本ポリイミドの応用研究を行う中で、メモリー開発の権威である国立台湾大学の劉貴生特聘教授と共同研究を行うことと成り、世界初のバイオ由来メモリー素子の開発に至りました。 |
|||
<作成方法> | |||
ポリイミド合成 1)大腸菌により生産できる4-アミノ桂皮酸を塩酸塩化した後、高圧水銀灯で照射することにより光二量化し4,4'-ジアミノトルキシル酸塩酸塩という芳香族ジアミンを得ました。 2)4,4'-ジアミノトルキシル塩酸塩をジメチルアセトアミドに溶解させ、窒素雰囲気下でトリエチルアミンを投入し、続いてBCDAという四酸二無水物とガンマブチロラクトンという脱水剤を加え室温で重合し、さらにイソキノリンという触媒を加えて170℃程度まで加熱することでポリイミドを得ました。回収は反応溶液をメタノール水混合溶媒に投入し再沈殿することで行い、その後再度ジメチルアセトアミドに溶解させ塩酸を少量加えて、メタノール水混合溶媒に再度投入することで精製・乾燥しました。 3)得られた回収物をジメチルアセトアミドに溶解させ、ガラス基板上にキャストしました。 複合体作成 |
|||
<今回の成果> | |||
今回の成果は大きく分けて以下の4つに分けることができます。 1) アミノ酸由来バイオポリイミドの合成ステップ数を大幅に短縮 2) バイオポリイミドと酸化チタンなどとの有機無機透明複合体の形成に成功 3) 透明複合体が揮発性、不揮発性メモリー素子としての機能を示すことを発見 4) メモリーのON/OFF比は108という極めて高い値 |
|||
<今後の展開> | |||
今回の成果により、4-アミノ桂皮酸を原料とするバイオポリイミドは金属酸化物との複合化が可能であり、かつ複合体はメモリー効果を示すことが見出されました。今後、ほかの種々の金属酸化物と複合化することで、様々な機能性材料を作成することが可能となります。また、今回の複合体は透明性も高いことが分かったため、未来指向型の透明コンピュータの透明メモリーとして有効利用できると考えられます。そして、透明タブレット、メガネ装着型コンピュータ、自動車のフロントガラスに装着できるコンピュータなど、さまざまな効果や展開が期待できます。 |
平成28年6月22日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/06/22-1.html新たな高分子ネットワーク構築の手法を開発

新たな高分子ネットワーク構築の手法を開発
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/物質化学領域の長尾 祐樹准教授らの研究グループは、溶液中の混合分子の特徴を生かし、従来とは異なる構造の高分子ネットワーク(分子どおしのつながり)を作る手法を開発することに成功しました。この成果により、溶液中では合成が難しいとされてきた構造を有する高分子ネットワークの合成に挑戦できるようになりました。本研究は、アメリカ化学会の雑誌Langmuirに近日公開されます。
1. 研究の成果 | ||
人類の夢の一つに二酸化炭素から炭素材料を作り出すことが挙げられます。多くの研究者がこの課題に取り組んでおり、望ましい分子構造についての理解は日々進んでいます。溶液中での合成方法には限界があるために、合成手法自体の多様化が求められていました。 |
||
![]() 溶液混合と基板を足場にした積層合成の高分子ネットワーク構造の比較 |
||
なお、本成果は名古屋大学との共同開発成果であり、名古屋大学「分子・物質合成プラットフォーム」事業(文部科学省ナノテクノロジープラットフォーム事業)の支援を受けました。 |
||
2. 今後の展開 |
||
この成果により、溶液中の合成では得るのが難しい高分子ネットワークの構造を合成するための新しい合成手法を得ることができました。この成果を応用することで将来的には例えば、生物内では合成が可能であることがわかっていても、人の手による合成がまだ難しいとみなされている高分子ネットワークの構造の構築が可能となり、光合成に必要な触媒や燃料電池の触媒の高効率化への応用展開等が期待されます。 |
||
3. 用語解説 |
||
注1)ポルフィリン:環状構造を有する化合物で、誘導体には体の中で酸素を運搬するヘモグロビン等の多くの化合物が知られている。ポルフィリン誘導体は、有機合成化学の触媒や生体化学反応過程の追究に広く利用されている。 |
||
4. 論文情報 |
||
掲載誌:Langmuir |
平成28年6月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/06/17-1.htmlブロック遊びのようにナノ構造を組み上げる技術で新しい知見

ブロック遊びのようにナノ構造を組み上げる技術で新しい知見
北陸先端科学技術大学院大学(学長・浅野 哲夫、石川県能美市)の先端科学技術研究科/物質化学領域の長尾 祐樹准教授らの研究グループは、材料表面を高分子で修飾する表面高機能化技術において新たな知見を得ることに成功しました。材料表面が有する濡れ性、帯電性、防汚性、自己修復性等の機能性表面は、我々の生活をより快適で安全なものにしてくれます。これまでに2種類の機能性分子を交互に組み上げる技術は、数例報告されていましたが、得られたナノ薄膜注1)の密度や構造周期性については明らかにされていませんでした。これに対して、本研究は、ナノ薄膜の密度や構造周期性が膜厚に応じて変化することや分布があることを実験的に明らかにしました。本研究は、アメリカ化学会の雑誌Langmuirに平成28年5月13日に公開されました。
1. 研究の成果 | ||
ブロック遊びのように分子を1種類ずつ材料表面に自在に組み上げる技術は、材料表面の濡れ性、帯電性、防汚性等の高性能化を目的としたコーティング技術等に応用できることから、新しい技術として注目されています。これまでに2種類の機能性分子を交互に積層することでナノ薄膜が得られることは数例報告されていましたが、組み上げた積層回数に応じてどのような高分子ネットワーク構造ができているかについては不明な点が数多くありました。 |
||
![]() 分子の積層方法と得られたナノ薄膜の密度・構造周期性の分布 |
||
なお、本成果は名古屋大学との共同開発成果であり、名古屋大学「分子・物質合成プラットフォーム」事業(文部科学省ナノテクノロジープラットフォーム事業)の支援を受けました。 |
||
2. 今後の展開 |
||
今回の研究成果によって、材料表面を分子レベルで機能修飾するための新しい設計指針を得ることが出来ました。我々はグローバルな課題として認識されている水問題への取り組みに関心があります。今後、汚染水を浄化する多孔質フィルターの多孔質性を保持したまま表面の防汚性を向上させる技術開発のような応用展開が期待されます。 |
||
3. 用語解説 |
||
注1)ナノ薄膜:厚さが10億~1億分の1メートル程度の薄い膜。 |
||
4. 論文情報 |
||
掲載誌:Langmuir |
平成28年5月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/05/17-1.html蛍光を放つ2次元高分子の開拓に成功
蛍光を放つ2次元高分子の開拓に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の江 東林教授らの研究グループは、蛍光を放つ2次元高分子材料の開拓に成功した。蛍光材料は、有害な化学物質、生体分子の検出やイメージングなどの分野に幅広く応用される。これまでに開発された2次元高分子は、積層構造のため光励起エネルギーが熱として散逸してしまい、蛍光を出すことが困難であった。これに対して、本研究は、2次元高分子の構築に新しい蛍光発光機構を導入し、積層した構造でも強く光ることが可能となった。 本研究は、米国化学会誌 J. Am. Chem. Soc.に平成28年4月24日に公開された。 |
1. 研究の成果 | |||
|
|||
2. 今後の展開 |
|||
今回の研究成果は、蛍光性2次元高分子設計の原理が確立され、これまでになかった新種の蛍光性物質が誕生したというもので、新しい光物性の開拓が期待される。今後、様々な蛍光性2次元高分子が開発されると同時に、化学センサーや生体分子センサー、イメージング、励起エネルギー移動、光捕集、レーザー発振、光デバイスなどの応用が期待される。 |
|||
3. 用語解説 |
|||
注1)2次元高分子:共有結合で有機ユニットを連結し、2次元に規定して成長した多孔性高分子シートの結晶化による積層される有機構造体。 |
|||
4. 論文情報 |
|||
掲載誌:J. Am. Chem. Soc.(米国化学会誌) |
平成28年4月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/04/28-1.html世界最高強度の透明樹脂の開発に成功
世界最高強度の透明樹脂の開発に成功
-新しい概念のバイオプラスチック開発、ガラス代替による軽量化社会構築を-
ポイント | ||||
|
||||
|
<開発の背景と経緯> | |||
植物などの生体に含まれる分子を用いて得られるバイオプラスチック注1)の中には、材料中にCO2を長期間固定できるため、持続的低炭素社会の構築に有効であるとされています。しかし、バイオプラスチックのほとんどは柔軟なポリエステルで耐熱性や力学物性が劣るため、その用途は限られ、主に使い捨て分野で使用されているのが現状です。例えば、ポリ乳酸は代表的なバイオポリエステルですが、その主骨格は一般的な工業用プラスチックに用いられる高分子に比べて柔軟であり、その力学強度は60 MPa程度です(参考・各種プラスチックの力学強度:ポリカーボネート:62 MPa、PMMA: 60 MPa、ナイロン11:67 MPa、フッ素化透明ポリイミド129 MPa)。この克服のために強化剤の添加や結晶化処理などをした材料が使われてきました。しかし、これらの処理は透明性を低下させることが問題となっています。 |
|||
<作成方法> | |||
遺伝子工学注3)的技術を用いて、様々な種類の4-アミノ桂皮酸の合成酵素(papABCとPAL)の組合せを検討することによって、ブドウ糖を原料として天然には存在しない4-アミノ桂皮酸を効率的に生産できる組み換え大腸菌を開発しました。また、4-アミノ桂皮酸を塩酸塩化し高圧水銀灯で照射する方法だけでなく、N-アセチル化して光二量化注4)させる手法も開発し芳香族ポリアミドの2種類のトルキシル酸誘導体原料を、両方ともバイオマスから合成しました。これらをモノマー材料として用い、世界初のバイオ由来芳香族ポリアミドを得ました。さらに、これらをキャスト法注5)によりフィルム化して透明膜を得ました。 |
|||
<今回の成果> | |||
今回の成果は大きく分けて以下の3つに分けることができます。 1)天然には存在しない4-アミノ桂皮酸を改良型遺伝子組換え大腸菌から大量生産する方法を確立 2)微生物からは得ることの極めて困難な芳香族ポリアミドを合成 3)史上最も高耐熱のバイオプラスチックを分子設計 ・引っ張り強度:356MPa つまり、この力学強度はガラス代替として最も注目されている透明樹脂であるポリカーボネートの力学強度(62MPa)の約6倍もあり、化学実験で用いるパイレックスガラスの力学強度(約120MPa)を超える値です。最近透明樹脂としてクローズアップされたナノセルロース膜の223MPaをも凌駕する値であり、この数値は透明樹脂の中で最も高い値と言えます(表1)。さらに耐熱温度も273℃であり、前回の我々の発表による耐熱温度よりも低めではありますが、充分に工業用途として利用出来るレベルにあります。 ・引っ張り強度:223-407MPa 特にアジピン酸を導入した場合には透明度87%で力学強度407MPaを確保した優れた透明材料となりました(表1:)。 |
|||
<今後の展開> | |||
今回の成果により、微生物由来分子である4-アミノ桂皮酸の光二量体が高強度透明樹脂の原料として有効であることが証明されました。今後、この芳香族ジアミンとほかの種々のカルボン酸誘導体を反応させることで芳香族ポリアミドだけでなく他のさまざまな高強度バイオプラスチックを合成します。その一部をデモンストレーションで公開します。また、今回の微生物由来芳香族ポリアミドは高屈折率でありレンズやセンサーなどのガラス代替材料としても有効利用できると考えられます。そして、自動車、航空機、船舶の部品などの様々な輸送機器のガラス代替する物質として設計する予定です。これによる軽量化はCO2排出量削減、産業廃棄物削減などの展開が期待できます。 |
<参考図> | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() 図1 4-アミノフェニルアラニンの構造を天然物(抗生物質)の化学構造(左)と組み換え大腸菌を用いた4-アミノ桂皮酸の合成ルート(ブドウ糖(グルコース)から4-アミノ桂皮酸を合成する経路)。 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() 図2 A.ブドウ糖(glucose)を原料とした4-アミノフェニルアラニン(4APhe)の発酵生産.B.4APheの4-アミノ桂皮酸(4ACA)への変換反応.C.回収・精製したバイオマス由来4-アミノ桂皮酸 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() 図3 4-アミノ桂皮酸からの4、4'-ジアミノトルキシル酸ジメチル(4番「バイオ由来芳香族ジアミン」:左ルート)および4、4'-ジアセトアミドトルキシル酸(6番「バイオ由来芳香族ジカルボン酸」:右ルート)の光反応による合成、および重縮合による芳香族ポリアミド(7番)の合成ルート。 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() 図4 芳香族ポリアミドの合成直後の写真(左)、キャスト後に得られた透明フィルムの写真(中央)、繊維化後の写真(右) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
表1 今回作成した透明樹脂と一般的な透明樹脂の物性 ![]()
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
<用語説明> | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
注1)バイオプラスチック 注2)スーパーエンジニアリングプラスチック(スーパーエンプラ) 注3)遺伝子工学 注4)光二量化 注5)キャスト法 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
<論文名> | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
" Ultra-strong, transparent polytruxillamides derived from microbial photodimers" (微生物性光二量体からの超高強度で透明なポリトルキシルアミド) |
平成28年4月22日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/04/22-1.html原子層材料グラフェンを用いたナノセンサー素子で二酸化炭素分子一個の検出に成功

原子層材料グラフェンを用いたナノセンサー素子で二酸化炭素分子一個の検出に成功
- 超高感度・超小型パーソナル環境センシング応用に期待 -
ポイント | |||
|
|||
|
|||
|
<開発の背景と経緯> | |||
原子層材料であるグラフェンは、その優れた電気的特性に加え、シリコンと比べて1桁以上高いヤング率(材料の弾性係数)と、引っ張り応力に対して約20%の格子変形にも耐える機械的特性も有していることから、ナノ電子機械システム(NEMS)への応用が期待されています。さらに表面対体積比率が極めて高いことから、高感度センサーの材料としても大きな期待が寄せられています。水田らのグループは、グラフェンNEMS複合機能素子の研究にいち早く着手し、科学研究費助成事業・基盤研究(S)において、超高感度・環境センサーとパワーマネジメント素子を融合したオートノマス・複合機能センサーの開発に取り組んできました。近年、シックハウス症候群に代表される個人の生活空間レベルでの空気汚染に起因する健康障害が深刻な問題となっていますが、建材やインテリア素材、家具などから発生する化学分子ガスは一般に濃度がppbレベルと非常に希薄で、既存のガスセンサー技術で検出することは極めて困難です。今回の単一CO2分子検出成功は、グループが世界に先駆けて構築してきたグラフェンNEMS素子に関するリーディング技術と、吸着分子とグラフェン間に生じる相互作用を原子レベルで明らかにするシミュレーション技術を融合させて初めて実現できた成果です。 |
|||
<今回の成果> | |||
グラフェンNEMS作製技術を用いて、半導体基板上に2層グラフェン膜の両持ち梁を作製した後、下部の金電極に電圧を印加することで、グラフェン梁を電極上に引き寄せて付着させ、グラフェン斜め梁を形成しました(図1参照)。非常に希薄なCO2ガスを導入し、グラフェン斜め梁の電気抵抗を時間的にモニターしましたが、この状態では分子吸着に伴う信号は検出されません(図2(b)内の黒点データ)。しかし、半導体基板に電圧を加えて電界を発生させると、グラフェン梁の電気抵抗に、CO2分子一個一個がグラフェン梁表面に吸着・離脱したことを示す量子化された変化(一定の値で抵抗が増減すること)が観測されました(図2(b)内の青点とピンク点データ)。これは、基板から印加した電界によってCO2分子内にわずかな分極が生じ、それと基板からの電界の相互作用によってCO2分子がグラフェン梁表面に引き寄せられるからです(図3参照)。 |
|||
<今後の展開> | |||
今回の実験では、分子内の分極がゼロで電気的な検出が困難と考えられていたCO2分子を用いましたが、今後はシックハウス症候群の原因となっているホルムアルデヒドやベンゼンなど揮発性有機化合物ガスを用いた検証実験を進めていきます(図4参照)。また、グラフェン梁の幅をシングルナノメートル(10ナノメートル未満)に超微細化することで検出感度を更に向上させるとともに、基板から印加する電界の強度とグラフェンNEMS構造のデザインを最適化することで検出速度の向上を図ります。さらに、本プロジェクト内で並行して開発を進めているグラフェンNEMSスイッチを、本センサー回路のパワーゲーティング素子として集積化することで、センサーシステムの待機時消費電力をシャットアウトし、バッテリーの寿命を飛躍的に延ばすことを試みます。 |
|||
<用語説明> | |||
|
<参考図> |
![]() 図1 (a)作製した2層グラフェンNEMSセンサーの構造、(b)斜めグラフェン梁の模式図、(c)実際に作製した素子の原子間力顕微鏡写真 |
![]() 図2 (a)吸着したCO2分子によるグラフェン梁電気抵抗変化を説明する模式図、(b)実際に観測された電気抵抗変化の時間依存性(黒点:基板電圧オフの場合、青点:基板に正電圧印加の場合、ピンク点:基板に負電圧印加の場合)、(c)電気抵抗変化の統計分布。'抵抗変化の量子化'を示している。 |
![]() 図3 斜め2層グラフェン梁の表面に物理吸着するCO2分子の様子を分子動力学でシミュレーションしている途中経過(左)。2層グラフェン表面付近での静電ポテンシャル分布。ポテンシャルの高い領域(黒い部分)に吸着CO2分子がトラップされる様子を示している(右上)。基板電界をオフにした場合、CO2分子が離れて行く軌跡を示している(右下)。 |
![]() 図4 シックハウス症候群、シックカー症候群などの原因となる揮発性有機化合物ガス分子の一例。表中の数字は、WHOから示されている8時間での限界濃度値で一桁のppbレベルでの検出精度が要求されることを示している。 |
![]() 図5 本研究成果に対するイメージ図 |
平成28年4月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/04/18-1.html