研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。半導体ナノワイヤを舞台としたスピントロニクス研究


半導体ナノワイヤを舞台とした
スピントロニクス研究
ナノワイヤ X スピンデバイス研究室
Laboratory on Nanowires X Spin Devices
准教授:赤堀 誠志(AKABORI Masashi)
E-mail:
[研究分野]
半導体エピタキシャル成長、半導体ナノ構造、半導体スピントロニクス
[キーワード]
化合物半導体、強磁性体、微細加工、エレクトロニクス、スピントロニクス、半導体物性、低温物性
研究を始めるのに必要な知識・能力
本研究室で研究を始めるにあたって大事なのは、リアルに「もの」を扱うのが好きであることだと考えています。また、物理学(特に電磁気学、量子力学)の知識はあった方がよく、この他に半導体・固体物理、化学、プログラミングの知識があると研究を進める上で役に立つと考えています。
この研究で身につく能力
本研究室の研究では様々な装置を使います。それらの正しい使用法は論理的思考に基づいて考えられています。したがって、それらを理解し、自ら実践することにより、論理的な思考力が養われると考えています。また、実験的研究にはトラブルがつきもので、想定通りには結果が得られず、上手く進まないことも多々あります。ですが、トラブルの状況や得られている結果に関して、周りと協力しながら分析・考察し、研究が上手く進むように努力することにより、解決すべき課題を発見する力、そして発見した課題を解決する力が養われると考えています。
【就職先企業・職種】 電機・精密機械、IT・通信、素材
研究内容

図1.スピン電界効果トランジスタ

図2.トップダウン手法によるナノワイヤ、
ポイントコンタクト

図3.ボトムアップ手法によるナノワイヤ

図4.電気化学プロセスによるコアシェルナノワイヤ

図5.MnAs/InAs 複合構造

図6.非局所測定
従来のエレクトロニクスでは、チャージ(電荷)の制御により情報処理が行われてきました。これに対してスピントロニクスは、チャージだけでなくスピン(磁性)を制御することにより情報処理を行っていくものです。国際デバイスおよびシステムロードマップにおいても、スピントロニクス素子は重要な次世代デバイスの一つとして位置付けられています。半導体を用いる代表的なスピントロニクス素子は、InAs・InGaAs・InSb・InGaSbなど大きなスピン軌道結合を有する半導体と強磁性体との複合構造からなるスピン電界効果トランジスタです(図1)。この素子においては、半導体ナノワイヤを採用することにより、スピン軌道結合と弾性散乱によるスピン緩和が抑制されると期待されています。そこで本研究室では、以下に示すような、半導体ナノワイヤ構造および半導体- 強磁性体複合構造に関する実験的研究を行っています。
①半導体ナノワイヤ構造の作製
電子ビーム露光とエッチング加工を組み合わせたトップダウン手法(図2)と、分子線エピタキシャル成長を用いたボトムアップ手法(図3)に関する研究を進めています。トップダウン手法では高品質な半導体ヘテロ接合を用いることが可能ですが、コヒーレントな伝導のためにはエッジ形状の最適化や加工ダメージの抑制などの課題があります。ボトムアップ手法では半導体ヘテロ構造の利用は困難ですが、成長条件の最適化によりトップダウン手法では困難な良好な形状・微小な寸法を実現できる可能性があります。
②半導体- 強磁性体複合構造の作製
電気化学プロセスによる半導体(ZnO)/ 強磁性体(Co、Ni)コアシェルナノワイヤの形成(図4)や、分子線エピタキシャル成長による半導体(InAs) / 強磁性体(MnAs) 複合構造の形成(図5)に関する研究も行っています。これらの方法では連続的に半導体/ 強磁性体界面を形成するため、強磁性体から半導体へのスピン注入効率向上が期待されます。
③作製した構造の電気的評価・解析
超伝導マグネット付クライオスタットなどを用いて、低温・強磁場環境下での電気的評価・解析を進めています。面内磁場中での非局所配置における抵抗測定(図6)などにより、スピン注入・輸送・検出に関する知見を獲得することが可能です。これら知見を基に、未踏のスピン電界効果トランジスタの実現を目指します。
主な研究業績
- S. Komatsu, M. Akabori: “Spin-filter device using Zeeman effect with realistic channel and structure parameters” Jpn. J. Appl. Phys., Vol. 63, pp. 02SP14-1-5 (2024).
- Md. T. Islam, Md. F. Kabir, M. Akabori: “Low-temperature grown MnAs/InAs/MnAs double heterostructure on GaAs (111)B by molecular beam epitaxy” Jpn. J. Appl. Phys., Vol. 63, pp. 01SP40-1-5 (2024).
- K. Teramoto, R. Horiguchi, W. Dai, Y. Adachi, M. Akabori, S. Hara: “Tailoring Magnetic Domains and Magnetization Switching in CoFe Nanolayer Patterns with Their Thickness and Aspect Ratio on GaAs (001) Substrate” Physica Status Solidi B, Vol. 259, pp. 2100519-1-9 (2022).
- D. Q. Tran, Md. E. Islam, K. Higashimine, M. Akabori: “Self-catalyst growth and characterization of wurtzite GaAs/InAs core/shell nanowires” J. Crystal Growth, Vol. 564, pp. 126126-1-7 (2021).
使用装置
成膜装置(分子線エピタキシャル成長装置、原子層堆積装置、真空蒸着装置、スパッタ装置)
微細加工装置(電子ビーム露光装置、電界電離ガスイオンビーム装置、反応性イオンエッチング装置)
電気化学プロセス装置
電気計測装置(デバイスアナライザ、ホール効果測定装置、ロックイン計測システム)
極低温・強磁場装置(超伝導マグネット付He4クライオスタット、He3クライオスタット、希釈冷凍機)
研究室の指導方針
本研究室では、様々な装置を使って、半導体や強磁性体など「もの」をつくるところから、主に電気的評価・解析によりつくった「もの」を調べるところまで一貫して実験的研究を行います。まずテーマの近い学生でチームをつくり、毎日チームミーティングをしてもらうとともに、週一でスタッフを交えた全体ミーティングを行って、コミュニケーション力・プレゼンテーション力・判断力の育成・向上を図ります。また、全体ミーティングと同じ日に勉強会も行い、半導体・固体物理分野の知識習得や基礎学力の向上を図ります。
[研究室HP] URL:https://www.jaist-akabori-lab.com/
液体から高機能性材料を創成し、生体・環境の見える化へ


液体から高機能性材料を創成し、生体・環境の見える化へ
プリンテッドバイオセンサー研究室
Laboratory on Printed Biosensors
講師:廣瀬 大亮(HIROSE Daisuke)
E-mail:
[研究分野]
酸化物、バイオセンサー、液体プロセス
[キーワード]
MOD法、薄膜トランジスタ、生体分子検出、バイオチップ、プリンテッドエレクトロニクス
研究を始めるのに必要な知識・能力
分野に囚われない研究を行うための好奇心・挑戦心、未解明の謎を楽しむ心。
専門知識は基礎から指導しますので、知識は問いません。どの分野からも歓迎します。一緒に頑張りましょう!
この研究で身につく能力
研究では様々な実験をすることになります。それによって分野に囚われない研究の着眼点や発想が身につきます。また、課題を解決するための論理的思考やタスクをこなす力も身につきます。学会やゼミの発表を通して、発表力・発信力も身につきます。
【就職先企業・職種】 半導体製造機器メーカー、電子部品会社、計測機器メーカー
研究内容
有機金属分解(MOD)法を基礎とした、モノづくりを行っています。この手法は“ 液体” から石(酸化物)を作製する技術であり、様々な電気的特性を示す酸化物を作り出せます。
さらに私たちはこのMOD法で作製した酸化物や中間体にこれまでにない特異的な特徴があることを発見しました。その特徴と半導体プロセスとを組み合わせることで、新たなセンシングデバイスやパターニング手法の研究・開発をしています。そして、なぜ特異的な特徴が現れるかの物性解析による解明も同時に進めています。
・高感度 - 酸化物センシングデバイス
コロナウイルスの感染拡大が世界的な問題となったことから、PCRやイムノクロマトに代わる迅速で高感度な菌・ウイルスの検査手法の需要が急速に高まってきています。
私たちは迅速で高感度に測定可能な酸化物薄膜トランジスタ型核酸センサーの研究・開発を進めています。図に、これまで作製したセンサーを示しています。この技術は核酸のみならず、多様な分子に適用可能であり、環境・衛生・農業・医療などの分野への応用も目指しています。
・MOD中間体の特性を生かしたパターニング
センサーなどの電子デバイスを作製するには、酸化物の精度の良いパターニングが必要となります。私たちはMOD法から酸化物を作製する際の中間体が変形性を示すことを発見しました。この特性を利用し、型押し成型による低エネルギー・低コストの酸化物の直接プリンティング手法を開発しました。この技術によって、簡単にサブミクロンスケールのパターンの作製が可能になりました。示した図は作製した酸化物パターンと、酸化物を積層した薄膜トランジスタアレイです。このように様々な酸化物の精度のよいパターンが作製できることがわかります。
主な研究業績
- Submicron titania pattern fabrication via thermal nanoimprint printing and Microstructural analysis of printable titania gels, D. Hirose, H. Yamada, T. Jochi, K. Ohara and Y. Takamura, Ceramics International, online,(2024)
- Rapid and Highly Sensitive Detection of Leishmania by Combining Recombinase Polymerase Amplification and Solution-Processed Oxide Thin-Film Transistor Technology, W. Wu, M. Biyani, D. Hirose and Y. Takamura, Biosensors, vol. 13, 8, p. 765,(2023).
- Origin of the thermal plasticity property of zirconium oxide gels for use in direct thermal nanoimprinting, D. Hirose, J. Li, Y. Murakami, S. Kohara and T. Shimoda, Ceramics International, vol.44, p. 17602,(2018).
使用装置
電子デバイス作製装置(フォトリソグラフィ装置、スパッタ装置ナノインプリント)、電気特性評価装置(半導体パラメータアナライザ、インピーダンスアナライザ)、形状評価装置(走査型電子顕微鏡、原子間力顕微鏡)、材料物性評価装置(TG-DTA、FT-IR,UV-vis、XRD、XPS、接触角計)
研究室の指導方針
本研究室では液体から機能性酸化物をつくるMOD技術を基礎にして、生体・環境の見える化を目指しています。身の回りのあらゆる分子をターゲットとして、社会や生活へ応用を目指しています。今まさに大きく成長している段階です。みなさんのアイデアと私たちの技術を組み合わせ、新たな見える化センサーを創成しましょう!!
研究では、個々の興味に沿ったテーマを設定します。目標に向け、課題を一つずつクリアできるように指導いたします。生活や就職活動についての不安を取り除きながら、これからの壁を乗り越える力を身につけられるようサポートします。
結晶が成長する様子を観察してメカニズムを探る


結晶が成長する様子を観察してメカニズムを探る
次世代シリコン太陽電池研究室
Laboratory on Next-Generation Silicon Photovoltaics
講師:前田 健作(MAEDA Kensaku)
E-mail:
[研究分野]
結晶成長、太陽電池、非線形光学
[キーワード]
その場観察、結晶粒界、双晶
研究を始めるのに必要な知識・能力
学部や高専で習う基礎的な物理や数学の知識
思い込みで実験結果を判断せず、公平な視点で研究に取り組む姿勢
この研究で身につく能力
研究活動を通して、実験装置(ガス制御機構、加熱機構、顕微鏡など)の使い方やデータの収集と解析方法が身につきます。
また、定期的なゼミ活動や随時のディスカッションを通して、コミュニケーション能力や問題解決能力が鍛えられます。
失敗と思えるような実験から新しい発見が生まれることはよくあります。普通は気付けないような特徴を注意深く読み取る力や俯瞰的かつ合理的に考察する力など、修了後に社会で活躍する際にも役立つ能力を鍛えて欲しいと願っています。
【就職先企業・職種】 製造業など
研究内容
エレクトロニクス、オプトエレクトロニクスの発展を進めるには、材料となる結晶の高品質化や高性能化が不可欠です。結晶とは原子が規則正しく整列した固体であり、融液や溶液などの環境相から徐々に大きく成長することで形成されます。「成長」という言葉は主に生物に対して使われますが、立派な人間に成るには成長過程が重要であることと同様に、高性能な結晶を得るには成長過程が重要となります。この成長過程を注意深く観察することでメカニズムを解明し、高機能結晶を育てる技術を開発します。
1.薄膜多結晶シリコンの形成過程のその場観察
太陽電池の基板材料には半導体のシリコンが広く用いられています。薄膜多結晶シリコンはガラス基板上の非晶質シリコンにパルス光(フラッシュランプアニール光)を当てることで作ることができ、インゴットを薄くスライスして作る結晶基板よりも生産性とコスト面で優れています。非晶質シリコンが多結晶化する過程を観察することで、太陽電池の劣化の原因となる組織の形成機構を解明し、その形成を抑制する技術を開発します。
2.レーザー波長変換素子(周期双晶結晶)の作製

Li2B4O7の双晶成長過程(左)、顕微鏡観察炉(右)
半導体リソグラフィの極微細化やレーザー加工の超高精度化に伴い、高エネルギー効率で小型の全固体レーザー光源の短波長化が求められています。全固体レーザーは固体レーザーを非線形光学結晶により波長変換することで実現でき、光源にガスを用いるよりも安定で小型な装置となります。
非線形光学結晶の分極を周期的に反転することで変換効率を向上でき、強誘電体に電界印加することで生産されています。本研究では非強誘電体においても周期構造を導入するために、双晶形成を用いた反転技術の開発に取り組んでいます。
3.化合物半導体の融液成長過程の観察
シリコンSiは地殻中で酸素に次いで2番目に多い元素であり、単結晶シリコンは半導体デバイスの基板材料として世界中で広く生産されています。化合物半導体(InSb, GaSb, GaAsなど)の生産量は少ないですが、これからのエレクトロニクスの発展に無くてはならない結晶であり、単結晶育成技術の開発は重要です。結晶が成長する様子を観察して、双晶や粒界などの欠陥がどのように形成されるのか、そのメカニズムを解明することを目指しています。
主な研究業績
- K. Hu, K. Maeda, H. Morito, K. Shiga, K. Fujiwara, In situ observation of grain-boundary development from a facet-facet groove during solidification of silicon, Acta Materialia, 153, 186(2018).
- K. Maeda, A. Niitsu, H. Morito, K. Shiga, K. Fujiwara, In situ observation of grain boundary groove at the crystal/melt interface in Cu, Scripta Materialia, 146, 169(2018).
- K. Maeda, S. Uda, K. Fujiwara, J. Nozawa, H. Koizumi, S. Sato, Y. Kozawa, T. Nakamura, Fabrication of Quasi-Phase-Matching Structure during Paraelectric Borate Crystal Growth, Applied Physics Express, 6, 15501(2013).
研究室の指導方針
研究活動は自主性を重んじる方針で、学生自身の発想が研究に活かせます。毎朝一度、研究室メンバー全員が集まるミーティングを行い、その日の各自の活動を報告します。ミーティングでは、簡単な研究の相談もでき、メンバー間のコミュニケーションも十分行えるシステムです。当番の学生が文献紹介を行う勉強会では、細部にわたる質問への回答が求められ、しっかりとした基礎学力が身につきます。学術会議などでの外部発表は、積極的に行います。また、博士前期課程期間中に、英語の論文を執筆し投稿できるよう指導します。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/ohdaira/
分子技術を核酸医薬・光ゲノム操作へ~DNA/RNAを光で操る~


分子技術を核酸医薬・光ゲノム操作へ
~DNA/RNAを光で操る~
DNA/RNA工学 研究室 Laboratory on DNA/RNA Engineering
教授:藤本 健造(FUJIMOTO Kenzo)
E-mail:
[研究分野]
核酸化学、有機合成化学、ケミカルバイオロジー、生物有機化学、遺伝子工学
[キーワード]
核酸医薬、光DNA/RNA操作、光ゲノム編集、有機合成、遺伝子治療、遺伝子診断、分子ロボティクス
研究を始めるのに必要な知識・能力
本研究室では「科学の基本原理を理解したうえで、合理的かつ緻密にデザインされた自身オリジナルの分子を創成・合成することで今までにない物性や能力を有する物質を創成する」ことを基本にしています。挑戦しようという意欲を求めています。異分野からの挑戦を歓迎します。
この研究で身につく能力
本研究室では日頃の雑誌会・研究会・実験・研究発表・研究室独自の取り組み(下記)などを通して自然現象・生命現象を科学の言葉で理解する力、自分自身で解釈し、新しいものを生み出す感性や俯瞰力、また最終的には自分を「活かし」ひいては社会に必要とされる人間力を身につけてもらいたいと思っています。
(取り組み事例)
◦最前線で活躍中の先生による研究室セミナー
◦東京・大阪方面で開催されている技術スクールへ参加支援
◦学会(国内、国外)への出席支援
◦海外雑誌への論文投稿の支援
◦ベンチャーラボラトリー等への積極的参画
◦共同研究先企業との合同セミナー・交流
【就職先企業・職種】 大学教員、化学系企業、製薬系企業、機械系企業、電機系企業、研究所研究員、医療機器系企業、食品
研究内容
(藤本研究室で行っている研究概要)
現代の遺伝子工学は酵素を用いた遺伝子操作に基づくものですが、生体内細胞中での操作、マイクロマシン上での操作には酵素のみでは限界があるとされています。藤本研究室では、即時に精密分子設計した光応答性の人工核酸を用いることにより、酵素ではなく光を用いてDNA あるいはRNA を操作する光遺伝子操作法を創出しています。さらには、分子生物学や情報科学、細胞生物学、データ科学などの学際領域のみならず遺伝子解析などの産業応用も含めた実用的新方法論(以下参照)へと展開しています。
1.超高速光DNA・RNA操作法の開発
(光応答性人工核酸の分子設計・合成とその応用研究)
光反応性を有するビニル基を埋め込んだ人工塩基をDNA 中に組み込ませた光操作用の人工DNAプローブを開発しています。この光応答性人工塩基を組み込んプローブ DNA をDNA チップ上で用いることで、従来の100倍以上正確に遺伝子解析が可能となります。特に藤本研究室で開発したシアノビニルカルバゾール(cnvK) は秒単位で核酸類を光架橋できることから国内外で市販されています。最近では、世界最速の核酸光架橋剤として認知されいます。このcnvK を含む光架橋により超高速プラスミド操作や任意の位置のシトシンをウラシルに変換できることを実証しています。遺伝子修復等の医学応用や産業面では DNA チップ上での超高速遺伝子解析への応用が期待されています。
2.核酸医薬(光による遺伝子発現制御)
核酸医薬は遺伝子を直接標的とする最新の医薬です。我々は光応答性人工核酸を組み込んだアンチセンス核酸を用いることにより、高い発現抑制効果を示すことを報告しています。また、光照射の場所・タイミングや照射エネルギーにより発現量を時空間的に制御することにも成功しており、抗ガン剤としての応用も期待されています。また、学術論文の表紙に採用されるなど、高く評価されています。
3.光ゲノム編集(遺伝子疾患治療に向けた核酸光編集)
核酸編集法は遺伝子疾患に対する有用な治療法とされており、CRISPR/Cas システムやADAR などが報告されています。藤本研究室では核酸光編集法(Photochemical RNA editing) を報告しており、光架橋・脱アミノ化反応・光開裂の一連の操作により配列選択的に標的のシトシンをウラシルへと変換できます。酵素を用いない新たな編集法として注目されています。従来のゲノム編集を凌駕する高い配列選択性を有した新たな光ゲノム編集法の開発をおこない、遺伝子疾患の治療等に貢献したいと考えています。
主な研究業績
- J. Mihara and K. Fujimoto, Photo-cross-linking of DNA using 4-methylpyranocarbazole nucleoside with thymine-base selectivity, Organic & Biomolecular Chemistry, 45, 9860-9866 (2021)
- T. Sakamoto, Z. Qiu, M. Inagaki. K, Fujimoto, Simultaneous amino acid analysis based on 19F NMR using modified OPA-derivatization method, Anal. Chem., 92, 1669-1673 (2020)
- K. Fujimoto, H. Yang, S. Nakamura, Strong inhibitory effects of anti-sense probes on gene expression through ultrafast RNA photo-cross-linking, Chem. Asian. J., 14, 1912-1916 (2019)
使用装置
DNA/RNA自動合成機
共焦点レーザー顕微鏡
UPLC-HPLC
マイクロプレートリーダー
蛍光分光光度計
研究室の指導方針
私たちの研究の根本はDNAに関連した精密分子設計とこれに基づく合理的な精密有機合成の技術にあります。学生一人一人がそれぞれオリジナルの研究テーマに取り組む中で、基礎的な合成技術、解析技術ならびに科学的に物事を捉える視点を養います。その上で化学系企業、医療機器メーカー、医薬品関連企業との共同研究を体験し、研究者の社会貢献のあり方について肌で感じてもらいます。その他、研究室独自のプログラム(研究室セミナー、合同セミナー、技術スクールなど)も活用してもらうことで自立した研究者育成を目指します。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/fujimoto/fujimotohp/
“量子スピンのダイナミクス”を計測・制御して応用へ繋げる


“量子スピンのダイナミクス”を
計測・制御して応用へ繋げる
量子センシング・イメージング研究室
Laboratory on Quantum Sensing and Imaging
准教授:安 東秀(AN, Toshu)
E-mail:
[研究分野]
量子スピンセンシング・イメージング、ナノMRI
[キーワード]
量子技術、ダイヤモンドNV中心、スピントロニクス、スピン波、プローブ顕微鏡、マイクロ波、共焦点顕微鏡
研究を始めるのに必要な知識・能力
固体物理、材料物性の基礎知識を習得していることが望ましいです。基礎を身につける勤勉さと新しいことにチャレンジする意欲。
この研究で身につく能力
研究活動を通して、自分で問題を設定し、これを解決し、他人や社会に成果を発信する能力を身につけます。このために、先ず、簡単な実験を通して自分で実験データの取得、装置の改良、解析、データのまとめ、研究発表ができる能力を育成します。その後、自分で新しくチャレンジングなテーマを設定し、これを解決してゆくことに取り組みます。その際には、他人と協調して研究を行うこと、英語文献の読解力や英語によるコミュニケーション力が必要で、これらの能力を身に付けることも重視します。
【就職先企業・職種】
研究内容

図1.電子や原子核の持つスピン自由度、電子スピン共鳴、スピン流

図2.ダイヤモンド中のNV中心と磁気共鳴スペクトル
電子の内部自由度であるスピンのダイナミクスを利用した新しい現象を探索し、これを応用したデバイスやセンサーを実現することを目指します。そのための基礎となるスピンダイナミクスの高感度センシングと高分解能イメージングの計測技術を重視して研究に取り組んでいます(図1)。
①ダイヤモンドNV中心を用いたナノ磁気センシング

図3.表面スピン波とダイヤモンドNV中心のスピン変換

図4.走査ダイヤモンドNV中心スピン顕微鏡
近年、ダイヤモンド中の窒素-空孔複合体中心(NV 中心)に存在する単一スピンは、高性能なスピンセンサーとして有用であることが判り(図2)、NV中心を利用したナノスピン(磁気)センシング(図3)・イメージング(図4)が注目されています。この NV 中心を走査プローブとした高感度・高分解能スピンセンサーを開発し、単一電子スピン、単一核スピンのダイナミクスをセンシングすることを目指します。
主な研究業績
- Yuta Kainuma, Kunitaka Hayashi, Chiyaka Tachioka, Mayumi Ito, Toshiharu Makino, Norikazu Mizuochi, and Toshu An "Scanning diamond NV center magnetometer probe fabricated by laser cutting and focused ion beam milling" Journal of Applied Physics 130, 243903 (2021)
- Dwi Prananto, Yuta Kainuma, Kunitaka Hayashi, Norikazu Mizuochi, Ken-ichi Uchida, and Toshu An "Probing Thermal Magnon Current Mediated by Coherent Magnon via Nitrogen-Vacancy Centers in Diamond" Phys. Rev. Applied 16, 064058 (2021).
- D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, T. An, Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves, Applied Physics Express, 10, 103004 1-4 (2017).
使用装置
磁気共鳴計測・制御装置(自作)、FPGA、LabVIEWによる電子制御
走査マイクロ波顕微鏡(自作)
共焦点光学的磁気共鳴顕微鏡(自作)
水晶振動子型AFMプローブ顕微鏡(自作)
超高真空・極低温走査スピン顕微鏡(自作)
研究室の指導方針
本研究室では、スピンのダイナミクスを利用してセンサーやデバイスへの応用へ繋げることを目標に、材料物性の基礎を理解し(“確かな知識”)、課題を自ら設定し(“自由な発想力”)、解決してゆく能力を育成します。毎日の研究において議論の場を多く設定し、コミュニケーション能力を高めます。課題を解決する手段としての新規計測手法の開発と工学的技術の取得にも取り組みます。意欲溢れる皆さんが研究に参加し、“わくわくする”研究の醍醐味に触れ、将来の活躍の基礎を確立する場を提供したいと考えています。
[研究室HP] URL: https://www.jaist.ac.jp/ms/labs/toshuan-www/index.html
ナノとバイオを融合して医療と環境の問題を解決する


ナノとバイオを融合して
医療と環境の問題を解決する
バイオナノ医工学デバイス 研究室
Bio-Nano Medical Device Laboratory
教授:高村 禅(TAKAMURA Yuzuru)
E-mail:
[研究分野]
BioMEMS、微小流体デバイス、分析化学、バイオセンサ
[キーワード]
血液分析チップ、一細胞解析、質量分析チップ、マイクロ元素分析、微細加工プロセス、バイオチップ、マイクロプラズマ
研究を始めるのに必要な知識・能力
私たちが扱う対象は分野融合的要素が強く、従って本研究室では様々なバックグラウンドの学生を受け入れております。生物、化学だけでなく、物理、機械、電子、制御、材料など、個人のバックグラウンドに応じたテーマを設定し、研究を進めます。
この研究で身につく能力
何かを解析するチップの研究が多いので、分析科学の要素は押し並べて身につきます。微量なサンプルを扱うので、微量な生体サンプルのハンドリング技術、生体分子と無機材料の界面の調整技術、微量な蛍光や光信号の観察・計測技術等が身につきます。また、チップを作成するには、フォトリソグラフィー等、マイクロマシンの技術が身につきます。新しい材料を使う場合は、成膜やエッチングの為のプロセス開発を行うこともあります。チップの開発では、流体の動きや熱の伝達をシミュレーションし設計することもあります。修了生は、計測機器メーカへの就職が多いですが、半導体製造機器メーカや、薬品会社へ就職する方もいらっしゃいます。
【就職先企業・職種】 計測機器メーカ、電気、機械、半導体製造機器メーカ、半導体メーカ、薬品関連
研究内容
半導体プロセスを応用して、ウエハ上に小さな流路や反応容器、分析器等を作りこみ、一つのチップの上で、血液検査等に必要な一通りの化学実験を完遂させようという微小流体デバイス、μTAS(micro total analysis systems)やLab on a chipと呼ばれる研究分野が急速に発展しています。これは、病気の診断、創薬、生命現象の解析に応用でき、大きな市場と新しい学術分野を開拓するものとして期待されております。また、いろいろな形状の微小流路内を、流体や大きな分子が流れるときの挙動は、ブラウン運動や界面の影響が支配的で、流体力学でも分子動力学でも扱えない新しい現象を含んでいます。当研究室は、このような新しい現象をベースに、ナノとバイオを融合した次世代のバイオチップ創製を目指した研究を行っています。
主なテーマを次に示します。

図1.作成したバイオチップの例

図2.汎用微小流体チップ案
1)高集積化バイオ化学チップの開発
高機能バイオチップの実現には、チップ内での流体の駆動機構と、高感度な検出器の開発が重要になります。本研究室では、溶液プロセスによるPZTアクチュエータアレイや電気浸透流ポンプをはじめ様々なチップ内での液体駆動機構と、ナノ材料を駆使した新しい検出器の開発を進めています(図1)。これらを用いて、組織中の一細胞を分子レベルで解析可能なチップや、高度な処理をプログラム次第で様々にこなす汎用微小流体チップの開発を目指しています(図2)。
2)高感度バイオセンシング技術の開発
一滴の血液には、体内の様々な状態を反映した多くの情報が含まれております。これらを頻繁に解析することで、重篤な病気の超早期発見や、日々の健康管理、あるいは老化や病気が起きにくい体質になるために食事や運動をガイドする等、様々なことが可能になると考えられております。このためには、非常に微量なバイオマーカを簡易に測定する技術が必要です。私どもは、自己血糖測定器と同じ手間とコストでpg/mLオーダの測定ができるチップや、質量分析チップの開発を行っております。
3)液体電極プラズマを用いたマイクロ元素分析器の開発
中央を細くした微小な流路に液体のサンプルを導入し、高電圧を印加するとプラズマが発生します。このプラズマからの発光を分光することにより、サンプル中の元素の種類と量を簡単・高感度に測定することができます。この原理を用いて、食物、井戸水、土壌工場廃水・廃棄物に含まれている有害な金属(Hg、Cd、Pbなど)などを、オンサイトで測定できるマイクロ元素分析器の開発を行っています。
主な研究業績
- Pulse-heating ionization for protein on-chip mass spectrometry,Kiyotaka Sugiyama, Hiroki Harako, Yoshiaki Ukita, Tatsuya Shimoda, Yuzuru Takamura, Analytical Chemistry, 86, 15, 7593-7597, 05 August 2014.
- Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing, Amara Apilux, Yoshiaki Ukita, Miyuki Chikae, Orawom Chilapakul and Yuzuru Takamura, Lab Chip,13(1), 126-135, January 2013.
- High sensitive elemental analysis for Cd and Pb by liquid electrode plasma atomic emission spectrometry with quartz glass chip and sample flow, Atsushi Kitano, Akiko Iiduka, Tamotsu Yamamoto, Yoshiaki Ukita, Eiichi Tamiya, Yuzuru Takamura, Analytical Chemistry 83(24), 9424-9430, 04 November 2011.
使用装置
クリーンルーム半導体製造装置一式
電気化学測定装置
表面プラズモン共鳴測定装置
イムノクロマトグラフ製造装置
全反射蛍光一分子観察装置
研究室の指導方針
iPS細胞など最近の新しい医療技術の多くは、新しい工学的技術の進歩が発端になっていることをご存知でしょうか。その多くに、高度に発展したナノテクノロジーとバイオテクノロジーの融合技術が使われています。この分野は、まさに今アクティブで、また人類への多くの貢献が期待されている分野でもあるのです。私どもの研究室には、様々なバックグランドと目的を持った学生さんが来ます。私どもは一人ひとりの目的に合わせたゴールを設定し、そこに向かって必要なものを自ら獲得できる様に、サポートとガイドを行うことを主な指導方針としています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/takamura/index.html
新しいプロセス技術を駆使してシリコン系次世代太陽電池を開発しよう


新しいプロセス技術を駆使して
シリコン系次世代太陽電池を開発しよう
次世代シリコン太陽電池研究室
Laboratory on Next-Generation Silicon Photovoltaics
教授:大平 圭介(OHDAIRA Keisuke)
E-mail:
[研究分野]
太陽電池、半導体工学、薄膜形成
[キーワード]
結晶化、パッシベーション、モジュール耐久性
研究を始めるのに必要な知識・能力
学部もしくは高専で習う固体物理、半導体の基礎知識がある方が望ましい。
地球環境問題、エネルギー問題への関心は研究を進める原動力となる。
この研究で身につく能力
各学生の研究テーマを遂行することで、真空装置の取扱いの他、薄膜形成およびその物性評価技術、デバイス作製・評価技術が身につきます。また、データの解析や日々のディスカッション、ゼミ活動などを通じて、特に半導体や太陽電池に関する基礎学力を習得できます。さらに、学生の自主性を重んじる研究室の方針から、いわゆる「指示待ち人間」にならない、問題解決能力の高い人間に成長できます。国内・国際学会での発表や、展示会でのブース展示などを通して、プレゼンテーション能力や、英語も含めたコミュニケーション能力も鍛えられます。
【就職先企業・職種】 大学研究教育職、企業研究職(電機、精密機器メーカー)など
研究内容
地球上に豊富に存在するシリコンを用いた太陽電池は、現在でも市場の大部分を占めており、また今後も、太陽光発電技術の主役であり続けることが期待されています。一方で、さらなる低コスト化、高効率化、長寿命化が求められており、より一層の技術的なブレークスルーが必要です。当研究室では、以下の新技術に着目し、シリコン系高性能太陽電池実現のための基盤技術の確立を目指します。
1.瞬間熱処理による太陽電池用多結晶シリコン薄膜形成
キセノンランプにおけるミリ秒台の瞬間放電を利用したフラッシュランプアニール(FLA)は、数十J/㎠という、瞬間的には地上における太陽光の数万倍の強度のパルス光を照射できます。当研究室では、この手法を、安価なガラス基板上への多結晶シリコン薄膜の形成に応用する検討を行っています。非晶質シリコン膜をガラス基板上に形成し、一度のFLA光照射を行うだけで、膜厚4µm以上の多結晶シリコン膜が形成できます。水素を含有した非晶質シリコン膜を前駆体に用いると、結晶化後も膜内に多量の水素原子が残留し、シリコンの未結合手が終端されるため、低欠陥の多結晶シリコン膜が形成でき、高効率薄膜太陽電池用材料としての利用が期待されます。このFLAによる非晶質シリコン膜の結晶化の現象解明および制御と、形成される多結晶シリコン薄膜の太陽電池応用について研究を行っています。

FLA装置の発光の様子(左)と
Cat-CVD装置の触媒体(右)
2.触媒化学気相堆積(Cat-CVD)の太陽電池応用
加熱触媒体線での接触分解反応により原料ガスを分解して薄膜を形成するCat-CVD法は、膜堆積時の基板材料への損傷を低減でき、結晶シリコン表面でのキャリアの再結合を大幅に抑制可能な高品質パッシベーション膜を形成できます。触媒分解により生成するラジカルを用いたCatドーピングとともに、高効率バルク結晶シリコン太陽電池への応用を目指しています。
3.結晶シリコン太陽電池モジュールの耐久性と新構造開発
多数のモジュールが直列に接続される大規模太陽光発電所などで、モジュールのフレームとセルの間にかかる高電圧が原因で発電特性が低下する、いわゆる電圧誘起劣化(PID) の問題が顕在化しています。当研究室では、結晶シリコン太陽電池モジュールのPIDの機構を解明し、抑止技術を開発する研究を行っています。また、現行の太陽電池モジュールは、各部材が封止材で固められています。そのため、封止材由来の各種劣化が発生し、モジュールを廃棄する際の部材分別やリサイクルも困難です。この問題を解決するため、封止材を用いない新概念モジュールの開発にも取り組んでいます。
主な研究業績
- K. Ohdaira, M. Akitomi, Y. Chiba, and A. Masuda, Potential-induced degradation of n-type front-emitter crystalline silicon photovoltaic modules — comparison between indoor and outdoor test results, Sol. Energy Mater. Sol. Cells 249, 112038 (2023).
- R. Ohashi, K. Kutsukake, H. T. C. Tu, K. Higashimine, and K. Ohdaira, High passivation performance of Cat-CVD i‑a-Si:H derived from bayesian optimization with practical constraints, ACS Appl. Mater. Interf. 16, 9428 (2024).
- Z. Wang, H. T. C. Tu, and K. Ohdaira, Formation of n-type polycrystalline silicon with controlled doping concentration by flash lamp annealing of catalytic CVD amorphous silicon films, Jpn. J. Appl. Phys. 63, 105501 (2024).
使用装置
フラッシュランプアニール装置
触媒化学気相堆積(Cat-CVD)装置
太陽電池特性評価装置
太陽電池モジュール作製および信頼性評価装置
各種薄膜物性評価装置
研究室の指導方針
研究活動は自主性を重んじる方針で、学生自身の発想が研究に活かせます。毎朝一度、研究室メンバー全員が集まるミーティングを行い、その日の各自の活動を報告します。ミーティングでは、簡単な研究の相談もでき、メンバー間のコミュニケーションも十分行えるシステムです。当番の学生が文献紹介を行う勉強会では、細部にわたる質問への回答が求められ、しっかりとした基礎学力が身につきます。学術会議などでの外部発表は、積極的に行います。また、博士前期課程期間中に、英語の論文を執筆し投稿できるよう指導します。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/ohdaira/
自然環境と生体物質の歴史に学ぶー高分子の世界に挑戦!ー


自然環境と生体物質の歴史に学ぶ
ー高分子の世界に挑戦!ー
DRY & WET ソフトマテリアル研究室
Laboratory on DRY & WET Soft Materials
准教授:桶葭 興資(OKEYOSHI Kosuke)
E-mail:
[研究分野]
高分子科学、光化学、ソフトマター
[キーワード]
ゲル、水、ソフトマテリアルの幾何学、光機能材料、エネルギー変換材料、バイオミメティクス
研究を始めるのに必要な知識・能力
高分子科学、物理化学、材料科学、光化学、ソフトマターの基礎知識や経験を持っていると望ましいでしょう。そして何より、チャレンジングスピリットを強く持っている人、好奇心の強い人、思考の持久力を高めたい人と研究を始めたいと考えています。
この研究で身につく能力
論理説明能力・解釈能力、科学的な仮説検証・立案力、高精度なディスカッション能力、発表能力、英語コミュニケーション力
学問分野:高分子科学、光化学、コロイド科学、界面化学、幾何学、非線形科学など
【就職先企業・職種】 化学メーカー、医療機器メーカー、自動車関連、材料全般、食品関連、化粧品関連など
研究内容
自然界を見渡すと、目に見えるレベルで綺麗なパターンがたくさんあります。たとえば生体組織は小さな分子から「自己組織化」 によって創り上げられています。これは、物質そのものにだけ由来している訳ではなく、外的な環境が強く作用した結果です。変化する環境に適応できるように生命が進化した結果、多様な空間 パターンやリズムが生まれています。
一方、人工的に合成された分子から物理環境を制御してパターンを創り出す研究は歴史的に長くなされています。しかし、合成分子のままでは医療や工業的に材料化する上で困難を極め、生体組織との調和や自然との共生には幾つものハードルがあります。これに対して我々は直近の研究で、天然分子の多糖が自らパターンを再構築する現象を発見しました。ここで、「なぜ」「どのように」パターンをつくるのかを解明できれば、生体適合性と環境適応性を合わせ持つマテリアルを手に入れることができます。
1.DRY でWET な天然多糖の自己組織化
天然から抽出された多糖は、どのようにcmスケールの幾何学パターンを生み出すのか、特に、乾燥環境下で多糖が見せる「空間認識」の法則性を検証しています。DRY でWET な非平衡環境下、ミクロにもマクロにも高分子が組織化して析出してきます。実際の生体組織が常に乾燥環境におかれながらもWETなからだを維持していることを振り返ってみれば、水中から陸上進出した生体高分子の進化を紐解く鍵があるはずです。
2.ソフトマテリアルのパターン制御
生体高分子、合成高分子に関わらず多くのソフトマテリアルは、界面の応力制御によって形態の制御が可能です。ほんの小さな環境の違いや僅かな力学的エネルギー負荷によって、多様な構造や形態を見せます(自己集積、自己相似、フラクタルなど:図参照)。これを利用してDRY でWET な環境に適応した医療用材料の設計法を見出したいと考えています。
これら「自然美の追求」を基に現象の法則性を導くことが究極目標です。そして、生物がなぜパターンを創るようになったのか?自然科学の大命題に挑戦しています。
主な研究業績
- Bioinspired gels: polymeric designs towards artificial photosynthesis. Hagiwara R, Yoshida R, Okeyoshi K, Chemical Communications 60, 13314-13324 (2024).
- Recognition of spatial finiteness in meniscus splitting through evaporative interface fluctuations. Wu L, Saito I, Hongo K, Okeyoshi K, Advanced Materials Interfaces 10, 2300510 (2023).
- DRY & WET: meniscus splitting from a mixture of polysaccharides and water. Okeyoshi K, Polymer Journal 52, 1185 (2020).
使用装置
各種光学顕微鏡、各種光学装置(偏光、蛍光など)、画像解析装置、粘度計、密度計、動的光散乱、電子顕微鏡
研究室の指導方針
社会で働くトレーニング期間として、個人個人の能力を最大限に発揮できるようにサポートします。我々のグループは研究・文化の両面で多様な環境に在り、多角的な視野を構築する上で日本でも稀に見る貴重なチャンスです。突出した先端研究をみなさんと進めたいと考えています。そのためにも以下1−3の基礎を実践していきます。
1. 実験とディスカッションを通して論理的思考力と先見性の能力を養う。
2. 仮説と検証を繰り返し大目標にアプローチする。
3. 学会発表、学術論文発表を念頭に科学的言語を使う。
これらの積み重ねを自信にして創造力を高めていきたいと考えています。熱いハートのみなさん、ぜひ21世紀のパイオニアを目指して一緒にチャレンジしましょう!
[研究室HP] URL:https://sites.google.com/oke-acgroup.com/web/home-j
化学と生物の融合による新たな人工タンパク質の創製


化学と生物の融合による
新たな人工タンパク質の創製
人工タンパク質合成研究室
Laboratory on Nonnatural Protein Biosynthesis
教授:芳坂 貴弘(HOHSAKA Takahiro)
E-mail:
[研究分野]
遺伝子工学・タンパク質合成・ケミカルバイオロジー
[キーワード]
遺伝暗号拡張、人工タンパク質、非天然アミノ酸、無細胞翻訳系、蛍光分析
研究を始めるのに必要な知識・能力
タンパク質や遺伝子に興味を持っていること。生物化学・有機化学に関する基礎的な知識や実験技術が必要になりますが、入学後に修得することも可能です。
この研究で身につく能力
遺伝子工学・タンパク質合成・有機合成・蛍光分析などに関する専門的な知識と実験技術を修得することができます。また研究活動を通じて、実験計画の立案・関連研究の調査・実験データの取得と分析・研究成果のまとめとプレゼンテーション、に至る一連の研究プロセスを学ぶことができます。これらの能力は、技術者・研究者としていずれも必要不可欠なものです。
【就職先企業・職種】 化学・生物関連企業、研究機関
研究内容
遺伝子工学・タンパク質合成などの生物化学的手法と、有機合成などの化学的手法を組み合わせることで、新たな人工タンパク質の創製を目指して研究を行っています。具体的には、以下のような研究テーマを進めています。また、研究室で得られた成果を企業と共同で実用化するための研究も行っています。

図1.4塩基コドンを用いた非天然アミノ酸のタンパク質への導入

図2.抗原分子を検出できる蛍光抗体センサーの例
1.遺伝暗号の拡張による非天然アミノ酸のタンパク質への導入
タンパク質はDNAの遺伝暗号に従ってアミノ酸が連なって合成され、それが精密な立体構造を形成することで、高度な機能を発揮しています。しかし生物が使用しているのはわずか20種類のアミノ酸のみです。私たちは、この20種類の制限を超えて、人工的に合成した「非天然アミノ酸」をタンパク質の特定部位に導入することのできる、新たな技術の開発に成功しています。これは、4塩基コドンなどの拡張遺伝暗号に非天然アミノ酸を割り当てる(図1)、という新しい概念によって達成されています。
2.新たな機能を持つ人工タンパク質の創製
上記の技術を利用することで、新たな機能を持った人工タンパク質の創製を進めています。例えば、抗体などの特定の分子を認識して結合するタンパク質に、蛍光分子を付加した非天然アミノ酸を導入することで、蛍光により標的分子を検出できるタンパク質センサーを合成できます(図2)。また、非天然アミノ酸の導入技術を利用することで、新しいタンパク質医薬品の合成も試みています。これらの研究の一部は、企業・研究機関との共同研究により進めています。
3.生物の潜在能力を利用した新たなバイオ技術の開発
非天然アミノ酸のタンパク質への導入技術は、生物がもともと持っている潜在能力を、人工的に引き出して活用したものと言えます。私たちは、そのような生物の持つ潜在能力を新たに見つけ出し利用することで、人工タンパク質などの有用物質を合成することのできる、新たなバイオ技術の開発にも挑戦しています。
主な研究業績
- A. Yamaguchi, T. Hohsaka, Synthesis of novel BRET/FRET protein probes containing light-emitting proteins and fluorescent nonnatural amino acids, Bull. Chem. Soc. Jpn., 85, 576-583 (2012).
- R. Abe, H. Ohashi, I. Iijima, M. Ihara, H. Takagi, T. Hohsaka, H. Ueda, “Quenchbodies”: Quench-based antibody probes that show antigen-dependent fluorescence, J. Am. Chem. Soc., 133, 17386-17394 (2011).
- 芳坂貴弘、非天然アミノ酸のタンパク質への導入技術-バイオメディカル応用に向けて、メディカルバイオ別冊, 72-77 (2010).
使用装置
蛍光分析装置(分光光度計・蛍光寿命測定・蛍光スキャナなど)
遺伝子解析装置(DNAシーケンサー・リアルタイムPCRなど)
質量分析装置
研究室の指導方針
人工タンパク質に関連した研究テーマに対して、実験を通じて新たな成果を挙げるとともに、その研究プロセスを修得することを目標としています。具体的には、各自の研究テーマに対して、実験を試行錯誤的に繰り返す過程を通じて、実験計画の立案、結果の解釈と問題点の把握、次の実験計画へのフィードバック、などを独力で遂行できる能力を鍛錬します。そのために、研究室ゼミでは定期的に研究報告会を開催して、進捗状況の確認と指導・助言を行います。また、研究成果は積極的に学会等で発表する機会を設けています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/hohsaka/
エネルギー変換の最先端 ―未利用廃熱の高効率回収―


エネルギー変換の最先端 ―未利用廃熱の高効率回収―
R7年10月以降に入学する学生の受け入れは行いません
小矢野研究室 KOYANO Laboratory
教授:小矢野 幹夫(KOYANO Mikio)
E-mail:
[研究分野]
固体物性、熱電変換
[キーワード]
物理・実験系、低次元伝導体、熱電変換の物理、熱電材料、エネルギーの有効利用、エネルギーハーベスティング
研究を始めるのに必要な知識・能力
物理の実験系の研究室ですが、出身分野にはこだわりません。今までにも物理系、電子・電気系、機械系、化学系の学生が本研究室に来て活躍しています。JAISTに入学してから、応用物性数学、量子力学、固体物理学など自然科学系の講義を受講してもらうことをお願いしています。
この研究で身につく能力
物理系のみならず多様な分野から来た学生が、総合的な科学技術としての熱電変換の研究を行うことにより、修了後に企業や研究機関で社会に貢献することを目指しています。私たちの研究室で身につけられる能力は、具体的には以下のとおりです。
- 実際に手を動かしてものを作る面白さを知ること。
- 先端的な実験機器を用いた物理研究と実験手法の習得。
- 物理的または科学的な考え方の習得、ものごとを定量的に捉える力の獲得。
- プレゼンテーション能力、科学的な論文(主として日本語)の作成の方法。
【就職先企業・職種】 製造業ほか
研究内容

テトラヘドライト

硫化物熱電材料

ポストグラフェン材料
ゼーベック効果やペルチェ効果などを利用した『熱電変換技術』を使うと、熱エネルギーと電気エネルギーの相互変換が出来るため、廃熱から直接発電を行う『熱電発電』が可能となります。私たちの研究室では、【はかる】【つくる】【さがす】という3本の柱で熱電変換に関する研究を行っています。
【はかる】微小スケールの熱電性能の測定
「はかる」とは熱電材料の特性をはかるための評価手法の開発という意味です。近年、微細な構造を持った新規熱電素子が開発されていますが、システム自体が小さく測定が難しいため、新しい評価手法の開発が望まれています。
私たちの研究室では、3ω法(スリーオメガ法)と呼ばれる熱伝導率測定法を改良して、Bi-Te 系熱電ナノ粒子凝集体の熱伝導率を測定することに成功しました。さらにこの3ω法を改良することにより、遷移金属トリカルコゲナイドナノワイヤーの熱伝導率測定にもチャレンジしています。またポイントコンタクト型局所熱電性能測定法も開発しており、将来的にはグラフェンやポストグラフェンなど先端材料のフォノン物性を解明することを目指しています。
【つくる】インクジェット技術を用いた新規熱電モジュールの開発
実際に熱電発電を行うためには、Bi-Te 系熱電素子を多数配列させた熱電モジュールを作製しなければなりません。われわれは、LCD 用カラーフィルターの製造に利用されているインクジェット技術を熱電モジュール作製に応用するという、新たな製造プロセスの開発を行いました。
インクジェット印刷を用いることにより、従来作製が難しかった微小サイズモジュールや、ポリイミドをはじめとするフレキシブルな基板を用いたモジュールの試作に成功しました。今後は、焼成後の素子の密度と粒子配向性の向上といった課題を解決し、既存の分野およびエネルギーハーベスティングなど新しい分野への応用展開を図ることを予定しています。
【さがす】新しい熱電変換材料の創製
現在実用化されている熱電材料(Bi-Te 系材料)は、構成元素のTe が希少・高価であるという問題を抱えています。この問題を解決するため、私たちはTe の代替元素として硫黄(S)を用いた化合物、すなわち新しい硫化物熱電材料の開発を行っています。
最近、私たちはテトラヘドライトと呼ばれる熱電鉱物Cu12Sb4S13が、実用化されている材料と比べても遜色ない性能を示すことを発見しました。この材料は母体のままでも良好な熱電性能を示しますが、さらに、Cu サイトをNi で置換することにより熱電性能を約1.4倍向上させることに成功しました。
これ以外にも、多様な硫化物の低次元伝導体や、熱電材料と磁性体のハイブリッド材料の合成・開発を行い、その基礎物性や熱電性能を調査しています。
主な研究業績
- Development of thermal conductivity measurement system using the 3ω method and application to thermoelectric particles, S. Nishino, K. Suekuni, K. Ohdaira, and M. Koyano, Journal of Electronic Materials (2014), DOI: 10.1007/s11664-014-2993-9.
- High-performance thermoelectric mineral Cu12-xNixSb4S13 tetrahedrite, K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, Journal of Applied Physics 113, 043712 (2013)
- 廃熱も電気に変える熱電発電,小矢野幹夫,Ohm Bulletin, 2014年 VOL.49 冬号(通巻200号)pp. 02.
使用装置
物理特性測定装置 PPMS(熱電性能、電気伝導の測定)
ラマン散乱分光装置(固体中の素励起のエネルギー分析)
管状電気炉・マッフル炉(無機材料の合成)
ホットプレス装置(粉体試料の加圧焼結・配向制御)
研究室の指導方針
『多様な物性に多様な価値観で挑む』をモットーに、今まで誰も知らなかった新しい現象を発見したり、新規材料を創製することを目指しています。小矢野研は『エネルギーに興味がある人』『無機材料を自分で作ってみたい人』『科学や物理が好きな人』 を歓迎します!
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/kotai/koyano/index.html
原子スケールナノテクノロジーで、革新的エネルギー・環境デバイスを開拓!


原子スケールナノテクノロジーで、
革新的エネルギー・環境デバイスを開拓!
R7年10月以降に入学する学生の受け入れは行いません
水田研究室 MIZUTA Laboratory
教授:水田 博(MIZUTA Hiroshi)
E-mail:
[研究分野]
サイレントボイスセンシング、超高感度センサ、熱制御素子
[キーワード]
グラフェン、ナノ電子機械システム(NEMS)、雷センサ、においセンサ、熱整流デバイス、バレートロニクス、量子デバイス、極限構造作製、第一原理計算
研究を始めるのに必要な知識・能力
水田研究室では物性物理、電気・電子工学、機械工学、化学、コンピュータ、IoT/AIの融合領域研究を行っていますので、これらのどれか1つ(あるいは複数)の基礎を修得していることが必要です。さらに、その専門を広げて行く好奇心旺盛な人が適しています。
この研究で身につく能力
水田研究室では、グラフェンをはじめとする新奇な原子層材料をベースに、NEMS(ナノ電子機械システム)技術と1ナノメートル精度の超微細加工技術を駆使して、超高感度センサデバイス、超低消費電力スイッチ、熱整流素子、バレートロニクスデバイスなどを開発しています。これらの研究を通して、①電子線直接描画や最先端ヘリウムイオンビーム技術による極微デバイス作製技術、②環境制御型・高周波プローブステーションや希釈冷凍機などを用いた極限電気特性測定、③第一原理計算からデバイス・回路シミュレーションに至る設計・解析技術、などを幅広く修得することができます。また、欧州を中心に海外研究機関と緊密に連携し、学生・スタッフが頻繁に交流しているため、研究を進める中で自然に国際的コミュニケーションスキルとリーダーシップ能力を身につけていくことが可能です。
【就職先企業・職種】 ICT企業、製造業、国立研究開発法人
研究内容
水田研究室では、グラフェンや極薄シリコン膜をはじめとする新奇な原子層材料と、原子スケール精度の超微細加工技術を駆使して、超高感度センサ、超低消費電力NEMS(ナノ電子機械システム)スイッチ、バレートロニクス、熱フォノンエンジニアリングなどを開発し、グローバルな環境・エネルギー問題に貢献することを目指しています。
具体的には以下の4テーマを中心に研究を推進しています。

図1.

図2.

図3.
①サイレントボイスセンシングの研究
従来のセンサ技術では検出が難しい自然界や生体の様々な微小信号(サイレントボイス(声なき声))を検出する革新的センサ素子の研究を行っています。落雷の予測を可能とする大気中電界センサ(図1右)や、疾病の予兆検出を目的とした超低濃度の皮膚ガス(におい)センサ(図1左)など、素子の原理探索から試作、測定データ解析技術の研究、さらに実用化研究まで、産業界とも連携して精力的に推進しています。
②超低電圧動作グラフェンNEMSスイッチの研究
グラフェンやhBN膜など異種原子層材料をファンデルワールス積層させたNEMS素子を作製し、その電気・機械的な動作の解明と超低電圧・急峻動作スイッチ(図2)の研究を行っています。シリコンMOSFETの理論限界を超える急峻スイッチング特性と0.5V未満の超低電圧動作を実現しています。
③ナノスケール熱制御技術の研究
最先端技術ヘリウムイオンビームミリング技術を用いて宙吊りグラフェン上に直径10nm以下のナノ孔周期的構造を形成します。特に非対称構造における熱整流素子(図3右)の実現を目指しています。
④原子層材料によるバレートロニクスの研究
バレー自由度を新たな情報担体として利用するバレートロニクスは、従来のエレクトロニクスを超える将来の情報処理技術として期待されています。原子層材料を積層した様々な構造におけるベリー曲率発生(図3左)を理論と実験の両面から探求しています。
主な研究業績
- J. Sun, M. Muruganathan, and H. Mizuta, ‘ Room temperature detection of individual molecular physisorption using suspended bilayer graphene’, Science Advances vol.2, no.4, e1501518 (2016) DOI:10.1126/sciadv.1501518
- A. Kareekunnan, T. Agari, A. M. M. Hammam, T. Kudo, T. Maruyama, H. Mizuta, and M. Muruganathan, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, ACS Omega 6, 34086-34091 (2021) DOI: 10.1021/acsomega.1c05530
- F. Liu, M. Muruganathan, Y. Feng, S. Ogawa, Y. Morita, C. Liu, J. Guo, M. Schmidt and H. Mizuta, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, Nano Futures 5(4), 045002 (2021) DOI: https://doi10.1088/2399-1984/ac36b5
使用装置
電子線リソグラフィー、走査型電子顕微鏡、
電界電離ガスイオン源(GFIS)微細加工装置、ヘリウムイオン顕微鏡(産業技術総合研究所)
環境制御型高周波プローバー、マルチガス種対応プローバー、
第一原理・量子輸送シミュレータ
研究室の指導方針
最先端のナノテクノロジーを駆使して、現在のCMOS技術を越える‘More than Moore’ & ‘Beyond CMOS’世代のエマージングテクノロジ開拓を目指しています。「まだ世界で誰も実現したことのない機能のデバイスをこの手で初めて開発してみたい!」という意欲のあるあなた、ぜひ一緒に研究しましょう。また、欧州・アジアを中心に海外研究機関に滞在しての研究活動も積極的に推進していますので、国際的に活躍したい方も大歓迎です。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/mizuta-lab/
ポリマー1分子の直視熱ゆらぎで駆動する分子マシンの創製


ポリマー1分子の直視
熱ゆらぎで駆動する分子マシンの創製
ナノ高分子化学研究室 Laboratory on Nano-Polymer Chemistry
准教授:篠原 健一(SHINOHARA Ken-ichi)
E-mail:
[研究分野]
高分子化学、分子マシン
[キーワード]
機能性高分子合成、1分子イメージング、人工生命機能、高速AFM
研究を始めるのに必要な知識・能力
機能性高分子の合成研究を希望する学生は、有機化学と高分子化学の基礎的な知識が必要です。また、高分子鎖一本の構造を解析する1分子イメージング研究を希望する学生は、顕微鏡装置のしくみを理解し使いこなす必要がありますので、物理学的なものの考え方が求められます。
この研究で身につく能力
【高分子合成】新しい機能性高分子を合成しますので、有機合成化学的手法や高分子機能設計についての研究能力が鍛えられます。【1分子イメージング】有機溶媒中の高分子鎖一本の構造ダイナミクスを高速AFMイメージングし動態を解析しますので、装置原理や当該解析法のしくみ、また一連の考察をとおして高分子の本質についての理解が深化します。【シミュレーション】スーパーコンピューターを活用して分子動力学(MD)計算による高分子鎖一本のダイナミクスをシミュレーションし、高速AFMイメージングの結果を理解してモデルを構築しますので、コンピューターシミュレーションの基礎と応用が身につきます。【分子マシン創製】多様な高分子鎖の運動機能を探索し分子マシンの創製へ展開しますので、現象の本質を見抜く洞察力、創造力が鍛えられます。
【就職先企業・職種】 化学系企業、半導体関連企業、食品関連企業、化粧品会社、公務員(教員)など
研究内容

Fig. Single Molecular Unidirectional Processive Movement along a Helical Polymer Chain in a Non-aqueous Media
篠原研究室では、ポリマー1分子を研究対象とした基礎研究を進めています。最近の研究で、分子レベルではポリマーにも生物のようなしなやかな動きがあることが実証されました。一方、生物物理学では生体高分子であるタンパク質の機能発現の機構や動作原理が明らかになりつつあります。この概念を合成高分子の設計に適用すれば、刺激や負荷などの環境変化に柔軟に対応して特性を自在に制御できるしなやかな合成高分子~分子マシン~を開発できると考えています。また同時に、1分子イメージング技術の特許化(国際出願)そして共同研究を通じて企業への技術移転を進めています。
【ポリマー1分子の直視】
ポリマーは、非常に優れた特性を持つ有用な物質であり文明を維持するために無くてはならない材料です。しかしながら、ポリマーは一般にその構造が多様で非常に複雑であるために、構造と機能の相関関係を分子レベルで議論することが難しいのです。すなわち、「ポリマーのどの様な構造が、如何なる機能を発揮しているのか?」という本質的な問いに対して、多数分子の平均値を議論する従来の研究手法を踏襲する以上、明確に分子レベルで答えることは難しいという問題があります。これが原因となり、より優れた機能を有する高分子を合成しようとする際に、どの様な分子設計を行えば良いのかが不明確である、という障壁が機能性高分子の構造設計において立ちはだかっています。そこで、高分子鎖一本の構造と機能の実時間・実空間同時観測系が確立されれば、推論や仮定なしに、明確に分子構造と機能との関係を直接議論できるのではないかと考えました。
ポリマー1分子の直接観測で世界に先駆けた研究に挑戦し続けています。例えば、合成高分子鎖一本のらせん構造が形成する高次構造の解明を世界で初めて走査トンネル顕微鏡観測で達成し、米国サイエンス誌の依頼を受け成果の一部が掲載された等の成果を挙げています。また液中でゆらぐπ共役ポリマーの1分子蛍光イメージングと1分子分光に成功しています。さらに高速AFMによるらせん高分子鎖一本の運動を直接観測して、これがブラウン運動であることを解析で証明しました。また超分子ポリマーの研究では、国際学術誌の表紙を飾っています。
【分子マシンの開発】
生体を構成しているタンパク質などの生体高分子にはさまざまな機能があることがわかっていますが、取り出すと高次構造が崩れ機能が失われてしまうため、材料として利用することが難しいという問題がありました。その点、合成高分子は耐久性があり、材料には適しています。もし、しなやかな高次構造を形成し、さまざまな機能をもつ合成高分子を作ることができれば、現在の機械のしくみを根底からくつがえす、画期的な材料を作れると期待しています。篠原研究室では、モータータンパク質など生体分子マシンの構造や機能に学び、これを超える新しい機能を持った合成高分子による分子マシンの実現を目指しています。
主な研究業績
- K. Shinohara, S. Yasuda, G. Kato, M. Fujita, H. Shigekawa: Direct observation of the chiral quaternary structure in a π-conjugated polymer at room temperature, J. Am. Chem. Soc. 123, 3619-3620 (2001); Editors’ Choice, Science 292, 15 (2001).
- K. Shinohara, Y. Makida, T. Oohashi, and R. Hori: Single-Molecule Unidirectional Processive Movement along a Helical Polymer Chain in Non-aqueous Medium, Langmuir, 38 (40), 12173-12178 (2022).
- K. Cheng, K. Shinohara, O. Notoya, M. Teraguchi, T. Kaneko, T. Aoki Synthesis and Direct Observation of Molecules of 2D Polymers: With High Molecular Weights, Large Areas, Small Micropores, Solubility, Membrane Forming Ability, and High Oxygen Permselectivity, Small, 202308050 (2023).
使用装置
高速原子間力顕微鏡(高速AFM)
単一分子蛍光・分光顕微鏡(TIRFM)
高分子鎖構造/蛍光同時観測装置(AFM/TIRFM複合)
スーパーコンピューター(分子動力学計算)
各種機器分析装置(NMR, IR, UV/Vis.等)
研究室の指導方針
研究テーマを学生が教員から与えられたものとして受動的に研究するのではなく、一日も早く自らのものとして研究テーマを捉えることができるよう指導します。具体的には、学生とのコミュニケーションを積極的にとり、学生の能力に応じて可能な限り意思を尊重して自主的に実験を遂行させ、自ら問題を見つけてこれを解決する能力を養わせる方針です。これら一連の過程を繰り返すことにより、研究とは如何なるものなのか等の基本的かつ重要な問の答えが各々学生なりに得られ、ひいては将来の優れた研究者・技術者としての自覚につながるものと期待しています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/shinohara/
“探索・学習・予測”のシナジーを実践する次世代マテリアル設計


“探索・学習・予測”のシナジーを実践する
次世代マテリアル設計
マテリアルズインフォマティクス研究室
Laboratory on Materials Informatics
教授:谷池 俊明(TANIIKE Toshiaki)
E-mail:
[研究分野]
ハイスループット実験、マテリアルズインフォマティクス、計算化学
[キーワード]
固体触媒、重合、ナノコンポジット、分離膜、グラフェン、データ科学
研究を始めるのに必要な知識・能力
私たちの研究はユニークであり、様々な専門の研究者が活躍できる非常に学際的なものです。新しい分野に創意工夫を持って挑戦する志を重視し、元々の専門分野を問わず多様な学生を受け入れています。所属学生の専門は、例えば、化学(触媒・高分子・ナノ材料)、化学・機械工学、データ科学、計算科学などです。
この研究で身につく能力
所属学生は、自身の研究やゼミ活動への参画を通して、1)ハイスループット実験、データ科学、計算化学のいずれか、ないしはこれらを組み合わせて用いる先進的な材料科学研究の実践方法、2)与えられた資源の中で成果を最大化するための研究計画能力、3)国際・学際的な環境でチームワークするスキルなどを習得できます。
【就職先企業・職種】 材料、化学、化学工学、マテリアルズインフォマティクスなどに関する研究開発職
研究内容

ハイスループット実験とマテリアルズインフォマティクスによる材料科学研究
気候変動や少子高齢化など、人類社会や我が国が置かれた避けられない課題に鑑み、谷池研究室では、ハイスループット実験、データサイエンス(マテリアルズインフォマティクス)、シミュレーションを基盤とした、イノベーション志向の物質科学を目指しています。かつてない効率で膨大な材料候補を探索し、社会問題の解決を目指しています。
❶ ハイスループット実験
異なる元素や物質を組み合わせることで得られる材料の数は膨大です。マテリアルサイエンスの目標の一つは、特別に優れた組み合わせやうまい組み合わせ方(プロセス)を発見し、より優れた材料を生み出すことです。私たちの研究室では、高度に自動化・並列化された実験装置を駆使するハイスループット実験を行っています。新しい装置やプロトコルの開発を通して実験のスループットを最大化し、浮いた時間を思考や情報収集に当てる研究スタイルを志向します。
➋ データ科学
ハイスループット実験は材料の合成条件、構造、性能を紐づけた材料ビッグデータを生み出します。効率的な材料探索を行うためには、良い材料を選出するだけでなく、材料性能の良し悪しがどのような因子と相関しているかを見極める構造性能相関を明らかにしていく必要があります。多変量解析や機械学習を駆使し、全てのデータから余すことなく学習することで物質探索を飛躍的に加速します。
➌ コンピュータシミュレーション
コンピュータや計算化学の発展によって、現実的な精度でのシミュレーションが可能になってきました。一方で、コンピュータを使った新しい材料の予測(in-silico設計)にはまだまだ距離があります。最も難しい問題は、複雑な材料を代表するような分子モデルを如何に構築するかです。実験も行う当研究室では、実践的な計算化学を標榜し、計算化学の夢であるin-silico材料設計に取り組んでいます。
ハイスループット実験装置の開発やデータサイエンスのプログラミングに加え、以下5つのテーマに注力しています:触媒・ポリマーインフォマティクス、構造性能相関、MOF やグラフェンなどのナノマテリアル、ポリマーナノコンポジット。
主な研究業績
- L. Takahashi, T. Taniike, K. Takahashi et al., Constructing Catalyst Knowledge Networks from Catalysts Big Data in Oxidative Coupling for Methane for Designing Catalysts, Chemical Science 2021, 12, 12546-12555 (press released, selected as Front Cover).
- T.N. Nguyen, K. Takahashi, T. Taniike et al., High-Throughput Experimentation and Catalyst Informatics for Oxidative Coupling of Methane, ACS Catalysis, 2020, 10, 921-932 (press released).
- G. Takasao, Toru Wada, T. Taniike et al., Machine Learning-Aided Structure Determination for TiCl4-Capped MgCl2 Nanoplate of Heterogeneous Ziegler-Natta Catalyst, ACS Catalysis, 2019, 9, 2599-2609.
使用装置
ピペッティングロボット Andrew+
多目的並列反応装置(研究室開発装置)
自動マイクロ波合成装置
触媒スクリーニング装置(研究室開発装置)
光触媒スクリーニング装置(研究室開発装置)
オペランド化学発光分析装置(研究室開発装置)
化学発光イメージング装置(研究室開発装置)
その場中・遠赤外分光光度計
レーザラマン分光光度計
マイクロプレートリーダー
X線回折装置 (オートサンプラー付)
蛍光X線分析装置 (オートサンプラー付)
研究室の指導方針
私たちの研究室にはコアタイムがありません。実験や研究のスループットを最大化し、ワークライフバランスを自身で設計して下さい。豊富なスタッフ陣があなたの研究をサポートします。チームミーティング(数週間に1回)やコロキウム(月に1回)を通して密な議論や指導を行います。また、国内外の学会への参加も積極的に支援しています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/taniike/
高分子材料の機能化、高性能化をレオロジー的な手法で行います


高分子材料の機能化、高性能化を
レオロジー的な手法で行います
材料レオロジー研究室 Laboratory on Materials Rheology
教授:山口 政之(YAMAGUCHI Masayuki)
E-mail:
[研究分野]
高分子レオロジー、成形加工
[キーワード]
インテリジェントポリマー、バイオマスポリマー、マテリアルリサイクル
研究を始めるのに必要な知識・能力
マテリアルサイエンス(材料科学)系分野に関する基礎知識があれば、これまでの専門は気にせずとも結構です。むしろ意欲ある学生を希望します。
この研究で身につく能力
高分子はひとつの分子が線状で長いことが最大の特徴です。このような分子形状であるため、高分子は“からみ合い”相互作用を示します。その結果、例えば液体状態でも弾性を示し、さまざまな成形加工が適用できるようになります。からみ合いは高分子らしさを表す最も適切な特性であると言え、レオロジーではその「からみ合い」により示される特性や、それによって形成される構造を取り扱います。当研究室ではレオロジー的な考え方や成形加工の技術を取り入れることで、新しい機能材料や、ポリマー系材料の高性能化へ取り組み、世の中の役に立つ新規材料を創出しています。これらの研究で身につく材料設計に対する考え方は、企業における研究でも大いに役立ちます。
【就職先企業・職種】 高分子材料を扱う樹脂メーカー、加工メーカー、ユーザーなど(詳細はHPに記載)
研究内容
当研究室では、レオロジー特性の新しい制御技術、成形加工技術、ブレンド・アロイやコンポジットなどの樹脂複合化の独自技術を「武器」として、新しい材料設計を化学反応に頼ることなく創出しています。
対象とする材料は、ポリ乳酸やセルロースなどのバイオマス系ポリマー、ポリエチレンやポリプロピレンなどの汎用高分子、ポリメタクリル酸メチルやポリカーボネートなどの光学ポリマー、各種エラストマーなど、ほとんどの高分子材料であり、さらにカーボンナノチューブなどのナノ粒子、各種樹脂添加剤を幅広く取り扱っています。また、高分子以外にも、化粧品や食品などを研究対象とすることがあります。これらの材料の組み合わせや改質、さらには成形により、さまざまな機能を付与し、また、高性能化を行っています。
応用分野はさまざまですが、自動車関係の材料や次世代のディスプレイなど、日本の技術力が強い分野を中心にした研究開発が多くなっております。得られた研究成果の一部は既に工業的にも応用されています。また、成形加工のトラブルや高速成形に対する研究も進め、高分子加工を技術的にサポートしております。以下、研究例の一部を紹介します。
【高分子系複合材料の研究開発】
分子レベルで異種物質の凝集状態を高度に制御することにより、ポリマー系複合材料の高性能化を目指す研究です。次世代気自動車などへの用途展開が期待できる透明樹脂や内装材向け樹脂、透明かつフレキシブルな導電性ポリマーフィルム、植物由来の原料を用いた革新的な光学デバイスなどの開発に取り組んでいます。また、ポリ乳酸の革新的な高性能化など低環境負荷材料を用いた研究も積極的に推進しています。
【レオロジー制御による機能性ソフトマテリアルの材料設計】
レオロジーの考え方はポリマーのみならず、さまざまな分野で必要とされます。特に、ソフトマテリアルである食品や生体材料、化粧品などではレオロジー特性の把握が必要不可欠です。本テーマでは、これら機能性ソフトマテリアルの材料設計をレオロジーの観点から進めています。切断しても再び元通りに治癒する自己修復性材料、形状記憶材料などの設計指針をこれまでに提案しています。
【成形加工技術の深化・構築】
優れた高分子材料でも、成形加工できなければ世の中で使用されません。そのため高分子産業では、成形加工に必要不可欠なレオロジーの専門家を常に必要としています。その基礎となる研究を実施すると共に、新材料のレオロジー特性を明らかにすることで実用化へ貢献しています。
主な研究業績
- 環境問題に立ち向かうポリオレフィンの成形加工技術,山口政之, 成形加工, 32(9), 301 (2020).
- 低分子添加による複屈折制御,山口政之,工業材料,66(4), 33-37 (2018).
- 成形加工性向上のための高分子レオロジー制御技術,山口政之,機能材料,38(4), 4-12 (2018).
使用装置
レオロジー測定装置
成形加工機
分光分析装置
力学特性評価装置
研究室の指導方針
当研究室では、主として高分子物性に関する知見に基づいて、材料の設計から成形技術に至るまで、さまざまな研究テーマを設定し活動しています。また、実際に役立つ研究を行うために、企業との共同研究を積極的に進めています。私自身の企業経験も活かしながら就職活動へのサポートも行い、総合的な力を伸ばしてもらいたいと考えています。
ポリマー材料の研究開発に興味をお持ちの方は、是非、当研究室を訪問してください。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/yamaguchi/
電磁波と原子核でナノ空間を視(み)て、制御する


電磁波と原子核でナノ空間を視(み)て、制御する
固体ナノ化学研究室 Laboratory on Solid-State Nanochemistry
教授:後藤 和馬(GOTOH Kazuma)
E-mail:
[研究分野]
物理化学、無機材料化学
[キーワード]
核磁気共鳴(NMR)、炭素材料、二次電池(リチウムイオン電池、ナトリウムイオン電池、次世代電池)、その場分析
研究を始めるのに必要な知識・能力
化学の基礎知識があれば研究をすみやかに始められますが、必要なことは学ぶという意欲さえあれば知識の有無は問題ありません。研究を通して自分の成長(能力的&人間的)を望み、新しいことに取り組む意思があれば大丈夫です。
この研究で身につく能力
ものづくりに始まり、測定機器による分析、得られた実験結果・測定結果の考察までを行うので、無機材料を中心とした材料合成の実験技術、電池作製および評価の技術、NMRをはじめとする各種機器分析の技術など幅広い技術が身につきます。また、研究室でのセミナーや学会発表、海外研究グループとの国際交流を通してプレゼンテーション能力、英語力なども磨かれます。しかし一番大事なことは、得られた実験・測定結果から「物質の中で何が起きているか」を総合的にとらえ考察する能力や、課題を解決し研究をまとめるための論理的な思考力など、AIにとって代わられることのない「人間」としての考える力であり、これを特に重視しています。社会に出て長くずっと第一線で活躍できる能力を持った人になってもらいたいと考えています。
【就職先企業・職種】 化学・材料メーカー、電機・電池・自動車および関連メーカー、分析機器メーカー、公設試験研究機関、教員
研究内容
ナノサイズの空間や表面などの構造、およびミクロな環境を解明することをテーマとして、細孔物質(物質の中に多数の小さな穴=細孔をもった固体材料)の内部空間や、黒鉛などの層状化合物の層間に吸蔵された分子やイオンの状態、動的挙動、内部空間の表面状態などを、核磁気共鳴(NMR)法を中心に様々な方法で研究しています。内部空間への分子やイオンの導入(インターカレーション)は電池電極反応とも密接な関連があることから、特にリチウムイオン電池、ナトリウムイオン電池や今後実用化が期待される次世代電池など、各種二次電池の電極材料の研究を積極的に進めています。
【固体NMR開発と二次電池電極の状態分析】


電池のリアルタイムNMR解析(左上)*),金属リチウム析出イメージ(右上)2.
非晶質炭素の充電,過充電挙動モデル(下)2.
*) K.Gotoh et al., Carbon (2014).
・固体材料についてのNMRは、固体物質中の局所構造やダイナミクスの解析に極めて有効な分析手法です。特にナノ空間の構造や環境を調べる際には、吸着された物質中の原子やイオンを「プローブ(探針)」として利用し直接的に内部環境を調べることができます。よって、リチウムイオン電池やナトリウムイオン電池ではそれぞれリチウム、ナトリウムのNMR共鳴信号を解析することで、電池内部の微小な状態変化を検出できます。軽元素であるリチウムやナトリウムは電子顕微鏡やX線分光など他の分析手段では直接観測が非常に難しいため、NMRでリチウムやナトリウムなど電荷を担持する重要な核種の状態を観測することが、イオンの吸脱着メカニズム、すなわち電池の充放電メカニズムの解明に大きく役立ちます。
・最新のリチウムイオン電池や次世代電池であるナトリウムイオン電池、全固体電池などの電極内に吸蔵されたリチウム、ナトリウムの状態を解明しています。充放電により刻々と変化する内部環境をリアルタイムで観測するためには、電池の「その場観測(オペランド解析)」が必須となるため、電池観測のための高感度オペランドNMR法の開発を積極的に進めています。本手法により電池が過充電された際の金属析出メカニズムも解明できるため、安全性評価にも貢献できます。
・充放電メカニズムの解析から、新たな材料の設計指針を立て、それに基づいた負極材料の開発を行っています。炭素材料は以前から負極に用いられてきましたが、次世代電池用電極材料としても期待できることから、新たな炭素材料の開発を進めています。
主な研究業績
- Dynamic nuclear polarization -nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials. H. Ando, K. Suzuki, H. Kaji, T. Kambe, Y. Nishina, C. Nakano, K. Gotoh*, Carbon, 206, 84 (2023).
- Mechanisms for overcharging of carbon electrodes in lithium-ion/sodium-ion batteries analysed by operando solid-state NMR. K. Gotoh*, T. Yamakami, I. Nishimura, H. Kometani, H. Ando, K. Hashi, T. Shimizu and H. Ishida, J. Mater. Chem. A 8, 14472 (2020).
- Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes. R. Morita, K. Gotoh*, M. Fukunishi, K. Kubota, S. Komaba, T. Yumura, N. Nishimura, K. Deguchi, S. Ohki, T. Shimizu and H. Ishida, J. Mater. Chem. A 4, 13183 (2016).
使用装置
Bruker AVANCE NEO 400MHz NMR(固体測定専用)拡散測定システム付, Bruker AVANCE Ⅲ500MHz-NMR(固体対応)オペランド測定用特殊プローブ付
X線回折,X線光電子分光(XPS),熱分析,電子顕微鏡,ガス吸脱着装置,電気化学測定装置(充放電試験装置等),電池作製設備(グローブボックス等),高温熱処理炉(2200℃)
研究室の指導方針
社会人としてどのような分野でも力を発揮できる基礎力と、専門家として活躍できる知識経験の、両方を持った人になってもらうことを目的として指導します。定期的な研究室でのセミナーや報告会がありますが、実験については装置の都合により個々のスケジュールがかなり異なってくるので、自分自身で研究計画を立案し、実行してもらうことになります。国内外の学会での発表のほか、海外研究グループや企業と進めている多彩な共同研究にも積極的に参加してもらい、国際的な幅広い視野を持てる機会を提供したいと考えています。
[研究室HP] URL:https://www.jaist.ac.jp/nmcenter/labs/gotoh-www/
人工細胞膜の形や動きを探求する


人工細胞膜の形や動きを探求する
生体ソフトマター物理研究室
Laboratory on Biological and Soft Matter Physics
准教授:濵田 勉(HAMADA Tsutomu)
E-mail:
[研究分野]
ソフトマター物理、生物物理
[キーワード]
ソフトマター、人工細胞、生体膜、リポソーム、相分離、分子ロボティクス
研究を始めるのに必要な知識・能力
リポソームの実験に興味を持って楽しく取り組めること、物理・化学の基本的な知識があることが望ましいです。
この研究で身につく能力
- 人工細胞膜の実験技術
- ソフトマターの物理化学に関する知識
- 光学顕微鏡を主とする分析装置の取り扱い技術
- 英語の学術論文を読み書きする力
- 学会発表や修士・博士論文などで成果を表現する力
【就職先企業・職種】 化粧品、食品、化学、機械、バイオ研究開発など
研究内容
両親媒性ソフトマターである脂質分子は、自己集合して膜を形成します。脂質膜は、2次元膜面内での相分離や、3次元空間でのベシクル変形などの多様な物理現象を示し、その構造は弾性エネルギーにより支配されます。生体細胞は、この脂質膜を器・界面として利用しています。ミトコンドリア・小胞体のような複雑な構造体を形成したり、膜の融合・分裂などのダイナミックな動きが物質輸送を行っています。また、脂質膜小胞は、ドラッグデリバリーや化粧品などの材料としての応用開発も進められています。
私たちは、ソフトマター物理学的な視点から、細胞サイズの人工膜小胞(リポソーム)をデザインします。分子が集まることで創発する膜の秩序状態やダイナミクスに注目し、特に相分離・相転移などの物理現象が関連する膜の動的な構造や機能の研究を進めています。多様な膜現象を支配する物理化学法則の解明や新奇現象の発見を目指し、膜の世界を探求します。
1.膜の動態コントロール
光応答性分子を膜に導入することで、膜の融合、相分離の生成・消滅、小胞の開閉(細胞のオートファジーに類似した動き)、膜の出芽(細胞のエンドサイト-シスに類似した動き)を光で制御できることを発見しています。ナノメートル領域の膜分子の反応を、マイクロメートル領域の膜ダイナミクスに変換する機能システムを、膜の物性に基づき設計します。
2.膜の相分離現象
生体細胞膜を模倣した不均一な膜表面(相分離構造)を人工的に作り出し、不均一パターンを動的に制御する因子や法則姓を明らかにします。これまでに、分子の電荷による影響や、膜曲率との関連、コロイドやDNA等のゲスト分子との相互作用について明らかにしています。
3.膜の力学応答
物理的刺激に対する膜ダイナミクスの研究を行っています。これまでに、シアストレスや浸透圧によって膜面の相分離構造・パターンが変化することを発見しています。刺激の強さ、温度、膜の分子組成などに依存した、膜の応答ダイナミクスの体系化を進めています。
主な研究業績
- "Photo-induced fusion of lipid bilayer membranes" Y. Suzuki, et al., Langmuir, 33, 2671 (2017).
- "Domain dynamics of phase-separated lipid membranes under shear flow" T. Hamada et al., Soft Matter, 18, 9069 (2022).
- "人工細胞膜のダイナミクス解析と構造制御" 濵田勉, 応用物理, 86, 875 (2017).
使用装置
画像解析システム
蛍光・位相差顕微鏡
研究室の指導方針
私たちは、人工細胞膜の新奇現象を発見し、膜の新たな可能性を表現することで、膜系が示す物理現象の原理究明を目的に研究をしています。研究活動を通して、基礎知識を活用し課題を解決する能力を養い、好奇心を持ち自ら調べ学ぶことの楽しさを経験してもらいたく思います。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/hamada