研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。ナノ粒子工学:機能材料の創製から応用まで
  
        ナノ粒子工学:機能材料の創製から応用まで
ナノ粒子工学研究室 Laboratory on Nanoparticle Engineering
教授:前之園 信也(MAENOSONO Shinya)
E-mail:
        [研究分野]
        ナノ材料化学、ナノ材料物性、コロイド化学
        [キーワード]
        半導体ナノ粒子、磁性体ナノ粒子、金属ナノ粒子、バイオ医療、エネルギー変換、センシング
研究を始めるのに必要な知識・能力
基礎学力、コミュニケーション能力、知的好奇心、柔軟な思考
この研究で身につく能力
修士課程では、(1) ナノ材料の化学合成技術、(2) 各種分析機器(透過型電子顕微鏡、X 線回折装置、X 線光電子分光、組成分析装置など)の操作スキル、(3) 基礎学問の知識(無機材料化学、結晶学、コロイド化学、固体物性など)、(4) ナノ材料に関する先端専門知識を身につけて頂きます。博士課程では、1-4に加え、英語によるプレゼンテーション能力、英語論文執筆能力、研究課題設定能力、共同研究遂行能力など、研究者に必要なあらゆる能力を身につけて頂きます。
【就職先企業・職種】 製造業(化学、精密機器、電気機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
物質をナノメートルサイズまで細かくしていくと、種々の物性がサイズに依存する新奇な材料となります。このような新奇材料を一般に「ナノ材料」と呼びますが、我々はその中でも特に「ナノ粒子」に興味を持ち、ナノ粒子に関する基礎から応用に亘る研究を行っています。半導体、磁性体、金属などのナノ粒子を化学合成し、その表面をさまざまな配位子によって機能化し、さらにそれらナノ粒子の高次構造を制御することによって、バイオ・医療分野あるいは環境・エネルギー分野で新たな応用を開拓することを目指しています。

1.磁性体ナノ粒子の合成とバイオ医療分野への応用
超常磁性体のナノ粒子を独自の方法によって合成し、その表面を自在に修飾することによって、バイオ医療分野での様々な応用の道を開拓しています。具体的には、細胞やタンパクの磁気分離、MRI 造影剤、ドラッグデリバリーシステムなどのナノ磁気医療に応用するための技術開発を行っています。
2.半導体ナノ粒子の合成とエネルギー変換素子への応用
狭ギャップ化合物半導体から広ギャップ酸化物半導体のナノ粒子まで、幅広い種類の半導体ナノ粒子を化学合成し、それらを用いて低炭素社会の実現を志向したナノ構造エネルギー変換素子の創製に関する研究を行っています。特に、ナノ構造熱電素子や光機能素子などに興味を持っています。
3.金属ナノ粒子を用いたバイオセンシング技術の開発
近年、金ナノ粒子を用いた様々なバイオセンサが開発され、簡便かつ迅速に DNA 配列検出やタンパク質機能解析などが可能となってきています。我々は、ナノ粒子プローブを用いたバイオセンシング技術の更なる高度化を目指し、異種金属元素からなるヘテロ構造ナノ粒子や合金ナノ粒子のプローブの開発を進めています。
主な研究業績
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, and S. Maenosono, “Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles”, ACS Nano 16 (2022) 885
 - J. Hao, B. Liu, S. Maenosono, and J. Yang, “One-Pot Synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) Core-Shell Nanoparticles as Highly Efficient Catalysts for the Reduction of 4-Nitrophenol”, Sci. Rep. 12 (2022) 7615
 - T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono, “Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes”, Langmuir 37 (2021) 6566
 
使用装置
透過型電子顕微鏡 (TEM)  超伝導量子干渉磁束計 (SQUID)
過型電子顕微鏡 (STEM)   動的光散乱測定装置 (DLS)
X 線回折装置 (XRD)    共焦点レーザー顕微鏡 (CLSM)
X 線光電子分光装置 (XPS)  核磁気共鳴装置 (NMR)
研究室の指導方針
就職希望者には、基礎・専門知識はもちろん、コミュニケーション能力、英会話力、論理的思考力および柔軟な対応力を涵養し、不確実性の時代を生き抜くことができる人材となってもらうための指導を行います。企業経験を活かした実践的就職指導も行っています。
博士後期課程への進学希望者については、先端的かつ国際的な研究環境を提供することによって、将来的に大学教員や企業研究者として活躍できるグローバル研究人材を育成します。
[Website] URL:https://www.jaist.ac.jp/~shinya/
人工細胞膜の形や動きを探求する
  
        人工細胞膜の形や動きを探求する
生体ソフトマター物理研究室 
Laboratory on Biological and Soft Matter Physics
准教授:濵田 勉(HAMADA Tsutomu)
E-mail:
        [研究分野]
        ソフトマター物理、生物物理
        [キーワード]
        ソフトマター、人工細胞、生体膜、リポソーム、相分離、分子ロボティクス
研究を始めるのに必要な知識・能力
リポソームの実験に興味を持って楽しく取り組めること、物理・化学の基本的な知識があることが望ましいです。
この研究で身につく能力
- 人工細胞膜の実験技術
 - ソフトマターの物理化学に関する知識
 - 光学顕微鏡を主とする分析装置の取り扱い技術
 - 英語の学術論文を読み書きする力
 - 学会発表や修士・博士論文などで成果を表現する力
 
【就職先企業・職種】 化粧品、食品、化学、機械、バイオ研究開発など
研究内容
 両親媒性ソフトマターである脂質分子は、自己集合して膜を形成します。脂質膜は、2次元膜面内での相分離や、3次元空間でのベシクル変形などの多様な物理現象を示し、その構造は弾性エネルギーにより支配されます。生体細胞は、この脂質膜を器・界面として利用しています。ミトコンドリア・小胞体のような複雑な構造体を形成したり、膜の融合・分裂などのダイナミックな動きが物質輸送を行っています。また、脂質膜小胞は、ドラッグデリバリーや化粧品などの材料としての応用開発も進められています。
 私たちは、ソフトマター物理学的な視点から、細胞サイズの人工膜小胞(リポソーム)をデザインします。分子が集まることで創発する膜の秩序状態やダイナミクスに注目し、特に相分離・相転移などの物理現象が関連する膜の動的な構造や機能の研究を進めています。多様な膜現象を支配する物理化学法則の解明や新奇現象の発見を目指し、膜の世界を探求します。
1.膜の動態コントロール
光応答性分子を膜に導入することで、膜の融合、相分離の生成・消滅、小胞の開閉(細胞のオートファジーに類似した動き)、膜の出芽(細胞のエンドサイト-シスに類似した動き)を光で制御できることを発見しています。ナノメートル領域の膜分子の反応を、マイクロメートル領域の膜ダイナミクスに変換する機能システムを、膜の物性に基づき設計します。
2.膜の相分離現象
生体細胞膜を模倣した不均一な膜表面(相分離構造)を人工的に作り出し、不均一パターンを動的に制御する因子や法則姓を明らかにします。これまでに、分子の電荷による影響や、膜曲率との関連、コロイドやDNA等のゲスト分子との相互作用について明らかにしています。
3.膜の力学応答
物理的刺激に対する膜ダイナミクスの研究を行っています。これまでに、シアストレスや浸透圧によって膜面の相分離構造・パターンが変化することを発見しています。刺激の強さ、温度、膜の分子組成などに依存した、膜の応答ダイナミクスの体系化を進めています。
主な研究業績
- "Photo-induced fusion of lipid bilayer membranes" Y. Suzuki, et al., Langmuir, 33, 2671 (2017).
 - "Domain dynamics of phase-separated lipid membranes under shear flow" T. Hamada et al., Soft Matter, 18, 9069 (2022).
 - "人工細胞膜のダイナミクス解析と構造制御" 濵田勉, 応用物理, 86, 875 (2017).
 
使用装置
画像解析システム
蛍光・位相差顕微鏡
研究室の指導方針
 私たちは、人工細胞膜の新奇現象を発見し、膜の新たな可能性を表現することで、膜系が示す物理現象の原理究明を目的に研究をしています。研究活動を通して、基礎知識を活用し課題を解決する能力を養い、好奇心を持ち自ら調べ学ぶことの楽しさを経験してもらいたく思います。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/hamada
原子スケールナノテクノロジーで、革新的エネルギー・環境デバイスを開拓!
  
        原子スケールナノテクノロジーで、
革新的エネルギー・環境デバイスを開拓!
        R7年10月以降に入学する学生の受け入れは行いません
水田研究室 MIZUTA Laboratory
教授:水田 博(MIZUTA Hiroshi)
E-mail:
        [研究分野]
        サイレントボイスセンシング、超高感度センサ、熱制御素子
        [キーワード]
        グラフェン、ナノ電子機械システム(NEMS)、雷センサ、においセンサ、熱整流デバイス、バレートロニクス、量子デバイス、極限構造作製、第一原理計算
研究を始めるのに必要な知識・能力
水田研究室では物性物理、電気・電子工学、機械工学、化学、コンピュータ、IoT/AIの融合領域研究を行っていますので、これらのどれか1つ(あるいは複数)の基礎を修得していることが必要です。さらに、その専門を広げて行く好奇心旺盛な人が適しています。
この研究で身につく能力
水田研究室では、グラフェンをはじめとする新奇な原子層材料をベースに、NEMS(ナノ電子機械システム)技術と1ナノメートル精度の超微細加工技術を駆使して、超高感度センサデバイス、超低消費電力スイッチ、熱整流素子、バレートロニクスデバイスなどを開発しています。これらの研究を通して、①電子線直接描画や最先端ヘリウムイオンビーム技術による極微デバイス作製技術、②環境制御型・高周波プローブステーションや希釈冷凍機などを用いた極限電気特性測定、③第一原理計算からデバイス・回路シミュレーションに至る設計・解析技術、などを幅広く修得することができます。また、欧州を中心に海外研究機関と緊密に連携し、学生・スタッフが頻繁に交流しているため、研究を進める中で自然に国際的コミュニケーションスキルとリーダーシップ能力を身につけていくことが可能です。
【就職先企業・職種】 ICT企業、製造業、国立研究開発法人
研究内容
 水田研究室では、グラフェンや極薄シリコン膜をはじめとする新奇な原子層材料と、原子スケール精度の超微細加工技術を駆使して、超高感度センサ、超低消費電力NEMS(ナノ電子機械システム)スイッチ、バレートロニクス、熱フォノンエンジニアリングなどを開発し、グローバルな環境・エネルギー問題に貢献することを目指しています。
 具体的には以下の4テーマを中心に研究を推進しています。

図1.

図2.

図3.
①サイレントボイスセンシングの研究
従来のセンサ技術では検出が難しい自然界や生体の様々な微小信号(サイレントボイス(声なき声))を検出する革新的センサ素子の研究を行っています。落雷の予測を可能とする大気中電界センサ(図1右)や、疾病の予兆検出を目的とした超低濃度の皮膚ガス(におい)センサ(図1左)など、素子の原理探索から試作、測定データ解析技術の研究、さらに実用化研究まで、産業界とも連携して精力的に推進しています。
②超低電圧動作グラフェンNEMSスイッチの研究
グラフェンやhBN膜など異種原子層材料をファンデルワールス積層させたNEMS素子を作製し、その電気・機械的な動作の解明と超低電圧・急峻動作スイッチ(図2)の研究を行っています。シリコンMOSFETの理論限界を超える急峻スイッチング特性と0.5V未満の超低電圧動作を実現しています。
③ナノスケール熱制御技術の研究
最先端技術ヘリウムイオンビームミリング技術を用いて宙吊りグラフェン上に直径10nm以下のナノ孔周期的構造を形成します。特に非対称構造における熱整流素子(図3右)の実現を目指しています。
④原子層材料によるバレートロニクスの研究
バレー自由度を新たな情報担体として利用するバレートロニクスは、従来のエレクトロニクスを超える将来の情報処理技術として期待されています。原子層材料を積層した様々な構造におけるベリー曲率発生(図3左)を理論と実験の両面から探求しています。
主な研究業績
- J. Sun, M. Muruganathan, and H. Mizuta, ‘ Room temperature detection of individual molecular physisorption using suspended bilayer graphene’, Science Advances vol.2, no.4, e1501518 (2016) DOI:10.1126/sciadv.1501518
 - A. Kareekunnan, T. Agari, A. M. M. Hammam, T. Kudo, T. Maruyama, H. Mizuta, and M. Muruganathan, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, ACS Omega 6, 34086-34091 (2021) DOI: 10.1021/acsomega.1c05530
 - F. Liu, M. Muruganathan, Y. Feng, S. Ogawa, Y. Morita, C. Liu, J. Guo, M. Schmidt and H. Mizuta, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, Nano Futures 5(4), 045002 (2021) DOI: https://doi10.1088/2399-1984/ac36b5
 
使用装置
電子線リソグラフィー、走査型電子顕微鏡、
電界電離ガスイオン源(GFIS)微細加工装置、ヘリウムイオン顕微鏡(産業技術総合研究所)
環境制御型高周波プローバー、マルチガス種対応プローバー、
第一原理・量子輸送シミュレータ
研究室の指導方針
最先端のナノテクノロジーを駆使して、現在のCMOS技術を越える‘More than Moore’ & ‘Beyond CMOS’世代のエマージングテクノロジ開拓を目指しています。「まだ世界で誰も実現したことのない機能のデバイスをこの手で初めて開発してみたい!」という意欲のあるあなた、ぜひ一緒に研究しましょう。また、欧州・アジアを中心に海外研究機関に滞在しての研究活動も積極的に推進していますので、国際的に活躍したい方も大歓迎です。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/mizuta-lab/
光を知り、光で分析する ~分光学への誘い~
  
        光を知り、光で分析する ~分光学への誘い~
基礎物理化学・超微量ラマン分光分析研究室 
Physical Chemistry, Ultrasensitive Raman Spectroscopy Laboratory
准教授:山本 裕子(YAMAMOTO Yuko S.)
E-mail:
        [研究分野]
        物理化学境界領域・超微量ラマン分光、量子光学
        [キーワード]
        ラマン分光学、表面増強ラマン散乱、ナノマテリアル
研究を始めるのに必要な知識・能力
「光について学びたい」「光について詳しくなりたい」「光を使った分析手法を身につけたい」など、「光」あるいは「分光学」に興味を持ち学ぶ意欲があること。これが当研究室で研究を始めるにあたって必要な能力(意欲) です。実現に必要な知識や、技術の修得の仕方は教えます。
大発見したい・ノーベル賞を取りたい・大きな成果を上げたいなどの大きな野望を持つ学生さん・社会人学生さんも大歓迎です。
この研究で身につく能力
光を使った各種分析手法について、基礎~応用までが一貫して身につきます。特に、①ラマン分光法・超微量ラマン分光法(表面増強ラマン散乱, Surface-enhanced Raman scattering)、②紫外可視吸収分光法などの各種吸収分光法。また、可視光レーザーの取り扱いや、光学顕微鏡やミラー・レンズなど各種光学部品の取り扱い・装置の組み立て、分光器の基礎知識や取り扱い方も身につけることができます。
【就職先企業・職種】 化学系企業、起業等
研究内容
私たちは、光を使った検出方法を軸としながら世界最先端の研究を進めています。光検出は、マテリアル研究を行う上で最も基本的かつ重要な手法のひとつです。

図. 表面増強ラマン散乱法測定の概略図
1.強結合 新しい光学現象を生み出すナノスケール創成場
 1970年代に、表面増強ラマン散乱 (Surface-enhanced Raman scattering,SERS) という現象が発見されました。これは、物質に光を当てたときにごくわずかに現れる「ラマン散乱光」が飛躍的に増強する現象のことです。SERS効果は当初、銀のナノ構造体表面で発見されました。そして、発見から50年経ち、なぜラマン散乱効果が飛躍的に増強するのか、そのメカニズムがおおよそ明らかになりました。
 私たちは2014年に、ラマン散乱効果が飛躍的に増強する「ホットスポット」では「強結合」という現象が起きており、この「強結合」状態が別の新しい光学現象をも生み出していることを発見しました。
 ホットスポットは、ナノ世界の光が作り出す未知のフロンティアの一つです。その発見以来、私たちは銀ナノ粒子がつくるホットスポットでの強結合をさらに深く、詳しく調べ、数々の新現象を発見し続けています。
2.超微量ラマン分光(表面増強ラマン散乱, SERS)
 上記の通り、SERSは1970年代に発見され既に50年経っています。しかし未だ目立った実用化例がないことから「Sleeping Giant (眠れる巨人)」と呼ばれています。一方で SERSは人のこころをどこか魅了するのでしょう、巨人を眠りから覚まそうと SERS研究へ新規参入してくる研究者は後を絶ちません。
 私たちの研究グルーブでは、銀ナノコロイド粒子を使って SERSを研究しています。銀ナノコロイド粒子は1997年に初めて1分子だけのSERS測定に成功した、極めて重要な実験系です。
 その銀ナノコロイド粒子を使って、私たちの研究グループメンバーの一人が2024年に「希土類元素のSERS」という新しい研究分野の開拓に成功したので、次に説明します。
3.希土類元素とSERS
 希土類元素(レアアース) は原子番号57番~71番に位置する非常に重い元素で、地球上にほとんど存在しないことから希土類元素と呼ばれています。希土類元素は最外殻の電子配置が互いに似通っているため、化学的な手法でその種類を同定することが難しい問題があります。
 当研究室では2024年、希土類元素を含むキレート分子の SERSを測定することで、間接的に希土類元素であるLa(ランタン) とGd(ガドリニウム) を互いに識別することに成功しました。これは世界的に見て非常にユニークかつ重要な研究成果です。とても難しい研究ですが、研究に新たに参画する挑戦者をお待ちしています。
4.金属材料と電気化学
当研究室ではまた、物理化学分野、特に金属材料科学と電気化学の境界領域での研究もスタートしています。まだ詳しくお伝えすることができませんが、世界に大きなインパクトを与える大きな研究成果を期待しながら日々研究を続けています。
 参考文献・これまでの研究業績や論文にご興味がある方は、お気軽に指導教員までメール( 
)または指導教員室M4-40へお越しください。論文の別刷(論文のコピーのこと)を差し上げます。
主な研究業績
- Jin Hao, Tamitake Itoh and Yuko S. Yamamoto, “Classification of La3+ and Gd3+ rare earth ions using surface-enhanced Raman scattering”, Journal of Physical Chemistry C, 128, 5611 (2024)
 - Tamitake Itoh and Yuko S. Yamamoto, “Basics and Frontiers of Electromagnetic Mechanism of SERS Hotspots” In Book: Procházka, M., Kneipp, J., Zhao, B., Ozaki, Y. (eds) “Surface- and Tip-Enhanced Raman Scattering Spectroscopy” Springer, Singapore (2024)
 - 山本裕子 , “ プラズモンと分子の電磁相互作用の基礎 ”, 応用物理学会フォトニクスニュース , 9(2), 68-72 (2023)
 
使用装置
表面増強ラマン顕微鏡(自作)
ラマン顕微鏡
紫外可視吸収測定器
密度汎関数(DFT)計算装置
研究室の指導方針
 世界トップレベルで基礎研究を行うための、自由闊達な研究環境を提供しています。当研究室にはコアタイムがありません。各自が自由な時間で研究を組み立てており、そのスタイルを奨励しています。研究室内のメンバーとの情報交換・互いの進捗の確認は、週一回の全体ミーティングおよび輪講セミナーにて行います。そのため、自律的にしっかりと研究生活を組み立てられるタイプの学生の方に適した環境です。
 自らの研究成果を世に発信するため、年1回程度の学会発表を推奨しています。研究テーマの設定は、指導教員が提示する研究テーマを参考に、個々の学生さんの興味範囲・方向性を取り入れつつ最大限希望に添う形で行います。基本的に、研究成果は国際論文(英語)という形で世に広く発表することを目指していきます。プロの研究者を志望する方にお勧めです。
 もちろん、指導教員による個別指導を随時行います。指導教員の持つ知識や経験をどんどん活用してください。
化学と生物の融合による新たな人工タンパク質の創製
  
        化学と生物の融合による
新たな人工タンパク質の創製
        
        人工タンパク質合成研究室 
Laboratory on Nonnatural Protein Biosynthesis
教授:芳坂 貴弘(HOHSAKA Takahiro)
E-mail:
        [研究分野]
        遺伝子工学・タンパク質合成・ケミカルバイオロジー
        [キーワード]
        遺伝暗号拡張、人工タンパク質、非天然アミノ酸、無細胞翻訳系、蛍光分析
研究を始めるのに必要な知識・能力
タンパク質や遺伝子に興味を持っていること。生物化学・有機化学に関する基礎的な知識や実験技術が必要になりますが、入学後に修得することも可能です。
この研究で身につく能力
遺伝子工学・タンパク質合成・有機合成・蛍光分析などに関する専門的な知識と実験技術を修得することができます。また研究活動を通じて、実験計画の立案・関連研究の調査・実験データの取得と分析・研究成果のまとめとプレゼンテーション、に至る一連の研究プロセスを学ぶことができます。これらの能力は、技術者・研究者としていずれも必要不可欠なものです。
【就職先企業・職種】 化学・生物関連企業、研究機関
研究内容
遺伝子工学・タンパク質合成などの生物化学的手法と、有機合成などの化学的手法を組み合わせることで、新たな人工タンパク質の創製を目指して研究を行っています。具体的には、以下のような研究テーマを進めています。また、研究室で得られた成果を企業と共同で実用化するための研究も行っています。

図1.4塩基コドンを用いた非天然アミノ酸のタンパク質への導入

図2.抗原分子を検出できる蛍光抗体センサーの例
1.遺伝暗号の拡張による非天然アミノ酸のタンパク質への導入
タンパク質はDNAの遺伝暗号に従ってアミノ酸が連なって合成され、それが精密な立体構造を形成することで、高度な機能を発揮しています。しかし生物が使用しているのはわずか20種類のアミノ酸のみです。私たちは、この20種類の制限を超えて、人工的に合成した「非天然アミノ酸」をタンパク質の特定部位に導入することのできる、新たな技術の開発に成功しています。これは、4塩基コドンなどの拡張遺伝暗号に非天然アミノ酸を割り当てる(図1)、という新しい概念によって達成されています。
2.新たな機能を持つ人工タンパク質の創製
上記の技術を利用することで、新たな機能を持った人工タンパク質の創製を進めています。例えば、抗体などの特定の分子を認識して結合するタンパク質に、蛍光分子を付加した非天然アミノ酸を導入することで、蛍光により標的分子を検出できるタンパク質センサーを合成できます(図2)。また、非天然アミノ酸の導入技術を利用することで、新しいタンパク質医薬品の合成も試みています。これらの研究の一部は、企業・研究機関との共同研究により進めています。
3.生物の潜在能力を利用した新たなバイオ技術の開発
非天然アミノ酸のタンパク質への導入技術は、生物がもともと持っている潜在能力を、人工的に引き出して活用したものと言えます。私たちは、そのような生物の持つ潜在能力を新たに見つけ出し利用することで、人工タンパク質などの有用物質を合成することのできる、新たなバイオ技術の開発にも挑戦しています。
主な研究業績
- A. Yamaguchi, T. Hohsaka, Synthesis of novel BRET/FRET protein probes containing light-emitting proteins and fluorescent nonnatural amino acids, Bull. Chem. Soc. Jpn., 85, 576-583 (2012).
 - R. Abe, H. Ohashi, I. Iijima, M. Ihara, H. Takagi, T. Hohsaka, H. Ueda, “Quenchbodies”: Quench-based antibody probes that show antigen-dependent fluorescence, J. Am. Chem. Soc., 133, 17386-17394 (2011).
 - 芳坂貴弘、非天然アミノ酸のタンパク質への導入技術-バイオメディカル応用に向けて、メディカルバイオ別冊, 72-77 (2010).
 
使用装置
蛍光分析装置(分光光度計・蛍光寿命測定・蛍光スキャナなど)
遺伝子解析装置(DNAシーケンサー・リアルタイムPCRなど)
質量分析装置
研究室の指導方針
人工タンパク質に関連した研究テーマに対して、実験を通じて新たな成果を挙げるとともに、その研究プロセスを修得することを目標としています。具体的には、各自の研究テーマに対して、実験を試行錯誤的に繰り返す過程を通じて、実験計画の立案、結果の解釈と問題点の把握、次の実験計画へのフィードバック、などを独力で遂行できる能力を鍛錬します。そのために、研究室ゼミでは定期的に研究報告会を開催して、進捗状況の確認と指導・助言を行います。また、研究成果は積極的に学会等で発表する機会を設けています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/hohsaka/
電磁波と原子核でナノ空間を視(み)て、制御する
  
        電磁波と原子核でナノ空間を視(み)て、制御する
固体ナノ化学研究室 Laboratory on Solid-State Nanochemistry
教授:後藤 和馬(GOTOH Kazuma)
E-mail:
        [研究分野]
        物理化学、無機材料化学
        [キーワード]
        核磁気共鳴(NMR)、炭素材料、二次電池(リチウムイオン電池、ナトリウムイオン電池、次世代電池)、その場分析
研究を始めるのに必要な知識・能力
化学の基礎知識があれば研究をすみやかに始められますが、必要なことは学ぶという意欲さえあれば知識の有無は問題ありません。研究を通して自分の成長(能力的&人間的)を望み、新しいことに取り組む意思があれば大丈夫です。
この研究で身につく能力
ものづくりに始まり、測定機器による分析、得られた実験結果・測定結果の考察までを行うので、無機材料を中心とした材料合成の実験技術、電池作製および評価の技術、NMRをはじめとする各種機器分析の技術など幅広い技術が身につきます。また、研究室でのセミナーや学会発表、海外研究グループとの国際交流を通してプレゼンテーション能力、英語力なども磨かれます。しかし一番大事なことは、得られた実験・測定結果から「物質の中で何が起きているか」を総合的にとらえ考察する能力や、課題を解決し研究をまとめるための論理的な思考力など、AIにとって代わられることのない「人間」としての考える力であり、これを特に重視しています。社会に出て長くずっと第一線で活躍できる能力を持った人になってもらいたいと考えています。
【就職先企業・職種】 化学・材料メーカー、電機・電池・自動車および関連メーカー、分析機器メーカー、公設試験研究機関、教員
研究内容
ナノサイズの空間や表面などの構造、およびミクロな環境を解明することをテーマとして、細孔物質(物質の中に多数の小さな穴=細孔をもった固体材料)の内部空間や、黒鉛などの層状化合物の層間に吸蔵された分子やイオンの状態、動的挙動、内部空間の表面状態などを、核磁気共鳴(NMR)法を中心に様々な方法で研究しています。内部空間への分子やイオンの導入(インターカレーション)は電池電極反応とも密接な関連があることから、特にリチウムイオン電池、ナトリウムイオン電池や今後実用化が期待される次世代電池など、各種二次電池の電極材料の研究を積極的に進めています。
【固体NMR開発と二次電池電極の状態分析】


電池のリアルタイムNMR解析(左上)*),金属リチウム析出イメージ(右上)2.
非晶質炭素の充電,過充電挙動モデル(下)2.
*) K.Gotoh et al., Carbon (2014).
・固体材料についてのNMRは、固体物質中の局所構造やダイナミクスの解析に極めて有効な分析手法です。特にナノ空間の構造や環境を調べる際には、吸着された物質中の原子やイオンを「プローブ(探針)」として利用し直接的に内部環境を調べることができます。よって、リチウムイオン電池やナトリウムイオン電池ではそれぞれリチウム、ナトリウムのNMR共鳴信号を解析することで、電池内部の微小な状態変化を検出できます。軽元素であるリチウムやナトリウムは電子顕微鏡やX線分光など他の分析手段では直接観測が非常に難しいため、NMRでリチウムやナトリウムなど電荷を担持する重要な核種の状態を観測することが、イオンの吸脱着メカニズム、すなわち電池の充放電メカニズムの解明に大きく役立ちます。
・最新のリチウムイオン電池や次世代電池であるナトリウムイオン電池、全固体電池などの電極内に吸蔵されたリチウム、ナトリウムの状態を解明しています。充放電により刻々と変化する内部環境をリアルタイムで観測するためには、電池の「その場観測(オペランド解析)」が必須となるため、電池観測のための高感度オペランドNMR法の開発を積極的に進めています。本手法により電池が過充電された際の金属析出メカニズムも解明できるため、安全性評価にも貢献できます。
・充放電メカニズムの解析から、新たな材料の設計指針を立て、それに基づいた負極材料の開発を行っています。炭素材料は以前から負極に用いられてきましたが、次世代電池用電極材料としても期待できることから、新たな炭素材料の開発を進めています。
主な研究業績
- Dynamic nuclear polarization -nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials. H. Ando, K. Suzuki, H. Kaji, T. Kambe, Y. Nishina, C. Nakano, K. Gotoh*, Carbon, 206, 84 (2023).
 - Mechanisms for overcharging of carbon electrodes in lithium-ion/sodium-ion batteries analysed by operando solid-state NMR. K. Gotoh*, T. Yamakami, I. Nishimura, H. Kometani, H. Ando, K. Hashi, T. Shimizu and H. Ishida, J. Mater. Chem. A 8, 14472 (2020).
 - Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes. R. Morita, K. Gotoh*, M. Fukunishi, K. Kubota, S. Komaba, T. Yumura, N. Nishimura, K. Deguchi, S. Ohki, T. Shimizu and H. Ishida, J. Mater. Chem. A 4, 13183 (2016).
 
使用装置
Bruker AVANCE NEO 400MHz NMR(固体測定専用)拡散測定システム付, Bruker AVANCE Ⅲ500MHz-NMR(固体対応)オペランド測定用特殊プローブ付
X線回折,X線光電子分光(XPS),熱分析,電子顕微鏡,ガス吸脱着装置,電気化学測定装置(充放電試験装置等),電池作製設備(グローブボックス等),高温熱処理炉(2200℃)
研究室の指導方針
社会人としてどのような分野でも力を発揮できる基礎力と、専門家として活躍できる知識経験の、両方を持った人になってもらうことを目的として指導します。定期的な研究室でのセミナーや報告会がありますが、実験については装置の都合により個々のスケジュールがかなり異なってくるので、自分自身で研究計画を立案し、実行してもらうことになります。国内外の学会での発表のほか、海外研究グループや企業と進めている多彩な共同研究にも積極的に参加してもらい、国際的な幅広い視野を持てる機会を提供したいと考えています。
[研究室HP] URL:https://www.jaist.ac.jp/nmcenter/labs/gotoh-www/
半導体ナノワイヤを舞台としたスピントロニクス研究
  
        半導体ナノワイヤを舞台とした
スピントロニクス研究
        
        ナノワイヤ X スピンデバイス研究室 
Laboratory on Nanowires X Spin Devices
准教授:赤堀 誠志(AKABORI Masashi)
E-mail:
        [研究分野]
        半導体エピタキシャル成長、半導体ナノ構造、半導体スピントロニクス
        [キーワード]
        化合物半導体、強磁性体、微細加工、エレクトロニクス、スピントロニクス、半導体物性、低温物性
研究を始めるのに必要な知識・能力
本研究室で研究を始めるにあたって大事なのは、リアルに「もの」を扱うのが好きであることだと考えています。また、物理学(特に電磁気学、量子力学)の知識はあった方がよく、この他に半導体・固体物理、化学、プログラミングの知識があると研究を進める上で役に立つと考えています。
この研究で身につく能力
本研究室の研究では様々な装置を使います。それらの正しい使用法は論理的思考に基づいて考えられています。したがって、それらを理解し、自ら実践することにより、論理的な思考力が養われると考えています。また、実験的研究にはトラブルがつきもので、想定通りには結果が得られず、上手く進まないことも多々あります。ですが、トラブルの状況や得られている結果に関して、周りと協力しながら分析・考察し、研究が上手く進むように努力することにより、解決すべき課題を発見する力、そして発見した課題を解決する力が養われると考えています。
【就職先企業・職種】 電機・精密機械、IT・通信、素材
研究内容

図1.スピン電界効果トランジスタ

図2.トップダウン手法によるナノワイヤ、
ポイントコンタクト

図3.ボトムアップ手法によるナノワイヤ

図4.電気化学プロセスによるコアシェルナノワイヤ

図5.MnAs/InAs 複合構造

図6.非局所測定
従来のエレクトロニクスでは、チャージ(電荷)の制御により情報処理が行われてきました。これに対してスピントロニクスは、チャージだけでなくスピン(磁性)を制御することにより情報処理を行っていくものです。国際デバイスおよびシステムロードマップにおいても、スピントロニクス素子は重要な次世代デバイスの一つとして位置付けられています。半導体を用いる代表的なスピントロニクス素子は、InAs・InGaAs・InSb・InGaSbなど大きなスピン軌道結合を有する半導体と強磁性体との複合構造からなるスピン電界効果トランジスタです(図1)。この素子においては、半導体ナノワイヤを採用することにより、スピン軌道結合と弾性散乱によるスピン緩和が抑制されると期待されています。そこで本研究室では、以下に示すような、半導体ナノワイヤ構造および半導体- 強磁性体複合構造に関する実験的研究を行っています。
①半導体ナノワイヤ構造の作製
電子ビーム露光とエッチング加工を組み合わせたトップダウン手法(図2)と、分子線エピタキシャル成長を用いたボトムアップ手法(図3)に関する研究を進めています。トップダウン手法では高品質な半導体ヘテロ接合を用いることが可能ですが、コヒーレントな伝導のためにはエッジ形状の最適化や加工ダメージの抑制などの課題があります。ボトムアップ手法では半導体ヘテロ構造の利用は困難ですが、成長条件の最適化によりトップダウン手法では困難な良好な形状・微小な寸法を実現できる可能性があります。
②半導体- 強磁性体複合構造の作製
電気化学プロセスによる半導体(ZnO)/ 強磁性体(Co、Ni)コアシェルナノワイヤの形成(図4)や、分子線エピタキシャル成長による半導体(InAs) / 強磁性体(MnAs) 複合構造の形成(図5)に関する研究も行っています。これらの方法では連続的に半導体/ 強磁性体界面を形成するため、強磁性体から半導体へのスピン注入効率向上が期待されます。
③作製した構造の電気的評価・解析
超伝導マグネット付クライオスタットなどを用いて、低温・強磁場環境下での電気的評価・解析を進めています。面内磁場中での非局所配置における抵抗測定(図6)などにより、スピン注入・輸送・検出に関する知見を獲得することが可能です。これら知見を基に、未踏のスピン電界効果トランジスタの実現を目指します。
主な研究業績
- S. Komatsu, M. Akabori: “Spin-filter device using Zeeman effect with realistic channel and structure parameters” Jpn. J. Appl. Phys., Vol. 63, pp. 02SP14-1-5 (2024).
 - Md. T. Islam, Md. F. Kabir, M. Akabori: “Low-temperature grown MnAs/InAs/MnAs double heterostructure on GaAs (111)B by molecular beam epitaxy” Jpn. J. Appl. Phys., Vol. 63, pp. 01SP40-1-5 (2024).
 - K. Teramoto, R. Horiguchi, W. Dai, Y. Adachi, M. Akabori, S. Hara: “Tailoring Magnetic Domains and Magnetization Switching in CoFe Nanolayer Patterns with Their Thickness and Aspect Ratio on GaAs (001) Substrate” Physica Status Solidi B, Vol. 259, pp. 2100519-1-9 (2022).
 - D. Q. Tran, Md. E. Islam, K. Higashimine, M. Akabori: “Self-catalyst growth and characterization of wurtzite GaAs/InAs core/shell nanowires” J. Crystal Growth, Vol. 564, pp. 126126-1-7 (2021).
 
使用装置
成膜装置(分子線エピタキシャル成長装置、原子層堆積装置、真空蒸着装置、スパッタ装置) 
微細加工装置(電子ビーム露光装置、電界電離ガスイオンビーム装置、反応性イオンエッチング装置) 
電気化学プロセス装置 
電気計測装置(デバイスアナライザ、ホール効果測定装置、ロックイン計測システム) 
極低温・強磁場装置(超伝導マグネット付He4クライオスタット、He3クライオスタット、希釈冷凍機)
研究室の指導方針
本研究室では、様々な装置を使って、半導体や強磁性体など「もの」をつくるところから、主に電気的評価・解析によりつくった「もの」を調べるところまで一貫して実験的研究を行います。まずテーマの近い学生でチームをつくり、毎日チームミーティングをしてもらうとともに、週一でスタッフを交えた全体ミーティングを行って、コミュニケーション力・プレゼンテーション力・判断力の育成・向上を図ります。また、全体ミーティングと同じ日に勉強会も行い、半導体・固体物理分野の知識習得や基礎学力の向上を図ります。
[研究室HP] URL:https://www.jaist-akabori-lab.com/

