研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。化学と生物の融合による新たな人工タンパク質の創製


化学と生物の融合による
新たな人工タンパク質の創製
人工タンパク質合成研究室
Laboratory on Nonnatural Protein Biosynthesis
教授:芳坂 貴弘(HOHSAKA Takahiro)
E-mail:
[研究分野]
遺伝子工学・タンパク質合成・ケミカルバイオロジー
[キーワード]
遺伝暗号拡張、人工タンパク質、非天然アミノ酸、無細胞翻訳系、蛍光分析
研究を始めるのに必要な知識・能力
タンパク質や遺伝子に興味を持っていること。生物化学・有機化学に関する基礎的な知識や実験技術が必要になりますが、入学後に修得することも可能です。
この研究で身につく能力
遺伝子工学・タンパク質合成・有機合成・蛍光分析などに関する専門的な知識と実験技術を修得することができます。また研究活動を通じて、実験計画の立案・関連研究の調査・実験データの取得と分析・研究成果のまとめとプレゼンテーション、に至る一連の研究プロセスを学ぶことができます。これらの能力は、技術者・研究者としていずれも必要不可欠なものです。
【就職先企業・職種】 化学・生物関連企業、研究機関
研究内容
遺伝子工学・タンパク質合成などの生物化学的手法と、有機合成などの化学的手法を組み合わせることで、新たな人工タンパク質の創製を目指して研究を行っています。具体的には、以下のような研究テーマを進めています。また、研究室で得られた成果を企業と共同で実用化するための研究も行っています。

図1.4塩基コドンを用いた非天然アミノ酸のタンパク質への導入

図2.抗原分子を検出できる蛍光抗体センサーの例
1.遺伝暗号の拡張による非天然アミノ酸のタンパク質への導入
タンパク質はDNAの遺伝暗号に従ってアミノ酸が連なって合成され、それが精密な立体構造を形成することで、高度な機能を発揮しています。しかし生物が使用しているのはわずか20種類のアミノ酸のみです。私たちは、この20種類の制限を超えて、人工的に合成した「非天然アミノ酸」をタンパク質の特定部位に導入することのできる、新たな技術の開発に成功しています。これは、4塩基コドンなどの拡張遺伝暗号に非天然アミノ酸を割り当てる(図1)、という新しい概念によって達成されています。
2.新たな機能を持つ人工タンパク質の創製
上記の技術を利用することで、新たな機能を持った人工タンパク質の創製を進めています。例えば、抗体などの特定の分子を認識して結合するタンパク質に、蛍光分子を付加した非天然アミノ酸を導入することで、蛍光により標的分子を検出できるタンパク質センサーを合成できます(図2)。また、非天然アミノ酸の導入技術を利用することで、新しいタンパク質医薬品の合成も試みています。これらの研究の一部は、企業・研究機関との共同研究により進めています。
3.生物の潜在能力を利用した新たなバイオ技術の開発
非天然アミノ酸のタンパク質への導入技術は、生物がもともと持っている潜在能力を、人工的に引き出して活用したものと言えます。私たちは、そのような生物の持つ潜在能力を新たに見つけ出し利用することで、人工タンパク質などの有用物質を合成することのできる、新たなバイオ技術の開発にも挑戦しています。
主な研究業績
- A. Yamaguchi, T. Hohsaka, Synthesis of novel BRET/FRET protein probes containing light-emitting proteins and fluorescent nonnatural amino acids, Bull. Chem. Soc. Jpn., 85, 576-583 (2012).
- R. Abe, H. Ohashi, I. Iijima, M. Ihara, H. Takagi, T. Hohsaka, H. Ueda, “Quenchbodies”: Quench-based antibody probes that show antigen-dependent fluorescence, J. Am. Chem. Soc., 133, 17386-17394 (2011).
- 芳坂貴弘、非天然アミノ酸のタンパク質への導入技術-バイオメディカル応用に向けて、メディカルバイオ別冊, 72-77 (2010).
使用装置
蛍光分析装置(分光光度計・蛍光寿命測定・蛍光スキャナなど)
遺伝子解析装置(DNAシーケンサー・リアルタイムPCRなど)
質量分析装置
研究室の指導方針
人工タンパク質に関連した研究テーマに対して、実験を通じて新たな成果を挙げるとともに、その研究プロセスを修得することを目標としています。具体的には、各自の研究テーマに対して、実験を試行錯誤的に繰り返す過程を通じて、実験計画の立案、結果の解釈と問題点の把握、次の実験計画へのフィードバック、などを独力で遂行できる能力を鍛錬します。そのために、研究室ゼミでは定期的に研究報告会を開催して、進捗状況の確認と指導・助言を行います。また、研究成果は積極的に学会等で発表する機会を設けています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/hohsaka/
ヘテロ元素化学から未来エネルギーを考える


ヘテロ元素化学から未来エネルギーを考える
蓄電池・エネルギー材料化学研究室
Laboratory on Energy Storage Materials and Devices
教授:松見 紀佳(MATSUMI Noriyoshi)
E-mail:
[研究分野]
エネルギー材料の創出研究
[キーワード]
リチウムイオン2次電池、ナトリウムイオン2次電池、リチウム空気電池、スーパーキャパシター
研究を始めるのに必要な知識・能力
研究への意欲、知的好奇心、多少の失敗にひるまない楽観性、他のメンバーと協調的に研究を遂行できる適応性。また、以下は研究室に入る時点で必須ではありませんが、有機合成化学、高分子合成化学、電池関連化学、光化学などの経験や知識があればアドバンテージになります。
この研究で身につく能力
物質をデザインし、合成し、キャラクタライズする能力。実験データの意味を客観的に考察する能力。短期的、長期的に研究計画を立てる能力。報告書を作成したり、効果的にプレゼンテーションを行う能力、ディスカッション能力などがそれぞれ身につきます。さらには英語でコミュニケーションをとるための実践的能力を身につける場としても適しています。よりテクニカルな点では、嫌気下で様々な物質を有機合成し、NMR等で構造確認するスキル、イオン伝導性材料をインピーダンス測定などにより評価し、それらの電気化学的安定性を評価し、実際に電池を構築して充放電評価するスキルが身につくほか、光電気化学反応を電気化学的に評価するスキルを身につけることが出来ます。
【就職先企業・職種】 総合化学メーカー、自動車関連メーカー、繊維系メーカー、素材メーカー、機械系メーカーなど。
研究内容

高分子バインダーと活物質から成る
高性能電極材料のイメージ図
次世代用高性能蓄電池の創成研究
これまで、リチウムイオン二次電池用負極としては長きにわたりグラファイト負極が使用されてきました。現在、従来型のグラファイト負極よりも10倍以上の理論容量を有するシリコン負極の適用に関する研究が注目を集めています。しかし、シリコンは充放電中の体積膨張・収縮が大きく、粒子や界面の破壊や集電体からの活物質の剥離などの問題を引き起こし、問題が山積しています。本研究室では特殊構造高分子バインダーを適用することで、次世代用高容量電池の創成を目指しています。また、現存する多くの電池系は、性能が大幅に経年劣化することがユーザーレベルで広く認識されており、長期耐久性の課題解決も重要となっています。この点においても、分子レベルでの高機能バインダーの設計を行っています。さらに、シリコン負極型リチウムイオン二次電池と同様に、高容量の革新型電池として期待されている蓄電池系として、リチウム―空気電池が挙げられます。リチウム空気電池の開発の鍵となっている酸素還元反応触媒、及び酸素発生反応触媒においても、独自のアプローチにより研究を進めており、とりわけ白金の代わりに卑金属を用いた低コスト系の開発を進めています。さらに、リチウムに依存しない元素戦略に配慮した次世代蓄電池設計も進めています。例えばナトリウムイオン二次電池の高性能化に関する研究を電解質設計の立場から進めており、汎用の電解質を利用した系よりも大幅にサイクル特性やレート特性に優れた全固体ナトリウムイオン二次電池系の開発につながっています。現在の本研究室の電池開発において、もう一点注力しているのが急速充放電への対応です。現状の電気自動車では、高速道路のサービスエリアなどで充電を行う際に約30分を要しており、ガソリンスタンドでの給油と比較すると極めて長時間を要しています。本研究室では特殊な活物質の合成や、特異的な人工界面形成により充放電時間を大幅に短縮する試みを行っています。それを実現するキーワードとなるのが積極的な界面設計です。長きにわたって電池研究は四大部材(電極、電解質、バインダー、セパレータ)の研究を中心に展開されてきました。しかし、固体電解質界面(SEI)の重要性がいっそうクローズアップされつつあり、その戦略的かつ合理的な設計が次世代蓄電池の成否の鍵を握っていると考えられます。本研究室では、有機合成化学や高分子合成のバックグラウンドを有する電池研究グループという個性を最大限に活かしつつ、独自のアプローチで未来社会のニーズに応える高性能電池系の創出を目指します。
主な研究業績
- "Densely imidazolium functionalized water soluble poly(ionic liquid) binder for enhanced performance of carbon anode in lithium/sodium-ion batteries", A. Patra and N. Matsumi, Adv Energy Mater (2024) 20243071.
- "Water-soluble densely functionalized poly(hydroxycarbonylmethylene) binder for higher performance hard carbon anode-based sodium-ion batteries", A. Patra, N. Matsumi. J Mater Chem A., 12 (2024) 11857-11866.
- "Confronting the issue associated with the practical implementation of zinc blende-type SiC anode for efficient and reversible storage of lithium ions"R. Nandan, N. Takamori, K. Higashimine, R. Badam, N. Matsumi. ACS Appl Ener Mater., 7 (2024) 2088-2100.
使用装置
充放電評価装置
インピーダンスアナライザー
電気化学アナライザー
核磁気共鳴分光装置
ソーラーシミュレーター
研究室の指導方針
合成化学を基盤にしながら、リチウムイオン二次電池やナトリウムイオン二次電池など社会的要求の高い研究分野に果敢にチャレンジします。クリエイティブな発想力と失敗を恐れない実行力、社会貢献への意識などを有したバランスのとれた人材の育成を目指します。ヘテロな研究集団を目指していますので、様々なバックグラウンドを持った人材を歓迎します。入って来るメンバーの科学的知識レベルも様々でしょうが、2年間ないし5年間にそれぞれのレベルに応じて大きな成長と達成感、自信を味わって巣立っていただくことが目標です。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/matsumi
ナノバイオテクノロジー


ナノバイオテクノロジー
ナノバイオ研究室 Laboratory on Nanobiotechnology
講師:高橋 麻里(TAKAHASHI Mari)
E-mail:
[研究分野]
ナノ材料科学、細胞生物学
[キーワード]
ナノ粒子、バイオ医療応用
研究を始めるのに必要な知識・能力
探求心があり、努力することを厭わず、向上心がある方ならバックグランドが違っていても研究を楽しむことができます。研究テーマに対して、自分がこの研究を進めるんだという主体的な立場にたつことが必要です。共同研究をすることが多いため、協調性やコミュニケーション能力も必要となります。
この研究で身につく能力
ナノ粒子の合成法、構造・特性評価及び解析方法に関する幅広い知識。金属・磁性・半導体材料とナノ粒子にすることで現れる特徴的な性質に関する一般的な知識。細胞生物学に関する一般的な知識。新たな課題に対して取り組むチャレンジ精神。
【就職先企業・職種】 製造業(化学、精密機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
ナノ粒子のバイオ医療応用に関する注目は年々高まっています。私達は金属・半導体・磁性体をナノサイズにすることで現れるバルクとは異なる性質を利用して、ナノ粒子のバイオ医療応用に関する研究を行っています。応用先は様々ですが、主に下記に示す3つの内容に力を入れており、それぞれの用途に合わせたナノ粒子の合成から構造解析、特性評価、応用までの一連の流れを一人の学生が担当して研究を進めます。
1. 磁性体ナノ粒子を用いた細胞内小器官の磁気分離
正常細胞と機能欠損細胞から細胞内小器官を分離し、タンパク質を解析し比較することは、疾患の分子機構の解明において重要です。超常磁性体ナノ粒子を合成し、表面を生体分子で機能化した粒子を用い、細胞内小器官を迅速かつ温和に磁気分離し、生化学的手法による解析を行います。種々の細胞内小器官の磁気分離法の構築や機能欠損細胞のタンパク質解析を通して、最終的には創薬分野への貢献を目指します。
2. 磁気粒子分光を用いたイムノアッセイ
人生100年時代と言われる現代、私達が健康に長生きするためには、疾病の早期発見のための診断技術・精度の向上がますます重要となります。磁気粒子分光(MPS)を用いたイムノアッセイ(抗原抗体反応を用いた抗原の検出)では、種々の磁性体ナノ粒子を合成しMPSで評価し、感度が高いプローブを複数選択することで同時多抗原検出を目指します。
3. アップコンバージョンナノ粒子による光遺伝学的研究
アップコンバージョンナノ粒子とは、波長が長い入射光を照射した際に波長が短い発光を示す蛍光体ナノ粒子です。光遺伝学とは光受容タンパク質を遺伝学的に細胞に発現させ、光で細胞の応答を制御する技術で、この2つを組わせることで、光による生体組織の制御を行う研究をしております。
主な研究業績
- D. Maemura, T. S. Le, M. Takahashi, K. Matsumura, and S. Maenosono: "Optogenetic Calcium Ion Influx in Myoblasts and Myotubes by Near-Infrared Light Using Upconversion Nanoparticles" ACS Appl. Mater. Interfaces 15 (2023) 42196
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, S. Maenosono: "Quick and Mild Isolation of Intact Lysosomes Using Magnetic–Plasmonic Hybrid Nanoparticles" ACS Nano 16 (2022) 885
- T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono: "Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes" Langmuir 37 (2021) 6566
使用装置
透過型電子顕微鏡(TEM) 超伝導量子干渉磁束計(SQUID)
走査透過型電子顕微鏡(STEM) 動的光散乱測定装置(DLS)
X線回折装置(XRD) 共焦点レーザー顕微鏡(CLSM)
X線光電子分光装置(XPS) 核磁気共鳴装置(NMR)
研究室の指導方針
常に新しい内容の研究を行っており、研究内容に関しては教員が学生へ毎回指示を与えるのではなく、学生自身にも実験と論文調査から次の方向性を決めるといった、一緒に研究を進めていくスタンスで研究を行います。その過程で卒業後の進路(就職希望か進学希望)に合わせて必要な基礎知識と研究力が身につくように指導します。また、分野外の方でも最前線の研究が行えるように効率的な努力の仕方や学習法を身に着けられるように指導しますので、心配なことや研究に関する疑問等は積極的に相談してください。そのためにはコミュニケーション能力も重要であり、卒業後の社会人にとって必要不可欠なスキルが身につくようにサポートします。
[研究室HP] URL:https://www.jaist.ac.jp/~shinya/
“探索・学習・予測”のシナジーを実践する次世代マテリアル設計


“探索・学習・予測”のシナジーを実践する
次世代マテリアル設計
マテリアルズインフォマティクス研究室
Laboratory on Materials Informatics
教授:谷池 俊明(TANIIKE Toshiaki)
E-mail:
[研究分野]
ハイスループット実験、マテリアルズインフォマティクス、計算化学
[キーワード]
固体触媒、重合、ナノコンポジット、分離膜、グラフェン、データ科学
研究を始めるのに必要な知識・能力
私たちの研究はユニークであり、様々な専門の研究者が活躍できる非常に学際的なものです。新しい分野に創意工夫を持って挑戦する志を重視し、元々の専門分野を問わず多様な学生を受け入れています。所属学生の専門は、例えば、化学(触媒・高分子・ナノ材料)、化学・機械工学、データ科学、計算科学などです。
この研究で身につく能力
所属学生は、自身の研究やゼミ活動への参画を通して、1)ハイスループット実験、データ科学、計算化学のいずれか、ないしはこれらを組み合わせて用いる先進的な材料科学研究の実践方法、2)与えられた資源の中で成果を最大化するための研究計画能力、3)国際・学際的な環境でチームワークするスキルなどを習得できます。
【就職先企業・職種】 材料、化学、化学工学、マテリアルズインフォマティクスなどに関する研究開発職
研究内容

ハイスループット実験とマテリアルズインフォマティクスによる材料科学研究
気候変動や少子高齢化など、人類社会や我が国が置かれた避けられない課題に鑑み、谷池研究室では、ハイスループット実験、データサイエンス(マテリアルズインフォマティクス)、シミュレーションを基盤とした、イノベーション志向の物質科学を目指しています。かつてない効率で膨大な材料候補を探索し、社会問題の解決を目指しています。
❶ ハイスループット実験
異なる元素や物質を組み合わせることで得られる材料の数は膨大です。マテリアルサイエンスの目標の一つは、特別に優れた組み合わせやうまい組み合わせ方(プロセス)を発見し、より優れた材料を生み出すことです。私たちの研究室では、高度に自動化・並列化された実験装置を駆使するハイスループット実験を行っています。新しい装置やプロトコルの開発を通して実験のスループットを最大化し、浮いた時間を思考や情報収集に当てる研究スタイルを志向します。
➋ データ科学
ハイスループット実験は材料の合成条件、構造、性能を紐づけた材料ビッグデータを生み出します。効率的な材料探索を行うためには、良い材料を選出するだけでなく、材料性能の良し悪しがどのような因子と相関しているかを見極める構造性能相関を明らかにしていく必要があります。多変量解析や機械学習を駆使し、全てのデータから余すことなく学習することで物質探索を飛躍的に加速します。
➌ コンピュータシミュレーション
コンピュータや計算化学の発展によって、現実的な精度でのシミュレーションが可能になってきました。一方で、コンピュータを使った新しい材料の予測(in-silico設計)にはまだまだ距離があります。最も難しい問題は、複雑な材料を代表するような分子モデルを如何に構築するかです。実験も行う当研究室では、実践的な計算化学を標榜し、計算化学の夢であるin-silico材料設計に取り組んでいます。
ハイスループット実験装置の開発やデータサイエンスのプログラミングに加え、以下5つのテーマに注力しています:触媒・ポリマーインフォマティクス、構造性能相関、MOF やグラフェンなどのナノマテリアル、ポリマーナノコンポジット。
主な研究業績
- L. Takahashi, T. Taniike, K. Takahashi et al., Constructing Catalyst Knowledge Networks from Catalysts Big Data in Oxidative Coupling for Methane for Designing Catalysts, Chemical Science 2021, 12, 12546-12555 (press released, selected as Front Cover).
- T.N. Nguyen, K. Takahashi, T. Taniike et al., High-Throughput Experimentation and Catalyst Informatics for Oxidative Coupling of Methane, ACS Catalysis, 2020, 10, 921-932 (press released).
- G. Takasao, Toru Wada, T. Taniike et al., Machine Learning-Aided Structure Determination for TiCl4-Capped MgCl2 Nanoplate of Heterogeneous Ziegler-Natta Catalyst, ACS Catalysis, 2019, 9, 2599-2609.
使用装置
ピペッティングロボット Andrew+
多目的並列反応装置(研究室開発装置)
自動マイクロ波合成装置
触媒スクリーニング装置(研究室開発装置)
光触媒スクリーニング装置(研究室開発装置)
オペランド化学発光分析装置(研究室開発装置)
化学発光イメージング装置(研究室開発装置)
その場中・遠赤外分光光度計
レーザラマン分光光度計
マイクロプレートリーダー
X線回折装置 (オートサンプラー付)
蛍光X線分析装置 (オートサンプラー付)
研究室の指導方針
私たちの研究室にはコアタイムがありません。実験や研究のスループットを最大化し、ワークライフバランスを自身で設計して下さい。豊富なスタッフ陣があなたの研究をサポートします。チームミーティング(数週間に1回)やコロキウム(月に1回)を通して密な議論や指導を行います。また、国内外の学会への参加も積極的に支援しています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/taniike/
機能性バイオマテリアルで難治性疾患を治療する


機能性バイオマテリアルで難治性疾患を治療する
先端ナノ医療・長寿創生研究室
Laboratory on Advanced Nanomedicine and Longevity Creation
教授:栗澤 元一(KURISAWA Motoichi)
E-mail:
[研究分野]
バイオマテリアル、ドラッグデリバリーシステム(DDS)、ナノメディシン、再生医療
[キーワード]
生体内分解性高分子、ナノ粒子、緑茶カテキン、インジェクタブルゲル、薬物徐放・ターゲッテイング、細胞治療
研究を始めるのに必要な知識・能力
高分子化学の基礎知識があれば、問題なく研究を始めることができますが、入学前に特別な知識・能力がなくても大学や企業で活躍出来るように本気で指導します。要は日々の研究活動に対する心構え次第で、いくらでも成長できます。そのためには自他共栄の精神を研究スタッフ・学生と共有できる研究室づくりが大切だと考えています。
この研究で身につく能力
栗澤研究室では、ナノ粒子やゲルの設計・合成、キャラクタリゼーションを行い、細胞実験や動物実験によって、目的とする機能が十分であるのか否かを評価します。幅広い領域を学ぶので、種々の測定装置や実験手法の基礎を身につけることができます。動物実験を完了するころには、緻密な実験計画を立てる能力、討論・プレゼンテーション能力を習得することができます。研究目的を達成することに邁進することは大事なのですが、フェアに実験結果を評価できる能力を習得できるように指導します。
【就職先企業・職種】 大学教員、博士研究員、特許審査官、化学企業、製薬企業
研究内容

図1.緑茶カテキン・ナノ粒子による疾患治療
当研究室では、高分子科学、生体材料、ドラッグデリバリーシステム(DDS)、再生医療などの学問領域を基盤とし、難治性疾患を治療可能とする機能性生体材料を開発します。昨今、遺伝子治療や再生医療などを含む先端医療が実施され、これまでに治療不可能とされてきた疾患に新しい治療法が切り拓かれてきています。このような先端医療を支える生体材料に関する研究は、難治性疾患を将来的に治療可能とする医療技術開発において益々重要な役割を果たすものと考えられます。シンガポール、韓国、米国をはじめとする海外研究機関との共同研究を展開しており、臨床応用及び産業化を目指した研究開発を推進します。
[緑茶カテキン・ナノ粒子を用いたドラックデリバリーシステム]
栗澤研究室では、タンパク質・抗体・低分子・核酸などの性質の異なる医薬品の内包を可能とする緑茶カテキン誘導体を薬物キャリアとしたナノ粒子の開発によって、癌をはじめとする難治性疾患の治療を目指したドラッグデリバリーシステム(DDS)の研究を展開します(図1)。 緑茶カテキン・ナノ粒子は、薬物を疾患部に送達することを主な目的とした従来のDDS製剤とは異なる設計指針によって開発されています。疾患部への送達に加えて、薬物キャリアの主成分である緑茶カテキンが抗癌活性を有するために、薬物と緑茶カテキンのそれぞれの抗癌活性に基づくシナジー効果によって、抗腫瘍効果を増幅することを特徴としています。

図2.インジェクタブルゲル・システムによる医療応用
[インジェクタブルゲルによるヘルスケアへの貢献]
生体内での安全なハイドロゲル形成を可能とするインジェクタブルゲルシステムの開発及びその生体機能性材料としての応用研究を展開します。従来、注射によって生体内で安全に化学架橋を誘導する事は困難でありましたが、高分子—フェノールコンジュゲートと酵素溶液の同時注入により、コンジュゲート中のフェノールの酸化カップリングを誘導し、生体内で安全にゲル化させるプラットホームテクノロジーを開発しています(図2)。この手法によって、生体内で薬物及び細胞をゲル内に固定し、長期間に及ぶ薬物徐放及び細胞増殖・分化の制御が可能となることから、様々な疾患に対して新たな治療法をDDS及び再生医療分野において確立されることが期待されます。
主な研究業績
- N. Yongvongsoontorn, J. E. Chung, S. J. Gao, K. H. Bae, M. H. Tan, J. Y. Ying, M. Kurisawa, Carrier-enhanced anticancer efficacy of sunitinib-loaded green tea-based micellar nanocomplex beyond tumor-targeted delivery, ACS Nano 13, 7591-7602 (2019).
- K. Liang, J. E. Chung, S. J. Gao, N. Yongvongsoontorn, M. Kurisawa, Highly augmented drug loading and stability of micellar nanocomplexes comprised of doxorubicin and poly(ethylene glycol)-green tea catechin conjugate for cancer therapy, Adv. Mater. 30, 1706963 (2018).
- J. E. Chung et al. Self-assembled nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy, Nature Nanotechnol. 9, 907-912 (2014).
使用装置
紫外可視分光光度計、NMR、動的光散乱測定装置、HPLC、レオメーター、電子顕微鏡、細胞培養装置、動物実験関連機器
研究室の指導方針
学生に寄り添うスタイルで研究室を運営することをモットーとします。研究のディスカッションや勉強会・雑誌会はできる限り、 頻繁に行い、学生の研究能力の向上に努めます。当然ながら、レベルの高い研究成果を多く創出することは重要ではありますが、学生には先ず、自身が携わっている学問や研究が開拓しうる将来の社会を楽しく想像しながら研究することを提案します。応用研究を遂行する際には、社会貢献の可能性について、学生と十分に議論し、将来に学生が社会でリーダとして活躍するべく力を養う機会にします。また、学生であっても情報受信だけではなく、情報発信ができるよう指導いたします。学生の興味や個性をよく把握し、学生の能力を伸ばします。研究室内では常に世界の最先端の研究を意識しつつ、研究室もその舞台の中であり、世界に向けて発信したいと強く学生が意識する雰囲気を創ります。
[研究室HP] URL:https://kurisawa-lab.labby.jp/
次世代の細胞計測技術を創り、ニューロン情報処理の秘密に迫る


次世代の細胞計測技術を創り、
ニューロン情報処理の秘密に迫る
神経情報生理学研究室
Laboratory for Neural Information Physiology
准教授:筒井 秀和(TSUTSUI Hidekazu)
E-mail:
[研究分野]
分子生物学、生理学、生物物理学、細胞計測
[キーワード]
神経細胞、分子センサー、次世代計測技術
研究を始めるのに必要な知識・能力
予備知識:分子・細胞生物学や電気回路の基礎などを理解しているとスムーズに研究を開始できますが、初学者にも丁寧に指導します。
求める人材:新しい技術を創出したい人。実験が好きで、試行錯誤や寄り道の楽しさを理解している方。
この研究で身につく能力
分子・細胞生物学、基礎生理学、生物物理学に関する基本的な研究方法や実験手技を理解し、体得します。さまざまな生命現象の仕組みや分子的基礎が詳細に解明されてきましたが、その一方で、広大な領域が未だに謎に包まれたまま残されています。本研究室では、新しい技術を創出し、今までアクセス不可能だった領域に踏み入る意義や楽しさを学びます。こうした新規技術を創り出すための創意工夫、粘り強い探求や試行錯誤を通じて身に付く能力は、学術の世界のみならず、社会や産業の発展を牽引する上で大いに役に立ちます。
【就職先企業・職種】学術、医工学・電気、情報・バイオなど
研究内容
【ニューロン回路の不思議】
柔軟さ、堅牢さ、緻密さを兼ね備えていることが細胞・組織・器官の機能の特徴の一つです。生き物の仕組みを知りたい!そんな素朴な疑問を大切に研究を行っています。具体的には、ニューロン回路における情報処理の秘密に迫るための、新しい細胞計測技術の創出に取り組んでいます。ニューロン回路は究極の生体組織です。0.1ボルト、1ミリ秒程度の電圧信号が回路網を高速に流れ、情報の表現や処理を司っています。この過程を詳細に理解することができれば、疾患の理解や新しい情報処理様式の発見のほか、想像もできない展開も期待できます。しかし、この挑戦は、数多くの障壁に阻まれています。例えば、既存の細胞計測技術では、複雑なニューロン回路の中を伝播する電気信号を十分に詳細に追跡することは困難で、実験的な立場における大きな課題の一つです。研究室では、主に二つの異なるアプローチでこの課題に取り組んでいます。
【次世代の電気生理計測法の探求】

(上)ニューロンの配線メカニズムを用いて作成した微小電極との接合構造
電気生理計測とは、金属やガラス管の微小電極を用いて、細胞の電気的現象を調べる手法の総称です。長い歴史のある計測法ですが、今日の最先端研究でも欠かすことのできない、強力な手法です。しかしながら、細胞認識能を原理的に備えていない、などの本質的な欠点が残されています。研究室では、脳内でニューロンが配線される分子メカニズムと微細加工技術を融合させることで、この課題の解決に取り組んでいます。これまでに、分子生物学的に人工設計したシナプス誘導因子を用いて、特定種のニューロンを特定の電極に接続する基本原理の実証など成功しています。ニューロン活動を読み取る次世代の電気生理技術の創出に向けて、皆さんと様々な工夫をこらし、探求をしていきます。
また、思いもよらぬ方向から、研究の突破口が開けることも多くあります。既成概念にとらわれず、不思議・楽しい!を大切にし、色々な技術や考え方を学際的に学び、日々の研究に活かしていくことを心掛けています。
【ニューロン活動を可視化する分子センサー】

(左)分子センサーの性能試験の様子
(中央)分子センサーを発現した神経細胞
(右)試作した次世代電気生理技術の原理実証用の微小電極
ある種の細胞には膜電位の変化(電圧信号)を感知するための分子が備わり、電圧信号を増幅し、細胞外環境に応じて細胞内の環境を変化させています。こうした分子を部品として使うことで、電圧信号を光の信号として可視化するセンサー分子を創ることが出来ます。研究室ではこれまでに単一細胞の単一スパイクを可視化することなどに成功してきています。皆さんといろいろなアイディアを持ち寄り、センサーのさらなる高速・高感度化を目指したいと考えています。また、細胞に備わるそうした分子が、そもそもどのような仕組みで電圧信号を感知しているのか?といった基礎的な問題にも興味を持って研究を進めています。
主な研究業績
- K. Sekine, et al., Neuron-microelectrode junction induced by an engineered synapse organizer, Biochem. Biophys. Res. Commun. p149935, 2024.
- W. Haga, et al., Development of artificial synapse organizers liganded with a peptide tag for molecularly inducible neuron-microelectrode interface, Biochem. Biophys. Res. Commun., vol. 699, 2024.
- S. Kim, et al., Formation of neuron-microelectrode junction mediated by a synapse organizer, Appl. Phys. Express, vol. 16, 2023.
使用装置
各種光学顕微鏡・走査型電子顕微鏡
電気生理・電気化学計測関連機器
薄膜作成・微細加工装置
細胞・組織培養関連機器
分子生物学関連機器
研究室の指導方針
研究は自由で楽しいものであるべきと考えますが、それもバックグラウンドの正しい理解や確かな実験技術に基づくはずです。まずは正確な実験や観察が行えるようになる事に努めます。研究結果の定期的な発表(プログレスレポート)および論文紹介(ジャーナルクラブ)を通じてプレゼンテーション力を身につけます。英語専門書を一つ選定して、輪読を行い、研究の背後にある概念や文化を理解する事にも重点を置きます。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/tsutsui/wordpress/
人工細胞膜の形や動きを探求する


人工細胞膜の形や動きを探求する
生体ソフトマター物理研究室
Laboratory on Biological and Soft Matter Physics
准教授:濵田 勉(HAMADA Tsutomu)
E-mail:
[研究分野]
ソフトマター物理、生物物理
[キーワード]
ソフトマター、人工細胞、生体膜、リポソーム、相分離、分子ロボティクス
研究を始めるのに必要な知識・能力
リポソームの実験に興味を持って楽しく取り組めること、物理・化学の基本的な知識があることが望ましいです。
この研究で身につく能力
- 人工細胞膜の実験技術
- ソフトマターの物理化学に関する知識
- 光学顕微鏡を主とする分析装置の取り扱い技術
- 英語の学術論文を読み書きする力
- 学会発表や修士・博士論文などで成果を表現する力
【就職先企業・職種】 化粧品、食品、化学、機械、バイオ研究開発など
研究内容
両親媒性ソフトマターである脂質分子は、自己集合して膜を形成します。脂質膜は、2次元膜面内での相分離や、3次元空間でのベシクル変形などの多様な物理現象を示し、その構造は弾性エネルギーにより支配されます。生体細胞は、この脂質膜を器・界面として利用しています。ミトコンドリア・小胞体のような複雑な構造体を形成したり、膜の融合・分裂などのダイナミックな動きが物質輸送を行っています。また、脂質膜小胞は、ドラッグデリバリーや化粧品などの材料としての応用開発も進められています。
私たちは、ソフトマター物理学的な視点から、細胞サイズの人工膜小胞(リポソーム)をデザインします。分子が集まることで創発する膜の秩序状態やダイナミクスに注目し、特に相分離・相転移などの物理現象が関連する膜の動的な構造や機能の研究を進めています。多様な膜現象を支配する物理化学法則の解明や新奇現象の発見を目指し、膜の世界を探求します。
1.膜の動態コントロール
光応答性分子を膜に導入することで、膜の融合、相分離の生成・消滅、小胞の開閉(細胞のオートファジーに類似した動き)、膜の出芽(細胞のエンドサイト-シスに類似した動き)を光で制御できることを発見しています。ナノメートル領域の膜分子の反応を、マイクロメートル領域の膜ダイナミクスに変換する機能システムを、膜の物性に基づき設計します。
2.膜の相分離現象
生体細胞膜を模倣した不均一な膜表面(相分離構造)を人工的に作り出し、不均一パターンを動的に制御する因子や法則姓を明らかにします。これまでに、分子の電荷による影響や、膜曲率との関連、コロイドやDNA等のゲスト分子との相互作用について明らかにしています。
3.膜の力学応答
物理的刺激に対する膜ダイナミクスの研究を行っています。これまでに、シアストレスや浸透圧によって膜面の相分離構造・パターンが変化することを発見しています。刺激の強さ、温度、膜の分子組成などに依存した、膜の応答ダイナミクスの体系化を進めています。
主な研究業績
- "Photo-induced fusion of lipid bilayer membranes" Y. Suzuki, et al., Langmuir, 33, 2671 (2017).
- "Domain dynamics of phase-separated lipid membranes under shear flow" T. Hamada et al., Soft Matter, 18, 9069 (2022).
- "人工細胞膜のダイナミクス解析と構造制御" 濵田勉, 応用物理, 86, 875 (2017).
使用装置
画像解析システム
蛍光・位相差顕微鏡
研究室の指導方針
私たちは、人工細胞膜の新奇現象を発見し、膜の新たな可能性を表現することで、膜系が示す物理現象の原理究明を目的に研究をしています。研究活動を通して、基礎知識を活用し課題を解決する能力を養い、好奇心を持ち自ら調べ学ぶことの楽しさを経験してもらいたく思います。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/hamada
光を知り、光で分析する ~分光学への誘い~


光を知り、光で分析する ~分光学への誘い~
基礎物理化学・超微量ラマン分光分析研究室
Physical Chemistry, Ultrasensitive Raman Spectroscopy Laboratory
准教授:山本 裕子(YAMAMOTO Yuko S.)
E-mail:
[研究分野]
物理化学境界領域・超微量ラマン分光、量子光学
[キーワード]
ラマン分光学、表面増強ラマン散乱、ナノマテリアル
研究を始めるのに必要な知識・能力
「光について学びたい」「光について詳しくなりたい」「光を使った分析手法を身につけたい」など、「光」あるいは「分光学」に興味を持ち学ぶ意欲があること。これが当研究室で研究を始めるにあたって必要な能力(意欲) です。実現に必要な知識や、技術の修得の仕方は教えます。
大発見したい・ノーベル賞を取りたい・大きな成果を上げたいなどの大きな野望を持つ学生さん・社会人学生さんも大歓迎です。
この研究で身につく能力
光を使った各種分析手法について、基礎~応用までが一貫して身につきます。特に、①ラマン分光法・超微量ラマン分光法(表面増強ラマン散乱, Surface-enhanced Raman scattering)、②紫外可視吸収分光法などの各種吸収分光法。また、可視光レーザーの取り扱いや、光学顕微鏡やミラー・レンズなど各種光学部品の取り扱い・装置の組み立て、分光器の基礎知識や取り扱い方も身につけることができます。
【就職先企業・職種】 化学系企業、起業等
研究内容
私たちは、光を使った検出方法を軸としながら世界最先端の研究を進めています。光検出は、マテリアル研究を行う上で最も基本的かつ重要な手法のひとつです。

図. 表面増強ラマン散乱法測定の概略図
1.強結合 新しい光学現象を生み出すナノスケール創成場
1970年代に、表面増強ラマン散乱 (Surface-enhanced Raman scattering,SERS) という現象が発見されました。これは、物質に光を当てたときにごくわずかに現れる「ラマン散乱光」が飛躍的に増強する現象のことです。SERS効果は当初、銀のナノ構造体表面で発見されました。そして、発見から50年経ち、なぜラマン散乱効果が飛躍的に増強するのか、そのメカニズムがおおよそ明らかになりました。
私たちは2014年に、ラマン散乱効果が飛躍的に増強する「ホットスポット」では「強結合」という現象が起きており、この「強結合」状態が別の新しい光学現象をも生み出していることを発見しました。
ホットスポットは、ナノ世界の光が作り出す未知のフロンティアの一つです。その発見以来、私たちは銀ナノ粒子がつくるホットスポットでの強結合をさらに深く、詳しく調べ、数々の新現象を発見し続けています。
2.超微量ラマン分光(表面増強ラマン散乱, SERS)
上記の通り、SERSは1970年代に発見され既に50年経っています。しかし未だ目立った実用化例がないことから「Sleeping Giant (眠れる巨人)」と呼ばれています。一方で SERSは人のこころをどこか魅了するのでしょう、巨人を眠りから覚まそうと SERS研究へ新規参入してくる研究者は後を絶ちません。
私たちの研究グルーブでは、銀ナノコロイド粒子を使って SERSを研究しています。銀ナノコロイド粒子は1997年に初めて1分子だけのSERS測定に成功した、極めて重要な実験系です。
その銀ナノコロイド粒子を使って、私たちの研究グループメンバーの一人が2024年に「希土類元素のSERS」という新しい研究分野の開拓に成功したので、次に説明します。
3.希土類元素とSERS
希土類元素(レアアース) は原子番号57番~71番に位置する非常に重い元素で、地球上にほとんど存在しないことから希土類元素と呼ばれています。希土類元素は最外殻の電子配置が互いに似通っているため、化学的な手法でその種類を同定することが難しい問題があります。
当研究室では2024年、希土類元素を含むキレート分子の SERSを測定することで、間接的に希土類元素であるLa(ランタン) とGd(ガドリニウム) を互いに識別することに成功しました。これは世界的に見て非常にユニークかつ重要な研究成果です。とても難しい研究ですが、研究に新たに参画する挑戦者をお待ちしています。
4.金属材料と電気化学
当研究室ではまた、物理化学分野、特に金属材料科学と電気化学の境界領域での研究もスタートしています。まだ詳しくお伝えすることができませんが、世界に大きなインパクトを与える大きな研究成果を期待しながら日々研究を続けています。
参考文献・これまでの研究業績や論文にご興味がある方は、お気軽に指導教員までメール( )または指導教員室M4-40へお越しください。論文の別刷(論文のコピーのこと)を差し上げます。
主な研究業績
- Jin Hao, Tamitake Itoh and Yuko S. Yamamoto, “Classification of La3+ and Gd3+ rare earth ions using surface-enhanced Raman scattering”, Journal of Physical Chemistry C, 128, 5611 (2024)
- Tamitake Itoh and Yuko S. Yamamoto, “Basics and Frontiers of Electromagnetic Mechanism of SERS Hotspots” In Book: Procházka, M., Kneipp, J., Zhao, B., Ozaki, Y. (eds) “Surface- and Tip-Enhanced Raman Scattering Spectroscopy” Springer, Singapore (2024)
- 山本裕子 , “ プラズモンと分子の電磁相互作用の基礎 ”, 応用物理学会フォトニクスニュース , 9(2), 68-72 (2023)
使用装置
表面増強ラマン顕微鏡(自作)
ラマン顕微鏡
紫外可視吸収測定器
密度汎関数(DFT)計算装置
研究室の指導方針
世界トップレベルで基礎研究を行うための、自由闊達な研究環境を提供しています。当研究室にはコアタイムがありません。各自が自由な時間で研究を組み立てており、そのスタイルを奨励しています。研究室内のメンバーとの情報交換・互いの進捗の確認は、週一回の全体ミーティングおよび輪講セミナーにて行います。そのため、自律的にしっかりと研究生活を組み立てられるタイプの学生の方に適した環境です。
自らの研究成果を世に発信するため、年1回程度の学会発表を推奨しています。研究テーマの設定は、指導教員が提示する研究テーマを参考に、個々の学生さんの興味範囲・方向性を取り入れつつ最大限希望に添う形で行います。基本的に、研究成果は国際論文(英語)という形で世に広く発表することを目指していきます。プロの研究者を志望する方にお勧めです。
もちろん、指導教員による個別指導を随時行います。指導教員の持つ知識や経験をどんどん活用してください。
新しい固体触媒プロセスの構築による資源・エネルギー問題の解決に挑む!


新しい固体触媒プロセスの構築による
資源・エネルギー問題の解決に挑む!
触媒・資源変換プロセス研究室
Laboratory on Catalyst/Resource Chemical Process
准教授:西村 俊(NISHIMURA Shun)
E-mail:
[研究分野]
触媒化学、固体触媒、合金触媒、バイオマス変換
[キーワード]
資源・エネルギーの有効利用技術、金属ナノ粒子触媒、固体酸塩基触媒、新触媒の創成、触媒作用機構の解明
研究を始めるのに必要な知識・能力
基礎的な計算・データ処理能力と仲間と安全に研究を進められる方であれば、バックグラウンドを問わずに歓迎します。物理化学、有機化学、無機化学、分析化学、触媒化学などの基礎・経験があると、よりスムーズに研究を開始できます。失敗にひるまずに挑戦する「忍耐力」や「好奇心・探究心」がより自発的に研究を進める上で役に立ちます。
この研究で身につく能力
新しい固体触媒プロセスの開発は、触媒設計→触媒調製・条件の最適化→触媒活性評価・反応条件の最適化→触媒のキャラクタリゼーション→触媒作用機構の提案→検証・再考といった多くの研究段階からなっています。また、触媒作用に関連する因子は一つであるとは限りません。従って、触媒開発プロセスを経験することで、様々な分析・評価手法の技術習得、多角的に実験データを整理・解析・統合する力を身に付けることができます。また、英語の先行研究を読み自らの研究へフィードバックする力、自分の結果を他人へより分かりやすく伝えるためのプレゼンテーション力を、日常の研究室ゼミや学会発表等を通じて向上できます。
【就職先企業・職種】 化成品・ポリマー製造や自動車触媒製造を主とした化学・材料メーカーなど。
研究内容
触媒は様々な物質変換・合成プロセスに欠かすことができない材料で、身近な生活を力強く下支えしています。そのため、高機能な触媒プロセスの開発は、日常の生活様式の劇的な改善やより低環境負荷なスタイルへと大きく変えるインパクトを持っています。例えば、空気中の窒素の人工的な固定化を実現したアンモニア合成触媒の実現(1918年ノーベル化学賞)は、窒素を含む化学品合成の発展に繋がり、その後の安定的な食料生産による人口増加や火薬製造による工業の発展へと繋がりました。
当研究室では、「従来の在来型化石資源の利用技術で培われた触媒プロセス技術を生かし、より高効率な触媒を設計するための指針の提案」や、「固体触媒を用いた高効率な次世代バイオマス資源変換プロセスの構築」から、持続可能・低環境負荷な社会形成に貢献できる触媒・資源変換プロセス技術の構築を目指しています。
・金属担持触媒の高機能化に向けた触媒設計と作用機構解明
金属活性点を固体表面に固定化した金属担持触媒は、主に1. 金属活性中心の電子状態や形状、2. 金属活性点の周囲環境、3. 担体の性質によって、その触媒作用が大きく異なります。それぞれの因子を系統的に制御し、対象とする触媒反応への性能を評価することで、求める触媒作用に対して選択的に欲しい性能を付与できる触媒調製指針の策定を目指します。例えば、異種金属を合金化させた活性サイトの構築による高活性化、保護配位剤を作用させることによる活性点周囲の環境制御による高活性・高選択性の発現、特異な構造を有する担体合成による超高活性化を実現しています。
・高効率なバイオマス資源変換を実現する固体触媒プロセス開発
バイオマス資源は再生可能でカーボンニュートラルであることから、持続可能な次世代資源としての活用が期待されています。しかし、低いLCA(ライフサイクル・アセスメント)が課題です。固体触媒を用いた高効率プロセスの実現によるバイオマス資源利用の拡大を目指しています。例えば、常圧水素によるバイオ燃料製造プロセス、非可食性グルコサミン類からの高品位化成品合成プロセス、高活性な酸- 塩基反応プロセス、バイオマス由来有機酸・脂肪酸の高効率な水素化転換を実現しています。また、バイオマス資源の連続的なフロー変換プロセスの展開に必要な課題抽出とその改善にも取り組んでいます。
主な研究業績
- S. D. Le, S. Nishimura: Selective hydrogenation of succinic acid to gamma-butyrolactone with PVP-capped CuPd catalysts. Catal. Sci. Technol. 12 (2022) 1060.
- K. Anjali, S. Nishimura: Efficient Conversion of Furfural to Succinic Acid using Cobalt-Porphyrin based Catalysts and Molecular Oxygen. J. Catal. 428 (2023) 115182
- X. Li, S. Nishimura: Synthesis of 5-Hydroxymethy-2-furfurylamine via Reductive Amination of 5-Hydroxymethyl-2-furaldehyde with Supported Ni-Co Bimetallic catalysts. Catal. Lett. 154 (2024) 237.
使用装置
触媒活性評価(GC, HPLC, GC-TOFMS, FTICR-MS, 液体 NMR)
触媒構造評価(XRD, ガス吸着 / 脱着 , SEM/TEM, XPS, 固体 NMR, FT-IR, TPR/TPD, パルス分析など)
状況に応じて、外部の共同利用研究施設(KEK-PF, SPring-8, SAGA- LS など)での XAFS 測定も行います。
研究室の指導方針
当研究室では、月1~2回の研究室ゼミ(研究進捗報告・ディスカッション)を行います。コアタイムは設けませんが、社会人生活に向け て規則正しい生活リズムを作って実験・大学院生活を送ってください。本学には様々な分析機器が共通設備として整備されており、 装置によっては専門職員からのサポートも得られる充実した環境が整っています。在籍中にこのサポート・分析体制を存分に活か し、自らのスキルアップを実現してほしいと思います。在籍中に得られた成果は、国内外での学会等で対外発表を行うことを推奨 します。また、修了生1人に対して1報以上の学術論文・国際会議プロシーディングス等を公開し、各学生の成果を残せるように努めています。
[研究室HP] URL:https://www.jaist.ac.jp/~s_nishim/index.html
表面・界面の理解に基づいたナノマテリアル開発


表面・界面の理解に基づいた
ナノマテリアル開発
先端ナノ材料科学研究室
Laboratory on Advanced Nanomaterials Science
教授:高村 由起子(YAMADA-TAKAMURA Yukiko)
E-mail:
[研究分野]
材料科学、材料工学、表面科学
[キーワード]
ナノマテリアル、二次元材料、薄膜成長、走査プローブ顕微鏡、放射光実験
研究を始めるのに必要な知識・能力
我々の研究室で行っている研究に向いているのは、ナノマテリアルの表面や界面で原子が並んでいる様子を見てみたい、という好奇心が強く、とにかく実験するのが好き、という方です。
この研究で身につく能力
最先端の装置、しかも世界に一台しかないような特殊な装置、を自分で操作して一定の期間内に成果を出すことを要求されますので、自ずとそのような装置の操作に必要な慎重さと大胆さが養われます。また、数多くの実験をこなすことで、効率的な実験計画の立て方が身につくのと同時に、装置の不具合などで実験が思い通りに進まない、といった経験から、想定外の事態に対応する能力も養われます。実験で得られた結果などについて自分でまとめ、考え、理解・学習する能力だけではなく、先輩や教員と一緒に議論することによって、説明する力、論理的に考える力が養われます。
【就職先企業・職種】 電気・電子、機械、医療機器メーカーのエンジニア職、研究職
研究内容

研究室での実験風景
現代の産業の基幹を支える薄膜材料の高品質化には、薄膜-基板界面の高度な制御が欠かせません。特に超薄膜やナノ構造体を対象としたナノマテリアル研究では、表面・界面が全体に占める割合が高くなり、表面・界面構造が成長や機能発現に果たす役割が重要となってきます。本研究室では、新奇ナノマテリアルには表面・界面の理解と高度な制御が必要であるとの認識から、表面・界面の詳細な分析とその制御に基づいたナノマテリアル開発を目指します。より具体的には、薄膜及びナノ構造成長表面のその場観察と異種材料界面構造の解析から得られる知見を有効に成長過程に還元するために、不純物混入の少ない超高真空における薄膜成長に取り組み、電子等のプローブと検出器を導入した装置を使用します。このユニークな装置を用いた薄膜成長とその場観察、放射光施設における表面・界面構造の解析と第一原理計算を組み合わせ、新しいナノマテリアルの創成とその構造・性質の解明に挑みます。
原子層厚みの究極のナノマテリアル、ケイ素版グラフェン「シリセン」の研究
シリコンウェハー上にエピタキシャル成長させた二ホウ化物薄膜表面を、光電子分光を専門とする研究室と第一原理計算を専門とする研究室と共同で詳細に調べている過程でシリセンを思いがけず発見することができました。この成果は国内外の大学や研究機関との共同研究に発展し、最近では、絶縁性の二次元材料である六方晶窒化ホウ素とシリセンを重ねることに成功しました。
二次元フラットバンドマテリアルの研究
ゲルマニウムウェハー上にエピタキシャル成長させた二ホウ化物薄膜を詳細に調べると、上記のシリセンの場合の蜂の巣構造とは異なる二次元的な結晶構造を持つGe層が形成されていました。また、我々の理論研究から、同様の結晶構造を持つ二次元材料の電子状態に「フラットバンド」の発現が期待できることが明らかとなりました。フラットバンドは物質に強磁性や超伝導を付与することがあり、現在、実験と計算の両面から研究を進めています。
カルコゲナイド系二次元材料の研究
セレン化ガリウム(GaSe)は、非線形光学特性を持つ層状物質として古くから研究されてきました。積層多形はこれまで何種類か報告されていましたが、我々の研究室の学生が、結晶多形を新たに発見しました。この従来とは異なる結晶構造を持つGaSe がどんな性質を持つのか、実験と計算の両面から調べています。
主な研究業績
- First-principles study on the stability and electronic structure of monolayer GaSe with trigonal-antiprismatic structure, H. Nitta, T. Yonezawa, A. Fleurence, Y. Yamada-Takamura, and T. Ozaki, Physical Review B 102, 235407 (2020).
- Emergence of nearly flat bands through a kagome lattice embedded in an epitaxial two-dimensional Ge layer with a bitriangular structure, A. Fleurence, C.-C. Lee, R. Friedlein, Y. Fukaya, S. Yoshimoto, K. Mukai, H. Yamane, N. Kosugi, J. Yoshinobu, T. Ozaki, and Y. Yamada-Takamura, Physical Review B 102, 201102(R) (2020).
- Van der Waals integration of silicene and hexagonal boron nitride, F. B. Wiggers, A. Fleurence, K. Aoyagi, T. Yonezawa, Y. Yamada-Takamura, H. Feng, J. Zhuang, Y. Du, A. Y. Kovalgin and M. P. de Jong, 2D Materials 6, 035001 (2019).
使用装置
超高真空走査プローブ顕微鏡、超高真空薄膜成長装置、薄膜材料結晶性解析X線回折装置、X線光電子分光装置、国内外の放射光施設、本学の超並列計算機
研究室の指導方針
我々の研究室では、迷ったらどんどん手を動かして、実験や計算をしてみることを学生さんに勧めています。実際にその実験や計算に従事している学生さんにしか思いつけない、新しいアイデアというのが必ずあります。アイデアとやる気とスキルがあったら、まずは、とことんやってみましょう。教員と先輩ができる限りのサポートをいたします。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/yukikoyt/groupHP/Home.html
ナノとバイオを融合して医療と環境の問題を解決する


ナノとバイオを融合して
医療と環境の問題を解決する
バイオナノ医工学デバイス 研究室
Bio-Nano Medical Device Laboratory
教授:高村 禅(TAKAMURA Yuzuru)
E-mail:
[研究分野]
BioMEMS、微小流体デバイス、分析化学、バイオセンサ
[キーワード]
血液分析チップ、一細胞解析、質量分析チップ、マイクロ元素分析、微細加工プロセス、バイオチップ、マイクロプラズマ
研究を始めるのに必要な知識・能力
私たちが扱う対象は分野融合的要素が強く、従って本研究室では様々なバックグラウンドの学生を受け入れております。生物、化学だけでなく、物理、機械、電子、制御、材料など、個人のバックグラウンドに応じたテーマを設定し、研究を進めます。
この研究で身につく能力
何かを解析するチップの研究が多いので、分析科学の要素は押し並べて身につきます。微量なサンプルを扱うので、微量な生体サンプルのハンドリング技術、生体分子と無機材料の界面の調整技術、微量な蛍光や光信号の観察・計測技術等が身につきます。また、チップを作成するには、フォトリソグラフィー等、マイクロマシンの技術が身につきます。新しい材料を使う場合は、成膜やエッチングの為のプロセス開発を行うこともあります。チップの開発では、流体の動きや熱の伝達をシミュレーションし設計することもあります。修了生は、計測機器メーカへの就職が多いですが、半導体製造機器メーカや、薬品会社へ就職する方もいらっしゃいます。
【就職先企業・職種】 計測機器メーカ、電気、機械、半導体製造機器メーカ、半導体メーカ、薬品関連
研究内容
半導体プロセスを応用して、ウエハ上に小さな流路や反応容器、分析器等を作りこみ、一つのチップの上で、血液検査等に必要な一通りの化学実験を完遂させようという微小流体デバイス、μTAS(micro total analysis systems)やLab on a chipと呼ばれる研究分野が急速に発展しています。これは、病気の診断、創薬、生命現象の解析に応用でき、大きな市場と新しい学術分野を開拓するものとして期待されております。また、いろいろな形状の微小流路内を、流体や大きな分子が流れるときの挙動は、ブラウン運動や界面の影響が支配的で、流体力学でも分子動力学でも扱えない新しい現象を含んでいます。当研究室は、このような新しい現象をベースに、ナノとバイオを融合した次世代のバイオチップ創製を目指した研究を行っています。
主なテーマを次に示します。

図1.作成したバイオチップの例

図2.汎用微小流体チップ案
1)高集積化バイオ化学チップの開発
高機能バイオチップの実現には、チップ内での流体の駆動機構と、高感度な検出器の開発が重要になります。本研究室では、溶液プロセスによるPZTアクチュエータアレイや電気浸透流ポンプをはじめ様々なチップ内での液体駆動機構と、ナノ材料を駆使した新しい検出器の開発を進めています(図1)。これらを用いて、組織中の一細胞を分子レベルで解析可能なチップや、高度な処理をプログラム次第で様々にこなす汎用微小流体チップの開発を目指しています(図2)。
2)高感度バイオセンシング技術の開発
一滴の血液には、体内の様々な状態を反映した多くの情報が含まれております。これらを頻繁に解析することで、重篤な病気の超早期発見や、日々の健康管理、あるいは老化や病気が起きにくい体質になるために食事や運動をガイドする等、様々なことが可能になると考えられております。このためには、非常に微量なバイオマーカを簡易に測定する技術が必要です。私どもは、自己血糖測定器と同じ手間とコストでpg/mLオーダの測定ができるチップや、質量分析チップの開発を行っております。
3)液体電極プラズマを用いたマイクロ元素分析器の開発
中央を細くした微小な流路に液体のサンプルを導入し、高電圧を印加するとプラズマが発生します。このプラズマからの発光を分光することにより、サンプル中の元素の種類と量を簡単・高感度に測定することができます。この原理を用いて、食物、井戸水、土壌工場廃水・廃棄物に含まれている有害な金属(Hg、Cd、Pbなど)などを、オンサイトで測定できるマイクロ元素分析器の開発を行っています。
主な研究業績
- Pulse-heating ionization for protein on-chip mass spectrometry,Kiyotaka Sugiyama, Hiroki Harako, Yoshiaki Ukita, Tatsuya Shimoda, Yuzuru Takamura, Analytical Chemistry, 86, 15, 7593-7597, 05 August 2014.
- Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing, Amara Apilux, Yoshiaki Ukita, Miyuki Chikae, Orawom Chilapakul and Yuzuru Takamura, Lab Chip,13(1), 126-135, January 2013.
- High sensitive elemental analysis for Cd and Pb by liquid electrode plasma atomic emission spectrometry with quartz glass chip and sample flow, Atsushi Kitano, Akiko Iiduka, Tamotsu Yamamoto, Yoshiaki Ukita, Eiichi Tamiya, Yuzuru Takamura, Analytical Chemistry 83(24), 9424-9430, 04 November 2011.
使用装置
クリーンルーム半導体製造装置一式
電気化学測定装置
表面プラズモン共鳴測定装置
イムノクロマトグラフ製造装置
全反射蛍光一分子観察装置
研究室の指導方針
iPS細胞など最近の新しい医療技術の多くは、新しい工学的技術の進歩が発端になっていることをご存知でしょうか。その多くに、高度に発展したナノテクノロジーとバイオテクノロジーの融合技術が使われています。この分野は、まさに今アクティブで、また人類への多くの貢献が期待されている分野でもあるのです。私どもの研究室には、様々なバックグランドと目的を持った学生さんが来ます。私どもは一人ひとりの目的に合わせたゴールを設定し、そこに向かって必要なものを自ら獲得できる様に、サポートとガイドを行うことを主な指導方針としています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/takamura/index.html
タンパク質の「形」や「動き」をしらべて、未知の生命現象をひもとく


タンパク質の「形」や「動き」をしらべて、
未知の生命現象をひもとく
タンパク質NMR研究室 Laboratory on Protein NMR
教授:大木 進野(OHKI Shinya)
E-mail:
[研究分野]
構造生物化学、生物物理学、NMR(核磁気共鳴分光法)
[キーワード]
タンパク質、構造と機能、立体構造、ダイナミクス、相互作用、NMR、安定同位体標識
研究を始めるのに必要な知識・能力
試料調製(遺伝子工学、生化学)、NMR実験(パラメータ設定、多様な測定、データ処理)、解析(NMRデータ解析、バイオインフォマティクス)の3つの要素のうち、少なくとも1つに関しての知識・能力があれば、この分野の研究を始めやすいです。PC操作に強い人も歓迎します。
この研究で身につく能力
生命現象を分子レベルで考える能力が養われます。研究で扱っているのは生体分子ですが、境界領域とか複合領域と呼ばれる研究分野のため、物理・化学・生物の幅広い基礎知識が必要になります。そのため、自ずとこれらを勉強して身につけることになります。また、具体的な研究立案を通して、大目標へ到達するための道筋を考えた中目標や小目標の立て方を学びます。実験がうまくいかないときの工夫やデータの解析・解釈など、実際に研究を進めていく中で困難な課題を少しずつ解決し、それらを統合して目標へ向かっていく能力が養われます。さらに、研究経過報告や学会発表を経験することで、学術的な文章を書く能力や発表資料の作成能力、プレゼンテーション能力も身につきます。
【就職先企業・職種】 製薬・食品・化学系企業の研究、技術職
研究内容

図.気孔を増やすストマジェンの立体構造。

図.1H-13Cの相関をみる2次元NMR(HSQC)スペクトルのメチル基領域の拡大図。タンパク質全体が13Cで安定同位体標識されている試料(左)とバリン・ロイシンのみが標識されている試料(右)。
(1)安定同位体標識技術の開発
NMR(核磁気共鳴分光法)で測定するタンパク質は、見たい部位の炭素が13C、窒素が15Nという安定同位体で標識されていることが必要です。このような特殊なタンパク質試料は、通常、遺伝子組み換え大腸菌を使って調製されます。類似の手法として、私たちは、これまで無かった植物培養細胞を利用する安定同位体標識タンパク質調製技術を開発しています。大腸菌よりも高等な植物細胞は、大腸菌では調製が困難な複雑な構造のタンパク質を調製する潜在能力を持っています。私たちはこれまでに、このオリジナル技術を使って試料タンパク質を13Cや15Nで均一標識することや、バリン、ロイシンなどのメチル基を有するアミノ酸残基だけを特異的に安定同位体標識することに成功しています。今後は、この標識技術のさらなる高度化に取り組んでいきます。
(2)ジスルフィド結合を有するタンパク質
ジスルフィド(SS)結合を有するタンパク質を大腸菌の系で調製することは困難です。私たちは、植物培養細胞を利用してSS結合を有するタンパク質を調製し、それらの構造と機能をNMRで研究しています。幾つかの成果の例を以下に紹介します。
ストマジェンは分子内に3組のSS結合を持つペプチドホルモンで、植物の気孔の数を増やす働きをします。大腸菌ではストマジェンを大量に調製することが困難でしたが、植物培養細胞での調製に成功しました。安定同位体標識されたストマジェンを調製し、その立体構造をNMRで解明しました。その結果、ストマジェンや類縁タンパク質の特異な機能と構造との関連が明らかになりました。今では、気孔の数を増やしたり減らしたりするペプチドを設計・調製し、実際にその効果を確認することが出来るようになっています。将来、植物の光合成量や成長を人為的に自在に操ることが可能になれば、環境改善や食料問題の解決に貢献できるはずです。
分子内に4組のSS結合を持つESFは、植物の種子が出来るごく初期の段階でのみ発現するペプチドとして発見されました。ESFが働かなくなると、種子の大きさや形が不揃いになります。私たちは、ESFを植物培養細胞で調製することに成功し、その立体構造をNMRで決定しました。この結果、ESF分子表面の特別な並びをしたトリプトファン残基の側鎖がその機能に必須であることが明らかになりました。大きな種子を収穫したり、種のないフルーツを簡単に作れる日が来るかも知れません。
他にも、昆虫や爬虫類の毒ペプチドや抗菌作用を持つディフェンシンなど、SS結合を持つタンパク質は数多く存在します。これらについても構造と機能の関係を研究しています。このような生理活性を持つ生体分子についての研究は、生命現象を深く理解するだけにとどまらず、その成果が新薬開発の大きな助けとなります。
(3)シグナルを伝達するタンパク質
生体内では、タンパク質、脂質、遺伝子など多くの分子の協奏によってさまざまなシグナルが行き交っています。これらのシグナルは、メチル化、アセチル化といった修飾や、マグネシウム、亜鉛などのイオンとの結合・解離による分子構造や構造の揺らぎ具合の変化がスイッチとなって、他の分子と相互作用することで伝達されています。私たちは、カルシウムを結合するタンパク質やリン酸化されるタンパク質に焦点を絞り、それらの構造と機能をNMRで研究しています。
主な研究業績
- L.M.Costa, E.Marshall, M.Tesfaye, K.A.T.Silverstein, M.Mori, Y.Umetsu, S.L.Otterbach, R.Papareddy, H.G.Dickinson, K.Boutiller, K.A.VandenBosch, S.Ohki & J.F.Gutierrez-Marcos. (2014) “Central Cell-Derived Peptides Regulate Early Embryo Patterning in Flowering Plants” Science 344, 168-172.
- S.Zhu, S.Peigneur, B.Gao, Y.Umetsu, S.Ohki & J.Tytgat. (2014) “Experimental Conversion of a Defensin into a Neurotoxin: Implications for Origin of Toxic Function” Mol. Biol. Evol. 31(3), 546-559.
- S. Ohki, M. Takeuchi & M. Mori. (2011) “The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones” Nature Communications 2, Article number: 512 doi:10.1038/ncomms1520
使用装置
Bruker AVANCE III 800MHz-NMR装置(1H/13C/15N三重共鳴クライオプローブ付き)
研究室の指導方針
将来全く別の研究・技術の領域に飛び込んだとしても十分活躍していけるような基礎的素養を持った人材を育成したいと思います。毎日楽しみながら、こつこつと努力し、粘り強く研究に取り組みましょう。失敗でも成功でも、取得した生の実験データを見ながら議論することに重きをおきます。データの解析や考察、次の実験についての提案など、新しいアイデアを出し合うことを日頃から繰り返していきながら、論理的な思考方法を身につけましょう。また、3ヶ月に1度程度は研究室のゼミで詳細な研究経過を口頭で発表する機会があります。
[研究室HP] URL:https://www.jaist.ac.jp/nmcenter/labs/s-ohki-www/contents/Ohki_Lab.html
電子顕微鏡とデータ科学の融合による新奇ナノ物性の探索


電子顕微鏡とデータ科学の融合による
新奇ナノ物性の探索
ナノ物性顕微探索研究室
Laboratory on Microscopic Nano-characterization
教授:大島 義文(OSHIMA Yoshifumi)
E-mail:
[研究分野]
電子顕微鏡、表面界面物性、ナノ物質
[キーワード]
オペランド観察、新計測技術、データ科学
研究を始めるのに必要な知識・能力
研究は、新しい何かを発見することです。そのなかでいちばん重要なのは「あきらめない」という強い気持ちです。能力としては、数学と物理の基礎知識を持っていることが望ましいです。
この研究で身につく能力
[基礎]:実験・学習・議論をとおして、固体物理学に対する深い理解が身につきます。
[技術]:電子顕微鏡、真空装置、3D-CADソフトの使い方を学びます。
また、Pythonプログラミングによるデータ解析を学びます。いずれも基礎から始めることができます。
[その他]:定期ミーティングでの発表をとおして、自分の研究を他者に分かりやすく伝えるスキルを学びます。
【就職先企業・職種】 電気・材料メーカー、材料分析会社、大学の技術職員など
研究内容

図1 (a) 実験の模式図。試料を保持するための装置 (試料ホルダー) は研究室で独自に開発しました。白金原子鎖の (b) コンダクタンス、(c) 剛性が測定できました。(d) 電子顕微鏡像。白金は暗く見えています。AとBにおいて、左右の白金を橋渡ししているのが単原子鎖です。

図2 (a) 金ナノロッドの電子顕微鏡像。奥行き方向にならぶ金原子の列が明るい点として見えています。(b) 従来手法で測定した原子変位と (c) データ科学で処理した原子変位。原子が正常な位置から左にずれるほど暗い青色、右にずれるほど明るい黄色で示されます。
本研究室では、ナノ材料がしめす新しい現象を探索しています。そのために、次のような研究に励んでいます。
☑ 電子顕微鏡によるナノ~原子スケールでの材料観察
☑ 材料の力や電気化学特性を測定できる新しい装置の開発
☑ データ科学の応用によって電子顕微鏡像から重要な情報を抽出
具体的な研究例を以下に示します。
よく伸びる白金原子の鎖状物質
電子顕微鏡のなかで材料を動かしながら、材料の電気伝導度、剛性、原子のならびを同時に測定できる特殊な試料ホルダーを自作しました1。このホルダーを用いて、幅が原子1個、長さが原子2~5個の白金鎖状物質の特性を調べました (図1)2。生活のなかで目にするふつうの白金は、原子が3次元的に結合しており、わずか数%しか伸びません。しかし、鎖状物質はもとの状態から+24%まで伸びました。1次元の単原子鎖にすることで、白金の結合特性が大きく変わることを発見しました。
データ科学による原子配列の解析
原子の正常な位置からのずれ(原子変位)を測定しました3。 従来の方法では、変位量が小刻みに変化して見えます (図2b)。これは原子変位の情報ではなく、解析のじゃまをするノイズ成分です。そこで、データ科学手法のガウス過程回帰を用いることで、原子変位の情報を抽出することに成功しました (図2c)。測定可能な最小の原子変位は0.7pm(ピコメートル、1兆分の1メートル)ときわめて小さく、材料のなかで生じる2.4pmの原子変位を検出することに成功しました。
主な研究業績
- J. Zhang, et al., Nanotechnology 31 (2020) 205706
- J. Zhang, et al., Nano letters 21 (2021) 3922
- K. Aso, et al., ACS Nano 15 (2021) 12077
使用装置
☑ 超高真空透過型電子顕微鏡
☑ 高度な物性測定をおこなうための電子顕微鏡ホルダー
☑ 3D-CADやデータ解析がおこなえるワークステーションPC
研究室の指導方針
研究室ミーティングを毎週おこなっています。担当の学生が、研究の進捗状況や、興味をもった論文について紹介し、みんなでディスカッションします。担当の頻度はおよそ3週間に1回です。固体物理を学ぶための読書会もあります。学生のあいだでの学びあい・教えあいや、ディスカッションを推奨しています。コミュニケーション能力を高めるために、国内外の学会で発表することも推奨しています。博士学生は、自らの研究に集中して科学雑誌に論文を投稿できるよう、最大限サポートします。
[研究室HP] URL:https://www.jaist-oshima-labo.com/
ナノ粒子工学:機能材料の創製から応用まで


ナノ粒子工学:機能材料の創製から応用まで
ナノ粒子工学研究室 Laboratory on Nanoparticle Engineering
教授:前之園 信也(MAENOSONO Shinya)
E-mail:
[研究分野]
ナノ材料化学、ナノ材料物性、コロイド化学
[キーワード]
半導体ナノ粒子、磁性体ナノ粒子、金属ナノ粒子、バイオ医療、エネルギー変換、センシング
研究を始めるのに必要な知識・能力
基礎学力、コミュニケーション能力、知的好奇心、柔軟な思考
この研究で身につく能力
修士課程では、(1) ナノ材料の化学合成技術、(2) 各種分析機器(透過型電子顕微鏡、X 線回折装置、X 線光電子分光、組成分析装置など)の操作スキル、(3) 基礎学問の知識(無機材料化学、結晶学、コロイド化学、固体物性など)、(4) ナノ材料に関する先端専門知識を身につけて頂きます。博士課程では、1-4に加え、英語によるプレゼンテーション能力、英語論文執筆能力、研究課題設定能力、共同研究遂行能力など、研究者に必要なあらゆる能力を身につけて頂きます。
【就職先企業・職種】 製造業(化学、精密機器、電気機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
物質をナノメートルサイズまで細かくしていくと、種々の物性がサイズに依存する新奇な材料となります。このような新奇材料を一般に「ナノ材料」と呼びますが、我々はその中でも特に「ナノ粒子」に興味を持ち、ナノ粒子に関する基礎から応用に亘る研究を行っています。半導体、磁性体、金属などのナノ粒子を化学合成し、その表面をさまざまな配位子によって機能化し、さらにそれらナノ粒子の高次構造を制御することによって、バイオ・医療分野あるいは環境・エネルギー分野で新たな応用を開拓することを目指しています。
1.磁性体ナノ粒子の合成とバイオ医療分野への応用
超常磁性体のナノ粒子を独自の方法によって合成し、その表面を自在に修飾することによって、バイオ医療分野での様々な応用の道を開拓しています。具体的には、細胞やタンパクの磁気分離、MRI 造影剤、ドラッグデリバリーシステムなどのナノ磁気医療に応用するための技術開発を行っています。
2.半導体ナノ粒子の合成とエネルギー変換素子への応用
狭ギャップ化合物半導体から広ギャップ酸化物半導体のナノ粒子まで、幅広い種類の半導体ナノ粒子を化学合成し、それらを用いて低炭素社会の実現を志向したナノ構造エネルギー変換素子の創製に関する研究を行っています。特に、ナノ構造熱電素子や光機能素子などに興味を持っています。
3.金属ナノ粒子を用いたバイオセンシング技術の開発
近年、金ナノ粒子を用いた様々なバイオセンサが開発され、簡便かつ迅速に DNA 配列検出やタンパク質機能解析などが可能となってきています。我々は、ナノ粒子プローブを用いたバイオセンシング技術の更なる高度化を目指し、異種金属元素からなるヘテロ構造ナノ粒子や合金ナノ粒子のプローブの開発を進めています。
主な研究業績
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, and S. Maenosono, “Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles”, ACS Nano 16 (2022) 885
- J. Hao, B. Liu, S. Maenosono, and J. Yang, “One-Pot Synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) Core-Shell Nanoparticles as Highly Efficient Catalysts for the Reduction of 4-Nitrophenol”, Sci. Rep. 12 (2022) 7615
- T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono, “Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes”, Langmuir 37 (2021) 6566
使用装置
透過型電子顕微鏡 (TEM) 超伝導量子干渉磁束計 (SQUID)
過型電子顕微鏡 (STEM) 動的光散乱測定装置 (DLS)
X 線回折装置 (XRD) 共焦点レーザー顕微鏡 (CLSM)
X 線光電子分光装置 (XPS) 核磁気共鳴装置 (NMR)
研究室の指導方針
就職希望者には、基礎・専門知識はもちろん、コミュニケーション能力、英会話力、論理的思考力および柔軟な対応力を涵養し、不確実性の時代を生き抜くことができる人材となってもらうための指導を行います。企業経験を活かした実践的就職指導も行っています。
博士後期課程への進学希望者については、先端的かつ国際的な研究環境を提供することによって、将来的に大学教員や企業研究者として活躍できるグローバル研究人材を育成します。
[Website] URL:https://www.jaist.ac.jp/~shinya/
次世代の医用材料による医療の発展


次世代の医用材料による医療の発展
医用材料学研究室 Laboratory on Biomedical Materials
講師:西田 慶(NISHIDA Kei)
E-mail:
[研究分野]
生体材料学、合成高分子、タンパク質工学、ナノメディシン
[キーワード]
医用高分子、刺激応答性、バイオ界面、細胞膜、細胞内分解系
研究を始めるのに必要な知識・能力
特定分野の知識や能力は問いません。高分子化学、タンパク質工学、分子生物学、薬学、情報学を含む学際的な医用材料の研究について、学生のバックグラウンドに応じてテーマを設定します。新しい技術や分野を開拓する好奇心や向上心が最も大切です。
この研究で身につく能力
合成高分子やタンパク質、細胞を材料とした医用材料や疾患の診断・治療法の開発に取り組みます。学生の興味やバックグラウンドに応じて、有機合成や遺伝子工学、生物といった基盤材料を選択し、社会的にも学術的にも重要な研究テーマを進めてもらいます。各種材料の作製だけでなく、材料物性の評価、細胞や動物を用いた生命科学的な評価と多岐の分野にわたる実験技術や知識が必要になります。材料学と生命科学といった学問的な高いレベルの知識と技術が身につくとともに、理系人材としてどこでも活躍できる広い視野と知恵を養います。
【就職先企業・職種】材料、製薬、医療機器、食品関連企業
研究内容
私達は、がんをはじめとした疾患の治療や診断法の開発といった応用研究と、生体と医用材料の相互作用の理解や制御といった基礎研究を両立した医用材料の開発を進めています。有機合成、遺伝子工学、タンパク質工学、細胞工学を駆使して様々な材料を設計し、次世代の医用材料を創出しています。
1. 細胞の代謝機能を改善する刺激応答性高分子

図1 刺激応答性高分子やタンパク質からなる医用材料

図2 ステルス材料としての直鎖状タンパク質
がん化や老化した細胞は、正常な細胞と比較して代謝機能が大きく変わります。この代謝機能の変化に着目して、がんや老化の進行を逆転させる治療法の開発に取り組んでいます(図1)。特に、代謝産物や生理活性分子を細胞に送り込むことで代謝を改善し、疾患治療への応用を検討しています。具体的には、代謝産物などを原料とした刺激応答性合成高分子を設計し、細胞内の特異的環境に応答して分解・代謝物を放出する医用材料を合成しています。
2. 細胞膜構成分子に着目したがん治療・診断
がん細胞の細胞膜構成分子に着目した新たながん治療や診断法を開発しています (図1)。特に、がん細胞で異常性がある細胞膜のコレステロールや糖鎖を標的としています。このような細胞膜構成分子と相互作用するタンパク質材料を遺伝子工学的に設計し、がん治療や診断法を検討しています。例えば、細胞膜コレステロールに相互作用する合成タンパク質を設計し、がん細胞のコレステロール合成系やオートファジーといった細胞内分解系を制御し、がんの殺傷を可能にしています。
3. 直鎖状タンパク質のde novo設計とステルス材料
採血管や注射器から人工心肺、人工臓器、バイオ医薬などの医療機器・医薬品は、医療技術に必要不可欠なものです。医療機器・医薬品の表面は血液や体液と接触するため、血液の凝固や異物認識、免疫・炎症応答を抑制するためにタンパク質の吸着を抑制するステルス特性が重要です。私達は、医療機器・医薬品にステルス性を付与するタンパク質性の医用材料を構築しています (図2)。特に、計算科学やAIを活用した直鎖状タンパク質の設計法を考案し、ステルス性医用材料としての有用性を検討しています。
主な研究業績
- Kei Nishida, et al, Cholesterol- and ssDNA-binding fusion protein-mediated DNA tethering on the plasma membrane, Biomaterials. Science, 13, 299-309 (2025)
- Kei Nishida, et al., Sensitive detection of tumor cells using protein nanoparticles with multiple display of DNA aptamers and bioluminescent reporters, ACS Biomaterials Science and Engineering., 9, 5260–5269 (2023)
- Kei Nishida, et al., Selective Accumulation To Tumor Cells With Coacervate Droplets Formed From Water-Insoluble Acrylate Polymer, Biomacromolecules, 23, 1569–1580 (2022).
使用装置
NMR、高速液体クロマトグラフ、水晶振動子マイクロバランス、接触角計、フローサイトメーター、共焦点レーザー顕微鏡
研究室の指導方針
医用材料に関する研究では、様々な学問に関する知識や技術必要です。個々に独立した研究テーマを設定し、基礎知識や技術を指導するとともに自分の研究に愛着と興味を持って自らが研究を追求できるように導きます。さらに理系人材として重要な科学的な思考力や文章力、表現力を身に付けられるようサポートします。また、もっとも成長する場である学会の参加・発表のチャンスもたくさんあります。ディスカッション、就活、生活についての悩み等、なんでも相談してください。ウェルカムです。
[研究室HP] URL:https://miyakoeijiro.wixsite.com/eijiro-miyako-lab
画像処理と電子顕微鏡を組み合わせて原子レベルでの物質の不思議を発見する


画像処理と電子顕微鏡を組み合わせて
原子レベルでの物質の不思議を発見する
ナノ物性顕微探索研究室
Laboratory on Microscopic Nano-Characterization
講師:麻生 浩平(ASO Kohei)
E-mail:
[研究分野]
原子スケール材料解析
[キーワード]
無機材料、固体物性、ナノ物質、ナノ計測、計測技術、画像処理、電子顕微鏡
研究を始めるのに必要な知識・能力
研究テーマと真剣に向き合う意思、周囲の声を聞き入れる素直さ、研究を進める日々を楽しむ気持ちが大切です。固体材料、電子顕微鏡、画像処理、確率統計のいずれかへの興味があると良いです。知識があればなお良いですが、必須ではありません。
この研究で身につく能力
一連の研究(材料の知識獲得、電子顕微鏡の操作技術、Pythonによる画像処理、結果の解釈、文章化、自研究室や他研究室とのディスカッション、成果としてのまとめ)を通じて、各項目の技術と知識、および研究をやり通す経験が身につきます。
一般的な技術としては、自分の考えを掘り下げて分かりやすく表現できるよう、文章力の向上に重点を置きます。進捗報告会など、日々の研究に関する交流を文章によって行います。将来的に、企業や大学において書類をまとめる際や、近年成長が目覚ましい生成AIを思い通りに動かすうえで、文章力は重要だと考えています。
【就職先企業・職種】 電気・材料メーカー、材料分析会社、大学の研究者や技術職員など
研究内容
原子レベルで起こる物質の不思議なふるまいを発見するために、画像処理と電子顕微鏡を駆使した手法開発を進めています。電子顕微鏡データは、そのままでは単なる数値の配列です。画像処理による解析を通して初めて、粒子サイズ、結晶構造、原子位置といった有益な情報が得られます1,2。また、最近では、動作中のデバイスの動画観察にも取り組んでいます3。時刻ごとの多数の画像で構成される動画を効率的に解析するうえでも、画像処理は欠かせません。
具体的な研究テーマとして、以下が挙げられます。
1. リチウムイオン電池材料の動作下ナノ解析
2. ナノ粒子を統計的・3次元的に解析する手法開発
3. 原子位置を精密解析する手法開発1−3
ここでは3に絞って紹介します。
原子位置を精密解析する手法開発
図1aは、棒状の金ナノ粒子の電子顕微鏡像です。像で明るく見える点は、奥行き方向にならぶ金原子の列です。一見すると、輝点は画像内で規則正しく並んでいるように見えますが、これが本当かを解析しました。
規則正しい周期位置からの原子のずれ、つまり原子変位を測定しました。従来の方法では、変位量が小刻みに変化して見えます (図1b)。これは原子変位の情報ではなく、解析の邪魔をする統計ノイズ成分です。
そこで、信号処理手法のひとつであるガウス過程回帰を用いることで、原子変位の情報を抽出することに成功しました(図1c)。測定可能な最小の原子変位は0.7 pm(ピコメートル、1兆分の1メートル)ときわめて小さく、材料のなかで生じる2.4 pmの原子変位を検出することに成功しました。
解析によって、粒子の先端部分に位置する原子列は、軸に沿って外側へと変位していることが発見されました。考察の結果、棒状粒子の先端と胴体で曲率が異なるため表面張力に差が生じ、局所的な変位が生じると示唆されました1。
図1 (a) 金ナノロッドの電子顕微鏡像。奥行き方向にならぶ金原子の列が明るい点として見えています。(b) 従来手法で測定した原子変位と (c) データ科学で処理した原子変位。原子が正常な位置から左にずれるほど暗い青色、右にずれるほど明るい黄色で示されます。
主な研究業績
- K. Aso, J. Maebe, XQ. Tran, T. Yamamoto, Y. Oshima, and S. Matsumura, “Subpercent Local Strains due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis”, ACS Nano 15 (2021) 12077
- K. Aso, H. Kobayashi, S. Yoshimaru, XQ. Tran, M. Yamauchi, S. Matsumura, and Y. Oshima, “Singular behaviour of atomic ordering in Pt–Co nanocubes starting from core–shell configurations”, Nanoscale 14 (2022) 9842
- J. Liu, J. Zhang, K. Aso, T. Arai, M. Tomitori, and Y. Oshima, “Estimation of local variation in Young’s modulus over a gold nanocontact using microscopic nanomechanical measurement methods”, Nanotechnology 36 (2025) 015703
使用装置
走査透過電子顕微鏡、解析用ワークステーションPC、集束イオンビームつき走査電子顕微鏡、電子顕微鏡用特殊ホルダー、電気化学測定装置、グローブボックス
研究室の指導方針
共同研究を活発に行っています。責任をもって自らの研究を進め、研究協力者も納得できる成果を挙げれば、自信につながります。加えて、自らの好みや賛否にとらわれず、多種多様な考えを受け止める幅広い視野が育まれます。個々の研究内容については、日常的に議論をおこない、必要があれば柔軟に軌道修正します。当初は想像しなかった面白いテーマが見つかるのも魅力です。学生の皆さんが大学院を終えるとき、研究を通して「ベストを尽くし、満足いく成果を挙げ、入学当初は想像もできない良い未来を迎えられた」と思えるよう、最大限サポートします。
[研究室HP] URL:https://www.jaist-oshima-labo.com/