研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。液体から高機能性材料を創成し、生体・環境の見える化へ


液体から高機能性材料を創成し、生体・環境の見える化へ
プリンテッドバイオセンサー研究室
Laboratory on Printed Biosensors
講師:廣瀬 大亮(HIROSE Daisuke)
E-mail:
[研究分野]
酸化物、バイオセンサー、液体プロセス
[キーワード]
MOD法、薄膜トランジスタ、生体分子検出、バイオチップ、プリンテッドエレクトロニクス
研究を始めるのに必要な知識・能力
分野に囚われない研究を行うための好奇心・挑戦心、未解明の謎を楽しむ心。
専門知識は基礎から指導しますので、知識は問いません。どの分野からも歓迎します。一緒に頑張りましょう!
この研究で身につく能力
研究では様々な実験をすることになります。それによって分野に囚われない研究の着眼点や発想が身につきます。また、課題を解決するための論理的思考やタスクをこなす力も身につきます。学会やゼミの発表を通して、発表力・発信力も身につきます。
【就職先企業・職種】 半導体製造機器メーカー、電子部品会社、計測機器メーカー
研究内容
有機金属分解(MOD)法を基礎とした、モノづくりを行っています。この手法は“ 液体” から石(酸化物)を作製する技術であり、様々な電気的特性を示す酸化物を作り出せます。
さらに私たちはこのMOD法で作製した酸化物や中間体にこれまでにない特異的な特徴があることを発見しました。その特徴と半導体プロセスとを組み合わせることで、新たなセンシングデバイスやパターニング手法の研究・開発をしています。そして、なぜ特異的な特徴が現れるかの物性解析による解明も同時に進めています。
・高感度 - 酸化物センシングデバイス
コロナウイルスの感染拡大が世界的な問題となったことから、PCRやイムノクロマトに代わる迅速で高感度な菌・ウイルスの検査手法の需要が急速に高まってきています。
私たちは迅速で高感度に測定可能な酸化物薄膜トランジスタ型核酸センサーの研究・開発を進めています。図に、これまで作製したセンサーを示しています。この技術は核酸のみならず、多様な分子に適用可能であり、環境・衛生・農業・医療などの分野への応用も目指しています。
・MOD中間体の特性を生かしたパターニング
センサーなどの電子デバイスを作製するには、酸化物の精度の良いパターニングが必要となります。私たちはMOD法から酸化物を作製する際の中間体が変形性を示すことを発見しました。この特性を利用し、型押し成型による低エネルギー・低コストの酸化物の直接プリンティング手法を開発しました。この技術によって、簡単にサブミクロンスケールのパターンの作製が可能になりました。示した図は作製した酸化物パターンと、酸化物を積層した薄膜トランジスタアレイです。このように様々な酸化物の精度のよいパターンが作製できることがわかります。
主な研究業績
- Submicron titania pattern fabrication via thermal nanoimprint printing and Microstructural analysis of printable titania gels, D. Hirose, H. Yamada, T. Jochi, K. Ohara and Y. Takamura, Ceramics International, online,(2024)
- Rapid and Highly Sensitive Detection of Leishmania by Combining Recombinase Polymerase Amplification and Solution-Processed Oxide Thin-Film Transistor Technology, W. Wu, M. Biyani, D. Hirose and Y. Takamura, Biosensors, vol. 13, 8, p. 765,(2023).
- Origin of the thermal plasticity property of zirconium oxide gels for use in direct thermal nanoimprinting, D. Hirose, J. Li, Y. Murakami, S. Kohara and T. Shimoda, Ceramics International, vol.44, p. 17602,(2018).
使用装置
電子デバイス作製装置(フォトリソグラフィ装置、スパッタ装置ナノインプリント)、電気特性評価装置(半導体パラメータアナライザ、インピーダンスアナライザ)、形状評価装置(走査型電子顕微鏡、原子間力顕微鏡)、材料物性評価装置(TG-DTA、FT-IR,UV-vis、XRD、XPS、接触角計)
研究室の指導方針
本研究室では液体から機能性酸化物をつくるMOD技術を基礎にして、生体・環境の見える化を目指しています。身の回りのあらゆる分子をターゲットとして、社会や生活へ応用を目指しています。今まさに大きく成長している段階です。みなさんのアイデアと私たちの技術を組み合わせ、新たな見える化センサーを創成しましょう!!
研究では、個々の興味に沿ったテーマを設定します。目標に向け、課題を一つずつクリアできるように指導いたします。生活や就職活動についての不安を取り除きながら、これからの壁を乗り越える力を身につけられるようサポートします。
材料とバイオを使ってゲームチェンジングテクノロジーを生み出す!


材料とバイオを使ってゲームチェンジング
テクノロジーを生み出す!
先進生物工学研究室 Laboratory on Advanced Bioengineering
教授:都 英次郎(MIYAKO Eijiro)
E-mail:
[研究分野]
生物工学、材料化学、ナノテクノロジー、ナノメディシン
[キーワード]
ナノロボット、ナノバイオ、ナノ材料、生体機能材料、バイオテクノロジー、バイオミメティクス
研究を始めるのに必要な知識・能力
研究を始めるにあたり特別な知識・能力は問いません。本物の科学者や世界で活躍できる第一線の研究者に本気でなりたいと考えている学生を募集しています。特に新しい技術や新分野を開拓しようと柔軟性、協調性、好奇心、志を持った熱心な学生を求めています。
この研究で身につく能力
私たちの研究室では色々な研究手法を組み合わせた学際的な研究を行っているので多くのことを学ぶことができます。例えば、有機合成、生化学、遺伝子工学、細胞や動物実験に係る手技、ナノ材料、医療用デバイス、ロボットなどの様々な知識や技術を習得することができます。
研究内容

図1. 革新的ナノバイオシステム創出を目指したナノロボットの一例(生体内で光と磁場で駆動するナノトランスポーター)。

図2. 全自動人工花粉交配を目指したミツバチ型ロボット(プロトタイプ)。効率的に花粉を運ぶために粘着性ゲルを塗布した動物体毛を極小ドローンの下部に取り付けている。
私たちの研究室の興味は、生物工学、材料化学、ナノテクノロジー、ナノメディシンの領域にあります。
例えば、我々の研究室では、ナノ材料の様々な物理化学的特性を活用することで、ナノスケールレベルで体の中の生物学的な活性や健康状態をモニターし、制御可能な革新的ナノバイオシステムの開発に挑戦しています(図1)。また、本研究目的のために高性能ナノロボットの合成、それらの表面工学、集合体を研究し、作製したナノロボットを上記の研究領域に統合することに注力しています。さらに、合成したナノロボットの構造と機能の関係における根本的な理解にも努めています。これらの研究はナノテクノロジー等の基礎研究としても重要ですが、とりわけ医学・薬学の分野において有用な知見と病気の治療法を提供できると期待しています。
一方、我々は食品産業や農業分野のためにも社会を一変させる革新的な技術(ゲームチェンジングテクノロジー)を創出しようと奮闘しています。現在、農作物の生産量に直結するミツバチなどの花粉媒介昆虫の減少が世界規模の問題となっています。昆虫を使った花粉交配法の代替手段として古来より羽毛や筆を用いた人の手による人工的な受粉が行われていますが、この方法は手間と労力が掛かる上、実際に作業を行う農家の方々の高齢化と人手不足が深刻な状況になっています。そこで我々の研究室では、全自動の人工花粉交配技術を構築すべく、自然から着想を得て設計するネイチャーインスパイアード材料とロボット工学を融合した研究を行っています(図2)。
このように我々の研究は、化学、物理、生物、材料科学、工学といった多くの研究分野から成る学際的な性質によって成り立っています。
過去の代表的な研究テーマ
- 体の中で光発電するナノデバイス
- 液体金属ナノトランスフォーマー
- 超分子ナノ電車
- 細胞を刺激するナノモジュレーター
- ナノ材料の光発熱を利用した遺伝子発現制御
- 光と磁場で駆動するナノトランスポーター
- 材料工学を駆使した花粉交配用ミツバチロボット
これらは単なる一例にすぎません。自然科学を理解・開拓し、革新的な新技術、ひいては新分野そのものを一緒につくりましょう!
主な研究業績
- Yue Yu, Xi Yang, Sheethal Reghu, Sunil C. Kaul, Renu Wadhwa, Eijiro Miyako*, "Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes" Nature Communications 11, 4117 (2020).
- Svetlana A. Chechetka, Yue Yu, Xu Zhen, Manojit Pramanik, Kanyi Pu, Eijiro Miyako*, “Light-driven liquid metal nanotransformers for biomedical theranostics” Nature Communications 8, 15432 (2017).
- Eijiro Miyako*, Kenji Kono, Eiji Yuba, Chie Hosokawa, Hidenori Nagai, Yoshihisa Hagihara “Carbon nanotube-liposome supramolecular nanotrains for intelligent molecular-transport systems” Nature Communications 3, 1226 (2012).
使用装置
レーザー、蛍光顕微鏡、電子顕微鏡、紫外-可視-近赤外分光光度計、蛍光光度計など
研究室の指導方針
ディスカッション、雑誌会、定期ミーティング、学会などを通じて、実験の解析技術、独立した思考能力、論理的な表現力などが身に付くように指導します。特に、博士後期課程への進学希望者には、最新かつ国際的な研究環境を提供し、産業やアカデミアの研究ポジションが得られるように育成します。研究室のコアタイムは基本的には1時間の休憩を除いた9時から17時です。このため効率的、効果的、スピーディに作業をしなければいけません。メリハリをもって研究も余暇もエンジョイしましょう。
[研究室HP] URL:https://miyakoeijiro.wixsite.com/eijiro-miyako-lab
画像処理と電子顕微鏡を組み合わせて原子レベルでの物質の不思議を発見する


画像処理と電子顕微鏡を組み合わせて
原子レベルでの物質の不思議を発見する
ナノ物性顕微探索研究室
Laboratory on Microscopic Nano-Characterization
講師:麻生 浩平(ASO Kohei)
E-mail:
[研究分野]
原子スケール材料解析
[キーワード]
無機材料、固体物性、ナノ物質、ナノ計測、計測技術、画像処理、電子顕微鏡
研究を始めるのに必要な知識・能力
研究テーマと真剣に向き合う意思、周囲の声を聞き入れる素直さ、研究を進める日々を楽しむ気持ちが大切です。固体材料、電子顕微鏡、画像処理、確率統計のいずれかへの興味があると良いです。知識があればなお良いですが、必須ではありません。
この研究で身につく能力
一連の研究(材料の知識獲得、電子顕微鏡の操作技術、Pythonによる画像処理、結果の解釈、文章化、自研究室や他研究室とのディスカッション、成果としてのまとめ)を通じて、各項目の技術と知識、および研究をやり通す経験が身につきます。
一般的な技術としては、自分の考えを掘り下げて分かりやすく表現できるよう、文章力の向上に重点を置きます。進捗報告会など、日々の研究に関する交流を文章によって行います。将来的に、企業や大学において書類をまとめる際や、近年成長が目覚ましい生成AIを思い通りに動かすうえで、文章力は重要だと考えています。
【就職先企業・職種】 電気・材料メーカー、材料分析会社、大学の研究者や技術職員など
研究内容
原子レベルで起こる物質の不思議なふるまいを発見するために、画像処理と電子顕微鏡を駆使した手法開発を進めています。電子顕微鏡データは、そのままでは単なる数値の配列です。画像処理による解析を通して初めて、粒子サイズ、結晶構造、原子位置といった有益な情報が得られます1,2。また、最近では、動作中のデバイスの動画観察にも取り組んでいます3。時刻ごとの多数の画像で構成される動画を効率的に解析するうえでも、画像処理は欠かせません。
具体的な研究テーマとして、以下が挙げられます。
1. リチウムイオン電池材料の動作下ナノ解析
2. ナノ粒子を統計的・3次元的に解析する手法開発
3. 原子位置を精密解析する手法開発1−3
ここでは3に絞って紹介します。
原子位置を精密解析する手法開発
図1aは、棒状の金ナノ粒子の電子顕微鏡像です。像で明るく見える点は、奥行き方向にならぶ金原子の列です。一見すると、輝点は画像内で規則正しく並んでいるように見えますが、これが本当かを解析しました。
規則正しい周期位置からの原子のずれ、つまり原子変位を測定しました。従来の方法では、変位量が小刻みに変化して見えます (図1b)。これは原子変位の情報ではなく、解析の邪魔をする統計ノイズ成分です。
そこで、信号処理手法のひとつであるガウス過程回帰を用いることで、原子変位の情報を抽出することに成功しました(図1c)。測定可能な最小の原子変位は0.7 pm(ピコメートル、1兆分の1メートル)ときわめて小さく、材料のなかで生じる2.4 pmの原子変位を検出することに成功しました。
解析によって、粒子の先端部分に位置する原子列は、軸に沿って外側へと変位していることが発見されました。考察の結果、棒状粒子の先端と胴体で曲率が異なるため表面張力に差が生じ、局所的な変位が生じると示唆されました1。
図1 (a) 金ナノロッドの電子顕微鏡像。奥行き方向にならぶ金原子の列が明るい点として見えています。(b) 従来手法で測定した原子変位と (c) データ科学で処理した原子変位。原子が正常な位置から左にずれるほど暗い青色、右にずれるほど明るい黄色で示されます。
主な研究業績
- K. Aso, J. Maebe, XQ. Tran, T. Yamamoto, Y. Oshima, and S. Matsumura, “Subpercent Local Strains due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis”, ACS Nano 15 (2021) 12077
- K. Aso, H. Kobayashi, S. Yoshimaru, XQ. Tran, M. Yamauchi, S. Matsumura, and Y. Oshima, “Singular behaviour of atomic ordering in Pt–Co nanocubes starting from core–shell configurations”, Nanoscale 14 (2022) 9842
- J. Liu, J. Zhang, K. Aso, T. Arai, M. Tomitori, and Y. Oshima, “Estimation of local variation in Young’s modulus over a gold nanocontact using microscopic nanomechanical measurement methods”, Nanotechnology 36 (2025) 015703
使用装置
走査透過電子顕微鏡、解析用ワークステーションPC、集束イオンビームつき走査電子顕微鏡、電子顕微鏡用特殊ホルダー、電気化学測定装置、グローブボックス
研究室の指導方針
共同研究を活発に行っています。責任をもって自らの研究を進め、研究協力者も納得できる成果を挙げれば、自信につながります。加えて、自らの好みや賛否にとらわれず、多種多様な考えを受け止める幅広い視野が育まれます。個々の研究内容については、日常的に議論をおこない、必要があれば柔軟に軌道修正します。当初は想像しなかった面白いテーマが見つかるのも魅力です。学生の皆さんが大学院を終えるとき、研究を通して「ベストを尽くし、満足いく成果を挙げ、入学当初は想像もできない良い未来を迎えられた」と思えるよう、最大限サポートします。
[研究室HP] URL:https://www.jaist-oshima-labo.com/
ナノとバイオを融合して医療と環境の問題を解決する


ナノとバイオを融合して
医療と環境の問題を解決する
バイオナノ医工学デバイス 研究室
Bio-Nano Medical Device Laboratory
教授:高村 禅(TAKAMURA Yuzuru)
E-mail:
[研究分野]
BioMEMS、微小流体デバイス、分析化学、バイオセンサ
[キーワード]
血液分析チップ、一細胞解析、質量分析チップ、マイクロ元素分析、微細加工プロセス、バイオチップ、マイクロプラズマ
研究を始めるのに必要な知識・能力
私たちが扱う対象は分野融合的要素が強く、従って本研究室では様々なバックグラウンドの学生を受け入れております。生物、化学だけでなく、物理、機械、電子、制御、材料など、個人のバックグラウンドに応じたテーマを設定し、研究を進めます。
この研究で身につく能力
何かを解析するチップの研究が多いので、分析科学の要素は押し並べて身につきます。微量なサンプルを扱うので、微量な生体サンプルのハンドリング技術、生体分子と無機材料の界面の調整技術、微量な蛍光や光信号の観察・計測技術等が身につきます。また、チップを作成するには、フォトリソグラフィー等、マイクロマシンの技術が身につきます。新しい材料を使う場合は、成膜やエッチングの為のプロセス開発を行うこともあります。チップの開発では、流体の動きや熱の伝達をシミュレーションし設計することもあります。修了生は、計測機器メーカへの就職が多いですが、半導体製造機器メーカや、薬品会社へ就職する方もいらっしゃいます。
【就職先企業・職種】 計測機器メーカ、電気、機械、半導体製造機器メーカ、半導体メーカ、薬品関連
研究内容
半導体プロセスを応用して、ウエハ上に小さな流路や反応容器、分析器等を作りこみ、一つのチップの上で、血液検査等に必要な一通りの化学実験を完遂させようという微小流体デバイス、μTAS(micro total analysis systems)やLab on a chipと呼ばれる研究分野が急速に発展しています。これは、病気の診断、創薬、生命現象の解析に応用でき、大きな市場と新しい学術分野を開拓するものとして期待されております。また、いろいろな形状の微小流路内を、流体や大きな分子が流れるときの挙動は、ブラウン運動や界面の影響が支配的で、流体力学でも分子動力学でも扱えない新しい現象を含んでいます。当研究室は、このような新しい現象をベースに、ナノとバイオを融合した次世代のバイオチップ創製を目指した研究を行っています。
主なテーマを次に示します。

図1.作成したバイオチップの例

図2.汎用微小流体チップ案
1)高集積化バイオ化学チップの開発
高機能バイオチップの実現には、チップ内での流体の駆動機構と、高感度な検出器の開発が重要になります。本研究室では、溶液プロセスによるPZTアクチュエータアレイや電気浸透流ポンプをはじめ様々なチップ内での液体駆動機構と、ナノ材料を駆使した新しい検出器の開発を進めています(図1)。これらを用いて、組織中の一細胞を分子レベルで解析可能なチップや、高度な処理をプログラム次第で様々にこなす汎用微小流体チップの開発を目指しています(図2)。
2)高感度バイオセンシング技術の開発
一滴の血液には、体内の様々な状態を反映した多くの情報が含まれております。これらを頻繁に解析することで、重篤な病気の超早期発見や、日々の健康管理、あるいは老化や病気が起きにくい体質になるために食事や運動をガイドする等、様々なことが可能になると考えられております。このためには、非常に微量なバイオマーカを簡易に測定する技術が必要です。私どもは、自己血糖測定器と同じ手間とコストでpg/mLオーダの測定ができるチップや、質量分析チップの開発を行っております。
3)液体電極プラズマを用いたマイクロ元素分析器の開発
中央を細くした微小な流路に液体のサンプルを導入し、高電圧を印加するとプラズマが発生します。このプラズマからの発光を分光することにより、サンプル中の元素の種類と量を簡単・高感度に測定することができます。この原理を用いて、食物、井戸水、土壌工場廃水・廃棄物に含まれている有害な金属(Hg、Cd、Pbなど)などを、オンサイトで測定できるマイクロ元素分析器の開発を行っています。
主な研究業績
- Pulse-heating ionization for protein on-chip mass spectrometry,Kiyotaka Sugiyama, Hiroki Harako, Yoshiaki Ukita, Tatsuya Shimoda, Yuzuru Takamura, Analytical Chemistry, 86, 15, 7593-7597, 05 August 2014.
- Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing, Amara Apilux, Yoshiaki Ukita, Miyuki Chikae, Orawom Chilapakul and Yuzuru Takamura, Lab Chip,13(1), 126-135, January 2013.
- High sensitive elemental analysis for Cd and Pb by liquid electrode plasma atomic emission spectrometry with quartz glass chip and sample flow, Atsushi Kitano, Akiko Iiduka, Tamotsu Yamamoto, Yoshiaki Ukita, Eiichi Tamiya, Yuzuru Takamura, Analytical Chemistry 83(24), 9424-9430, 04 November 2011.
使用装置
クリーンルーム半導体製造装置一式
電気化学測定装置
表面プラズモン共鳴測定装置
イムノクロマトグラフ製造装置
全反射蛍光一分子観察装置
研究室の指導方針
iPS細胞など最近の新しい医療技術の多くは、新しい工学的技術の進歩が発端になっていることをご存知でしょうか。その多くに、高度に発展したナノテクノロジーとバイオテクノロジーの融合技術が使われています。この分野は、まさに今アクティブで、また人類への多くの貢献が期待されている分野でもあるのです。私どもの研究室には、様々なバックグランドと目的を持った学生さんが来ます。私どもは一人ひとりの目的に合わせたゴールを設定し、そこに向かって必要なものを自ら獲得できる様に、サポートとガイドを行うことを主な指導方針としています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/takamura/index.html
半導体ナノワイヤを舞台としたスピントロニクス研究


半導体ナノワイヤを舞台とした
スピントロニクス研究
ナノワイヤ X スピンデバイス研究室
Laboratory on Nanowires X Spin Devices
准教授:赤堀 誠志(AKABORI Masashi)
E-mail:
[研究分野]
半導体エピタキシャル成長、半導体ナノ構造、半導体スピントロニクス
[キーワード]
化合物半導体、強磁性体、微細加工、エレクトロニクス、スピントロニクス、半導体物性、低温物性
研究を始めるのに必要な知識・能力
本研究室で研究を始めるにあたって大事なのは、リアルに「もの」を扱うのが好きであることだと考えています。また、物理学(特に電磁気学、量子力学)の知識はあった方がよく、この他に半導体・固体物理、化学、プログラミングの知識があると研究を進める上で役に立つと考えています。
この研究で身につく能力
本研究室の研究では様々な装置を使います。それらの正しい使用法は論理的思考に基づいて考えられています。したがって、それらを理解し、自ら実践することにより、論理的な思考力が養われると考えています。また、実験的研究にはトラブルがつきもので、想定通りには結果が得られず、上手く進まないことも多々あります。ですが、トラブルの状況や得られている結果に関して、周りと協力しながら分析・考察し、研究が上手く進むように努力することにより、解決すべき課題を発見する力、そして発見した課題を解決する力が養われると考えています。
【就職先企業・職種】 電機・精密機械、IT・通信、素材
研究内容

図1.スピン電界効果トランジスタ

図2.トップダウン手法によるナノワイヤ、
ポイントコンタクト

図3.ボトムアップ手法によるナノワイヤ

図4.電気化学プロセスによるコアシェルナノワイヤ

図5.MnAs/InAs 複合構造

図6.非局所測定
従来のエレクトロニクスでは、チャージ(電荷)の制御により情報処理が行われてきました。これに対してスピントロニクスは、チャージだけでなくスピン(磁性)を制御することにより情報処理を行っていくものです。国際デバイスおよびシステムロードマップにおいても、スピントロニクス素子は重要な次世代デバイスの一つとして位置付けられています。半導体を用いる代表的なスピントロニクス素子は、InAs・InGaAs・InSb・InGaSbなど大きなスピン軌道結合を有する半導体と強磁性体との複合構造からなるスピン電界効果トランジスタです(図1)。この素子においては、半導体ナノワイヤを採用することにより、スピン軌道結合と弾性散乱によるスピン緩和が抑制されると期待されています。そこで本研究室では、以下に示すような、半導体ナノワイヤ構造および半導体- 強磁性体複合構造に関する実験的研究を行っています。
①半導体ナノワイヤ構造の作製
電子ビーム露光とエッチング加工を組み合わせたトップダウン手法(図2)と、分子線エピタキシャル成長を用いたボトムアップ手法(図3)に関する研究を進めています。トップダウン手法では高品質な半導体ヘテロ接合を用いることが可能ですが、コヒーレントな伝導のためにはエッジ形状の最適化や加工ダメージの抑制などの課題があります。ボトムアップ手法では半導体ヘテロ構造の利用は困難ですが、成長条件の最適化によりトップダウン手法では困難な良好な形状・微小な寸法を実現できる可能性があります。
②半導体- 強磁性体複合構造の作製
電気化学プロセスによる半導体(ZnO)/ 強磁性体(Co、Ni)コアシェルナノワイヤの形成(図4)や、分子線エピタキシャル成長による半導体(InAs) / 強磁性体(MnAs) 複合構造の形成(図5)に関する研究も行っています。これらの方法では連続的に半導体/ 強磁性体界面を形成するため、強磁性体から半導体へのスピン注入効率向上が期待されます。
③作製した構造の電気的評価・解析
超伝導マグネット付クライオスタットなどを用いて、低温・強磁場環境下での電気的評価・解析を進めています。面内磁場中での非局所配置における抵抗測定(図6)などにより、スピン注入・輸送・検出に関する知見を獲得することが可能です。これら知見を基に、未踏のスピン電界効果トランジスタの実現を目指します。
主な研究業績
- S. Komatsu, M. Akabori: “Spin-filter device using Zeeman effect with realistic channel and structure parameters” Jpn. J. Appl. Phys., Vol. 63, pp. 02SP14-1-5 (2024).
- Md. T. Islam, Md. F. Kabir, M. Akabori: “Low-temperature grown MnAs/InAs/MnAs double heterostructure on GaAs (111)B by molecular beam epitaxy” Jpn. J. Appl. Phys., Vol. 63, pp. 01SP40-1-5 (2024).
- K. Teramoto, R. Horiguchi, W. Dai, Y. Adachi, M. Akabori, S. Hara: “Tailoring Magnetic Domains and Magnetization Switching in CoFe Nanolayer Patterns with Their Thickness and Aspect Ratio on GaAs (001) Substrate” Physica Status Solidi B, Vol. 259, pp. 2100519-1-9 (2022).
- D. Q. Tran, Md. E. Islam, K. Higashimine, M. Akabori: “Self-catalyst growth and characterization of wurtzite GaAs/InAs core/shell nanowires” J. Crystal Growth, Vol. 564, pp. 126126-1-7 (2021).
使用装置
成膜装置(分子線エピタキシャル成長装置、原子層堆積装置、真空蒸着装置、スパッタ装置)
微細加工装置(電子ビーム露光装置、電界電離ガスイオンビーム装置、反応性イオンエッチング装置)
電気化学プロセス装置
電気計測装置(デバイスアナライザ、ホール効果測定装置、ロックイン計測システム)
極低温・強磁場装置(超伝導マグネット付He4クライオスタット、He3クライオスタット、希釈冷凍機)
研究室の指導方針
本研究室では、様々な装置を使って、半導体や強磁性体など「もの」をつくるところから、主に電気的評価・解析によりつくった「もの」を調べるところまで一貫して実験的研究を行います。まずテーマの近い学生でチームをつくり、毎日チームミーティングをしてもらうとともに、週一でスタッフを交えた全体ミーティングを行って、コミュニケーション力・プレゼンテーション力・判断力の育成・向上を図ります。また、全体ミーティングと同じ日に勉強会も行い、半導体・固体物理分野の知識習得や基礎学力の向上を図ります。
[研究室HP] URL:https://www.jaist-akabori-lab.com/
有機半導体の基礎研究と光エレクトロニクスへの応用


有機半導体の基礎研究と光エレクトロニクスへの応用
有機オプトエレクトロニクス研究室
Laboratory on Organic Optoelectronics
教授:村田 英幸(MURATA Hideyuki)
E-mail:
[研究分野]
有機EL・可視光無線通信・導電性材料
[キーワード]
有機EL素子の劣化機構解明、可視光無線通信用光アンテナ、導電性ペースト用フィラー
研究を始めるのに必要な知識・能力
出身学部が化学系の場合、有機化学や物理化学、物理系なら量子力学や固体物理学のいずれかの基礎知識が研究内容を理解するために必要です。専門知識は研究室に入ってから修得します。従って、学ぶ努力を継続する熱意と実行力が最も重要です。高校レベルの英語力は必要です。
この研究で身につく能力
研究室での研究活動を通じて自己研鑽を積み、自分で考えて自律的に行動できる研究者を育成することを目標としています。研究者として普遍的に重要な3つの能力が身につきます。
(1)研究を実践するために必要な専門知識を独習する能力
(2)設定した目標を達成するための計画立案能力
(3)研究成果の“価値”を伝えるためのコミュニケーション能力。
また、研究室の留学生との交流や国際共同研究、海外での学会発表などを通じて、国際的なセンスを磨く機会も多くあります。担当する研究テーマや努力の程度によって身につく専門知識は異なりますが、次の専門知識が得られます。
・光化学(励起状態のダイナミクス)、固体物性論(電荷注入と移動)、デバイス物理(有機デバイスの動作機構)
【就職先企業・職種】 総合電機メーカー、電機・電子機器・精密機器メーカー、印刷業、素材産業(化学、非鉄金属)
研究内容
村田研究室では、有機半導体に関する基礎研究の成果を、有機発光ダイオード(OLED)や可視光無線通信用の光アンテナなど、実用的なデバイス開発につなげることを行っています。民間企業との共同研究では、OLEDの精密な評価装置や有機半導体材料の真空昇華精製装置を開発しています。金沢市との共同研究では、金沢金箔を原料とした導電性ペースト用フィラー材料の開発を行っています。これら有機半導体デバイスの基礎研究を通じた社会貢献が目標です。
有機ELの劣化機構解析
有機ELディスプレイは高画質、低電力、薄型軽量、フレキシブルを特長とし、すでにテレビや携帯電話などで実用化されています。有機EL分野では、青色発光材料の耐久性向上が課題となっています。素子の長寿命化は、村田研究室の得意とするところであり、青色発光材料の劣化メカニズムを解明するとともに、高耐久性の青色発光有機EL材料を探索しています。また、精密な電子デバイスの作製から緻密な評価まで、一貫して研究を進める体制を整えており、これも私たちの強みとなっています。変位電流測定と電流ー電圧ー発光輝度特性を連続して高精度に測定できる新しい評価装置の開発にも成功しました。
金沢金箔を原料とする導電性ペースト用金属微粒子の開発
本研究では、金箔の新しい用途開拓を目指して、金箔を原料とする微粒子(金消粉)の導電性フィラーとしての応用を検討しています。これまでに、金消粉が導電性フィラーとして優れた材料であることを見出しました。そこで最近では、導電性フィラーの低コスト化に取り組んでいます。
可視光無線通信用の光アンテナの開発
可視光を使った無線通信は、近距離通信での活用が注目されています。我々は蛍光色素の特徴を生かした光無線通信用光アンテナの開発に挑戦しています。フェルスター型エネルギー移動(FRET)を光アンテナの発光材料に用いることで従来の光アンテナよりもはるかに高い利得と広い伝送帯域幅を実現し、より高速なデータ転送を実現しました。
主な研究業績
- C. He, S. Collins, H. Murata, Fluorescent antenna based on Förster resonance energy transfer (FRET) for optical wireless communications, Optics Express, 32, 17152 (2024).
- D. C. Le, D. D. Nguyen, S. Lloyd, T. Suzuki, H. Murata, Degradation of fluorescent organic light emitting diodes caused by quenching of singlet and triplet excitons, Journal of Materials Chemistry C, 8, 14873 (2020).
- V. Vohra, K. Kawashima, T. Kakara, T. Koganezawa, I. Osaka, K. Takimiya, H. Murata, Efficient inverted polymer solar cells employing favourable molecular orientation, Nature Photonics, 9, 403 (2015).
使用装置
真空蒸着装置(高真空対応2台、超高真空対応1台)
デバイス作製用グローブボックス
半導体評価システム
有機デバイス評価システム
逆光電子分光装置
研究室の指導方針
4年生までの学部教育が専門知識修得のための基礎を習得する場であるのに対して、大学院はさらに高度な知識を修得しながら、それを駆使して“研究を実践する場”であると考えています。研究がうまくいかず壁に突き当たったとしても、正面から向き合い試行錯誤して、困難を乗り越える経験をすることが最も重要です。最近は困難を回避しようとする人が多いように感じます。成功体験は今の自分に自信を与えますが、失敗の克服は新しい自分への飛躍をもたらします。一緒に困難を乗り越える体験をしてみませんか。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/murata/index.html
固体電子構造と局所配位環境のデザインにより所望の光機能を発現させる!


固体電子構造と局所配位環境のデザインにより所望の光機能を発現させる!
光機能無機材料化学研究室
Laboratory on Optical Functional Inorganic Materials Chemistry
准教授:上田 純平(UEDA Jumpei)
E-mail:
[研究分野]
無機化学、固体化学、光化学、ガラス
[キーワード]
蛍光体、蓄光材料、応力発光体、白色LED、レーザー励起、白色光源、近赤外蛍光体、蛍光温度計、高圧物性、有機長残光蛍光体
研究を始めるのに必要な知識・能力
知的好奇心をもち、積極的に研究に取り組み、コミュニケーションとディスカッションを通して学問の発展や新分野の開拓、自己の成長を遂げたいという意欲が必要です。必要な知識は問いませんが、無機固体化学の知識があると研究に有利です。
この研究で身につく能力
研究テーマは、材料合成、物性評価、応用展開の一連の内容を含み、研究を通して計画能力、課題把握能力、論理的思考や幅広い知見と様々な測定技術を習得できます。英語での研究発表会や最新英語学術論文を紹介する雑誌会のゼミによって、プレゼンテーション力と英語コミュニケーション力が鍛えられます。
専門的には、材料合成技術(無機固体粉末、セラミックス、透光性セラミックス、ガラス、単結晶)や物性評価技術(X線回折測定、X線吸収分光、基礎的な光学特性評価、蛍光寿命測定、光伝導度測定、真空紫外分光、蓄光材料評価手法、ダイアモンドアンビルセルによる高圧実験)など、固体化学と分光学の研究者としての能力を身に付けることができます。
【就職先企業・職種】 材料・化学メーカー、電機メーカー
研究内容

組成に伴う化学的、幾何学的変化により光物性を制御
身の回りには発光する材料やデバイスが多く存在します。例えば、白色LED照明、レーザープロジェクター、テレビやスマートフォンのディスプレイはその一例です。これらの発光デバイスには、短波長の光を吸収して長波長の光に変換する蛍光体と呼ばれる発光中心イオン(希土類や遷移金属など)を添加した無機固体材料が使われています。蛍光体の光物性は、発光中心イオンの種類やその幾何学的・化学的な配位環境、結晶ホストの固体電子構造で大きく変化します。本研究室では、これらの光物性を支配する要因を詳細に調査・特定し、高効率蛍光体や近赤外蛍光体、残光蛍光体など所望の光機能を有した固体材料をデザインしています。
◆白色光を創る!
白色LED照明やレーザー励起白色光源は、青色LED(またはレーザー)と可視蛍光体から構成されています。白色光源用蛍光体は、用途により要求される特性が異なり、最近ではディスプレイ用の発光バンドの半値幅の狭い「ナロ―バンド蛍光体」やレーザーの強励起でも消光しない「レーザー励起用蛍光体」などの開発が求められています。我々は、物理現象の解明を通し、より高い特性を有する蛍光体を戦略的に創製します。

開発した長残光蛍光体
◆光を蓄える!
通常、蛍光体は励起光を遮断すると、直ちに減衰し光らなくなります。しかしながら、励起電子の一部を結晶ホストに存在する電子トラップに蓄えることにより、数分から数日の時間スケールで光続ける蛍光体(長残光蛍光体または蓄光材料)を作製できます。我々は固体電子構造に着目し、光誘起電子移動機構を制御することにより、残光蛍光体を設計しています。
◆光で測る!
蛍光体の光物性は、温度や圧力により変化するので、特徴的な発光の変化を利用することにより、非接触・非侵襲型の温度センサーや圧力センサーとして使用できます。バイオ応用に向けた近赤外サーモメーターや高感度圧力センサーなどを開発しています。
◆その他研究テーマ
透光性セラミックス、フォトクロミック材料、熱ルミネッセンス蛍光体、応力発光体、アップコンバージョン蓄光、有機長残光蛍光体、太陽電池用波長変換材料、消光機構解明、圧力誘起相転移
主な研究業績
- A. Hashimoto, J. Ueda, et al., J. Phys. Chem. C. 127, 15611(2023).
- J. Ueda, et al., ACS Appl. Opt. Mater. 1, 1128(2023).
- Jumpei Ueda, Bull. Chem. Soc. Jpn. 94, 2807(2021)
使用装置
真空高温管状炉、X線回折装置
蛍光分光光度計、クライオスタット
波長可変レーザー、蓄光材料評価装置
ダイアモンドアンビル高圧セル
研究室の指導方針
当研究室では、メンバーの人数により調整しますが、1週間に一度の研究報告会と雑誌会(最新英語論文の紹介)を行います。規則正しい生活のために、コアタイムを9時から17時とします。研究テーマは、材料合成、物性評価、応用展開の一連の内容を含み、研究室での実験だけでなく、共通分析機器の利用や学外との共同研究により、幅広い専門知識と技術の修得ができます。基本的に、在籍中に国内学会や国際学会で、一度は研究発表を行って頂きます。また、得られた研究成果は、国際論文雑誌にて学生が第一著者または共著者として発表することを目指します。
[研究室HP] URL:https://uedalab.com/
ナノマテリアル・デバイス研究領域・物質化学フロンティア研究領域セミナー
日 時 | 令和5年10月19日(木)15:30~17:00 |
場 所 | 知識科学講義棟2階 中講義室 |
講演題目 | 電子顕微鏡動画撮影で切り拓く映像分子科学の世界 |
講演者 | 物質・材料研究機構 マテリアル基盤研究センター 主幹研究員 原野 幸治 氏 |
言 語 | 日本語 |
お問合せ先 | 北陸先端科学技術大学院大学 共通事務管理課共通事務第三係 (E-mail:ms-secr@ml.jaist.ac.jp) |
ナノマテリアル・デバイス研究領域セミナー
日 時 | 令和5年8月3日(木)14:00~17:00 |
場 所 | マテリアルサイエンス研究棟4棟8階 中セミナー室 |
講演題目 |
(1)「触媒およびその応用に向けたナノ構造材料の微細構造と新奇特性」
Microstructures and novel properties of the nano-structure materials for catalysts and other applications (2)「透過型電子顕微鏡によるVO2の金属-絶縁体転移の制御」
Manipulating metal-insulator transition of VO2 in transmission electron microscopy |
講演者 | 鄭州大学 物理・マイクロエレクトロニクス学院 (1) 教授 郭 海中 (Guo, Haizhong)氏 (2) 教授 程 少博 (Cheng, Shaobo)氏 |
言 語 | 英語 |
お問合せ先 | 北陸先端科学技術大学院大学 共通事務管理課共通事務第三係 (E-mail:ms-secr@ml.jaist.ac.jp) |
第1回ナノマテリアル・デバイス研究領域セミナー「電子顕微鏡による高空間分解能電子状態解析」
日 時 | 令和5年2月17日(金)13:30~15:00 |
場 所 | 知識科学系講義棟2階 中講義室 |
講演題目 | 電子顕微鏡による高空間分解能電子状態解析 |
講演者 | 京都大学 化学研究所 先端ビームナノ科学センター 准教授 治田 充貴 氏 |
言 語 | 日本語 |
お問合せ先 | 北陸先端科学技術大学院大学 共通事務管理課共通事務第三係 (E-mail:ms-secr@ml.jaist.ac.jp) |
● 参加申込・予約は不要です。直接会場にお越しください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2023/01/17-1.htmlナノマテリアル・デバイス研究領域の麻生助教の研究課題が澁谷学術文化スポーツ振興財団の研究助成に採択
ナノマテリアル・デバイス研究領域の麻生 浩平助教の研究課題が公益財団法人 澁谷学術文化スポーツ振興財団の研究助成「大学の新技術、研究活動への奨励金」に採択されました。
澁谷学術文化スポーツ振興財団は、大学における学術研究の充実を図ること等により、地域社会の発展の寄与することを目的としています。「大学の新技術、研究活動への奨励金」は、石川県地域の大学・大学院等の研究機関において、研究活動を行い、その研究成果が期待されるグループおよび個人を対象に贈呈されるものです。
*詳しくは、公益財団法人 澁谷学術文化スポーツ振興財団をご覧ください。
- 研究期間:令和4年11月~令和5年10月
- 研究課題名:「全固体電池内での局所イオン伝導を可視化するデータ駆動その場観察手法の開発」
- 研究概要:全固体リチウム (Li) イオン電池の実用化に向けて盛んな研究が進められています。例えば、充電がより早く完了する電池の開発が挙げられます。充電とともに、電池内部ではLiイオンが動くので、どういった条件だと動きが速まるのか理解することが大切です。ここで、結晶構造の乱れがLiイオンの動きに変化をもたらすと指摘されています。結晶構造の乱れはナノ(10億分の1)メートルスケールなので、そのスケールでLiイオンの動きを観察することが求められます。そこで本研究では、ナノスケールでLiイオンの動きを可視化する手法を開発します。電池を動作させながらナノスケールで動画を取得できる、オペランド電子顕微鏡法を用います。そして、データ科学の助けを借りることで、数千枚の動画からLiイオンの分布や速度を自動的に解析する手法を開発します。本研究によって、電池開発に新たなアイデアをもたらすことを期待しています。
- 採択にあたって一言:澁谷学術文化スポーツ振興財団、ならびに選考委員の皆様に心から感謝いたします。本研究を進めるにあたりいつも多大なご協力を頂いております大島義文教授、共同研究者の皆様、各研究室の皆様、ナノマテリアルテクノロジーセンターの皆様に厚く御礼を申し上げます。学術や社会に貢献しうる研究成果を挙げられるよう引き続き尽力してまいります。
令和4年12月5日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/12/05-1.html【12/20(火)開催】JAIST 物質化学フロンティアシンポジウム 2022
開催日時 | 令和4年12月20日(火)8:50~16:00 |
実施方法 | 現地開催、ネット配信(ハイブリッド開催) |
会 場 | 北陸先端科学技術大学院大学 知識科学系講義棟 2F 中講義室(石川県能美市旭台1-1) 及び WebEx |
講演者 | 招待講演者 北浦 守 山形大学理学部 教授 小笠原 一禎 関西学院大学 理学部 化学科 教授 高垣 敦 九州大学大学院工学研究院応用化学部門 准教授 鎌田 慶吾 東京工業大学 科学技術創成研究院 フロンティア材料研究所 准教授 四反田 功 東京理科大学理工学部先端化学科 准教授 本学講演者 上田 純平 准教授(物質化学フロンティア領域) 西村 俊 准教授(物質化学フロンティア領域) BHARDWAJ,Rahul 研究員(サイレントボイスセンシング国際研究拠点) 青木 健太郎 助教(物質化学フロンティア領域) |
言 語 | 日本語(英語使用可) |
申込み | 以下の申込フォームより、参加ご希望の方は12/19(月)までにお申し込みください。 https://forms.gle/fJDY6dHquNWDWcss5 |
【12/14(水)開催】ナノマテリアル・デバイス研究領域、国際シンポジウム 2022 JAIST International Symposium of Nanomaterials and Devices Research Area "Quantum Devices and Metrologies"
開催日 | 令和4年12月14日(水) |
実施方法 | 現地開催、ネット配信(ハイブリッド方式) |
会 場 | 北陸先端科学技術大学院大学 知識科学系中講義室(石川県能美市旭台1-1) |
講演者 | キーノート講演者 阿部 英介 氏(理化学研究所、量子コンピュータ研究センター) 福間 剛士 氏(金沢大学、ナノ生命科学研究所、所長、教授) 本学講演者 大島 義文 教授 (ナノマテリアル・デバイス研究領域) 高村由起子 教授 (ナノマテリアル・デバイス研究領域) 安 東秀 准教授 (ナノマテリアル・デバイス研究領域) |
言 語 | 英語 |
申込み | 以下の申込フォームより、参加ご希望の方は12/5(月)までにお申し込みください。 https://forms.gle/tyk9v775xJdFLFzh8 |
ナノマテリアル・デバイス研究領域の麻生助教の研究課題が池谷科学技術振興財団の研究助成に採択
公益財団法人 池谷科学技術振興財団の研究助成にナノマテリアル・デバイス研究領域の麻生 浩平助教の研究課題が採択されました。
池谷科学技術振興財団は、先端材料関連の研究に対する助成によって科学技術の発展を図り、社会経済の発展に貢献することを設立の理念としており、この理念を具体化するため、先端材料や関連する科学技術分野の研究者や研究機関に対して、毎年支援を行っています。
*詳しくは、池谷科学技術振興財団ホームページをご覧ください。
- 採択期間:令和4年4月~令和5年3月
- 研究課題名:データ駆動電⼦顕微法による全固体電池内でのリチウムイオンのダイナミクス解明
- 研究概要:全固体リチウム(Li)イオン電池は、Liイオンの伝導現象を活用した次世代デバイスです。高速充放電や高耐久といった電池の高性能化に向けて、Liイオンが材料のなかでどのように伝導していくかの解明が求められてきました。そこで本研究では、材料内部でのLiイオンのダイナミクスを可視化することを目指します。実験手法として、電池を動作させて電気化学特性を測定しながら構造を観察する、オペランド電子顕微鏡法を用います。オペランド電子顕微鏡像は大量の画像からなる動画として得られるため、手作業での解析は困難です。そこで、データ科学の手法を活用して、イオン伝導が進行する重要な部分のみを抜き出し、イオンの分布や速度を自動的に解析します。本手法の開発によってLiイオンのダイナミクスが解明されれば、より高性能な電池の開発につながると期待しています。
- 採択にあたって一言:池谷科学技術振興財団、ならびに選考委員の皆様に心から感謝いたします。本研究を進めるにあたり数々のご協力を頂いております大島義文教授、共同研究者の皆様、両研究室の皆様、ナノマテリアルテクノロジーセンターの皆様に厚く御礼を申し上げます。学術や社会に貢献しうる成果を挙げられるよう、いっそう尽力してまいります。
*木田助教、高田助教の採択記事はこちらをご覧ください。
令和4年4月11日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/04/11-1.html第67回J-BEANSセミナー「半導体デバイス今昔、そして未来へ」
開催日時 | 平成31年1月21日(月) 12:40~13:20 |
会 場 | ラーニング・コモンズ「J-BEANS」(大学会館1階) |
講演題目 | 半導体デバイス今昔、そして未来へ |
講 演 者 | 応用物理学領域 徳光 永輔教授 |
言 語 | 日本語(スライド:英語) |
● J-BEANSセミナーの趣旨・概要等については、こちらのページをご覧ください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2018/12/28-1.html第47回J-BEANSセミナー「環境保護を目指した省エネ半導体デバイス作製の処方箋」開催
開催日時 | 平成29年1月16日(月) 12:40~13:20 |
会 場 | ラーニング・コモンズ「J-BEANS」(大学会館1階) |
講演題目 | 「環境保護を目指した省エネ半導体デバイス作製の処方箋」 |
講 演 者 | 応用物理学領域 教授 堀田 將 |
● J-BEANSセミナーの趣旨・概要等については、こちらのページをご覧ください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2016/12/06-1.html