研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。からだの中のコミュニケーションツール・糖鎖に挑む
からだの中のコミュニケーションツール・糖鎖に挑む
分子糖鎖科学研究室 Laboratory on Molecular Glycoscience
准教授:山口 拓実(YAMAGUCHI Takumi)
E-mail:
[研究分野]
糖質科学、有機化学、生体機能関連化学、超分子化学、生物物理学
[キーワード]
糖鎖、分子認識、生命分子科学
研究を始めるのに必要な知識・能力
化学も生物も興味がある、という幅広い好奇心。新しい研究分野を創ることへの意欲。有機化学や物理化学、生化学などを扱いますが、その知識・技術は研究を通して身につけていくことができます。
この研究で身につく能力
当研究室が主な研究対象とする糖鎖は、創薬や医療のターゲットとして大きな注目を集めています。ところが、その取り扱いの難しさから、糖鎖に向き合った研究は多くはありません。既存のやり方にとらわれず、どうしたら問題を解決できるのか?自由な発想と論理的な思考によってプロジェクトを推進する力を身につけます。また、有機合成化学を中心に、分析化学やバイオテクノロジーなどの知識・技術を習得することができます。
【就職先企業・職種】 化学・材料⼯学系企業
研究内容
糖鎖 第3の生命分子鎖
糖鎖は、タンパク質・核酸とならぶ第3の生命鎖ともよばれ、私たちの生命活動の様々な場面で重要な働きをしています。例えば、糖鎖は細胞同士の接着をはじめ、生体内でのコミュニケーションにとって不可欠な役割を担っています。その一方で、糖鎖は、インフルエンザのようなウイルスの感染、がんの転移、さらにアルツハイマー病の発症にも深く関わっていることがわかりつつあります。また、バイオ医薬品の多くには糖鎖が関与しており、糖鎖は医薬品の特性に重要な因子としても注目を集めています。
糖鎖研究について
このように糖鎖は、創薬や医療のターゲットとして脚光をあびています。しかし、糖鎖の重要性が広く認識されてきたにもかかわらず、糖鎖そのものに対する研究はまだまだ発展途上です。例えば、多くのタンパク質のかたち(立体構造)が次々と明らかになってきているのに対し、糖鎖の3次元構造はほとんど未解明であるばかりでなく、アプローチ法すら十分に確立されていません。
糖鎖を知る 糖鎖を使う
私たちは化学的な手法を基盤にした多角的な実験を展開し、糖鎖研究に挑んでいます。糖鎖に構造情報取得のための化学プローブを導入することで、分子分光法による計測と分子シミュレーションを活用した立体構造解析を可能とし、水中で揺らめく糖鎖の姿を描き出すことに成功しました。さらに、細胞表面を覆う糖鎖を模倣したモデル化合物の合成や、糖鎖を応用した細胞機能の制御にも挑戦しています。

図1.糖鎖の3次元構造
化学と生物学の融合 その先を目指して
ライフサイエンス全体でみても、糖鎖をいかに取扱うかは今後の大きな課題となってきています。化学と生物学の融合による糖鎖研究を進展させることを通して、新たなサイエンスの地平を切り拓き、社会に貢献していきたいと考えています。
糖鎖は柔軟な構造をもち、水中で絶えず揺らいでいます。糖鎖と生体分子の相互作用は、とてもダイナミックな過程で進行します。図は、細胞の中でタンパク質の運命決定に関わる糖鎖の化学構造と立体構造モデルです。実験とコンピュータシミュレーションを組み合わせ、その姿を明らかにすることができました。
主な研究業績
- Comprehensive characterization of oligosaccharide conformational ensembles with conformer classification by free-energy landscape via reproductive kernel Hilbert space, T. Watanabe, H. Yagi, S. Yanaka, T. Yamaguchi, K. Kato, Phys. Chem. Chem. Phys., 23, 9753–9760, 2021.
- Experimental and computational characterization of dynamic biomolecular interaction systems involving glycolipid glycans, K. Kato, T. Yamaguchi, M. Yagi-Utsumi, Glycoconj. J. 39, 219–228, 2022.
- NMR analyses of carbohydrate–water and water–water interactions in water/DMSO mixed solvents, highlighting various hydration behaviors of monosaccharides glucose, galactose and mannose, H. Tatsuoka and T. Yamaguchi, Bull. Chem. Soc. Jpn., 96, 168-174, 2023.
使用装置
核磁気共鳴(NMR)スペクトル測定装置
高速液体クロマトグラフィ
質量分析計
大規模計算機
研究室の指導方針
卒業研究の際、自分で合成した分子の完成をはじめて確認したときのドキッとした感覚は今でも覚えています。何かを新しくつくることへの意欲を大切にしたいと思います。また、実験データやアイデアについて研究室の仲間と相談することや、学会で研究成果を発表し議論することなど、研究を通したコミュニケーション能力の向上を重視します。これだけはゆずれない!という自分の幹を太く育てながら、広く科学を学んでいきます。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/t-yamaguchi/
液体から高機能性材料を創成し、生体・環境の見える化へ
液体から高機能性材料を創成し、生体・環境の見える化へ
プリンテッドバイオセンサー研究室
Laboratory on Printed Biosensors
講師:廣瀬 大亮(HIROSE Daisuke)
E-mail:
[研究分野]
酸化物、バイオセンサー、液体プロセス
[キーワード]
MOD法、薄膜トランジスタ、生体分子検出、バイオチップ、プリンテッドエレクトロニクス
研究を始めるのに必要な知識・能力
分野に囚われない研究を行うための好奇心・挑戦心、未解明の謎を楽しむ心。
専門知識は基礎から指導しますので、知識は問いません。どの分野からも歓迎します。一緒に頑張りましょう!
この研究で身につく能力
研究では様々な実験をすることになります。それによって分野に囚われない研究の着眼点や発想が身につきます。また、課題を解決するための論理的思考やタスクをこなす力も身につきます。学会やゼミの発表を通して、発表力・発信力も身につきます。
【就職先企業・職種】 半導体製造機器メーカー、電子部品会社、計測機器メーカー
研究内容
有機金属分解(MOD)法を基礎とした、モノづくりを行っています。この手法は“ 液体” から石(酸化物)を作製する技術であり、様々な電気的特性を示す酸化物を作り出せます。
さらに私たちはこのMOD法で作製した酸化物や中間体にこれまでにない特異的な特徴があることを発見しました。その特徴と半導体プロセスとを組み合わせることで、新たなセンシングデバイスやパターニング手法の研究・開発をしています。そして、なぜ特異的な特徴が現れるかの物性解析による解明も同時に進めています。
・高感度 - 酸化物センシングデバイス
コロナウイルスの感染拡大が世界的な問題となったことから、PCRやイムノクロマトに代わる迅速で高感度な菌・ウイルスの検査手法の需要が急速に高まってきています。
私たちは迅速で高感度に測定可能な酸化物薄膜トランジスタ型核酸センサーの研究・開発を進めています。図に、これまで作製したセンサーを示しています。この技術は核酸のみならず、多様な分子に適用可能であり、環境・衛生・農業・医療などの分野への応用も目指しています。
・MOD中間体の特性を生かしたパターニング
センサーなどの電子デバイスを作製するには、酸化物の精度の良いパターニングが必要となります。私たちはMOD法から酸化物を作製する際の中間体が変形性を示すことを発見しました。この特性を利用し、型押し成型による低エネルギー・低コストの酸化物の直接プリンティング手法を開発しました。この技術によって、簡単にサブミクロンスケールのパターンの作製が可能になりました。示した図は作製した酸化物パターンと、酸化物を積層した薄膜トランジスタアレイです。このように様々な酸化物の精度のよいパターンが作製できることがわかります。
主な研究業績
- Submicron titania pattern fabrication via thermal nanoimprint printing and Microstructural analysis of printable titania gels, D. Hirose, H. Yamada, T. Jochi, K. Ohara and Y. Takamura, Ceramics International, online,(2024)
- Rapid and Highly Sensitive Detection of Leishmania by Combining Recombinase Polymerase Amplification and Solution-Processed Oxide Thin-Film Transistor Technology, W. Wu, M. Biyani, D. Hirose and Y. Takamura, Biosensors, vol. 13, 8, p. 765,(2023).
- Origin of the thermal plasticity property of zirconium oxide gels for use in direct thermal nanoimprinting, D. Hirose, J. Li, Y. Murakami, S. Kohara and T. Shimoda, Ceramics International, vol.44, p. 17602,(2018).
使用装置
電子デバイス作製装置(フォトリソグラフィ装置、スパッタ装置ナノインプリント)、電気特性評価装置(半導体パラメータアナライザ、インピーダンスアナライザ)、形状評価装置(走査型電子顕微鏡、原子間力顕微鏡)、材料物性評価装置(TG-DTA、FT-IR,UV-vis、XRD、XPS、接触角計)
研究室の指導方針
本研究室では液体から機能性酸化物をつくるMOD技術を基礎にして、生体・環境の見える化を目指しています。身の回りのあらゆる分子をターゲットとして、社会や生活へ応用を目指しています。今まさに大きく成長している段階です。みなさんのアイデアと私たちの技術を組み合わせ、新たな見える化センサーを創成しましょう!!
研究では、個々の興味に沿ったテーマを設定します。目標に向け、課題を一つずつクリアできるように指導いたします。生活や就職活動についての不安を取り除きながら、これからの壁を乗り越える力を身につけられるようサポートします。
細胞・組織の機能を制御する高分子材料を創成し、医療に役立てる
細胞・組織の機能を制御する高分子材料
を創成し、医療に役立てる
生体制御高分子研究室 Laboratory on Biofunctional Polymers
教授:松村 和明(MATSUMURA Kazuaki)
E-mail:
[研究分野]
材料化学、高分子化学、生体材料
[キーワード]
高分子化学、バイオマテリアル、再生医療、凍結保存、ハイドロゲル
研究を始めるのに必要な知識・能力
化学をベースとして、生体に応用できる材料を目指すので、化学の基礎知識は持っていた方が望ましいです。その上で、生物学や医学に対しても必要な事を習得する姿勢を期待します。異分野からの参加は歓迎しますが、化学、高分子化学の勉強を興味を持って続けられる向上心は必要です。
この研究で身につく能力
生体材料の研究は化学・生物・医学また物理学を含んだ学際的領域の研究です。生体の持つ高度に制御された機能を学び、それを代替する材料の創成を目標として研究を続けていくことで、化学のみならず、生物学や医学、物理学などの幅広い学問分野に触れ、多角的な物の見方を獲得することが出来ます。
また、生体材料の研究は目的がはっきりしているニーズ指向型の研究のため、課題解決能力を育む事が可能です。特に博士後期課程の学生に関しては、問題発見能力も同時に身につけるように研究を進めていきます。
【就職先企業・職種】 製造業・化学メーカーなど
研究内容
機能性高分子バイオマテリアル
人工臓器やドラッグデリバリーシステム(DDS)には高分子化合物のようなソフトマテリアルが多く使用され、研究されています。バルクな材料だけでなく、コロイドやミセル、溶液なども一種のバイオマテリアルとして様々な場面での研究が展開されています。
高分子材料はそのバルク界面で、もしくは溶液状態で細胞や組織と相互作用し、機能を制御することが可能であることがわかってきました。また、様々な場面でその機能を利用したバイオマテリアルの研究開発が行われています。
凍結保護高分子
細胞を凍結保存することができる高分子を見出し、その機序を調べると共に応用を目指しています。この不思議な現象は、電荷密度の高い高分子化合物、特に両性電解質高分子に見られる特徴であることがわかってきました。細胞などの様な水を含む高次構造体をそのまま凍結すると細胞内の水の結晶化により致命的なダメージが加わり、死滅します。このような高分子化合物で細胞を凍結時のダメージから保護できるということは、これまでの常識では考えにくいことでした。従って、この現象の機序を解明することで、凍結保護だけでなく、生体組織や高次構造体の保護作用などへとつながる可能性を秘めています。我々はこの高分子をゲルにすることで、細胞保護性のハイドロゲルを作成しました。また、ナノ粒子化することでドラッグデリバリーシステムへの応用も試みています。

再生医療応用可能な高分子
再生医療や組織工学に応用可能な、生体内分解性セルロースの開発も行っています。この技術により、細胞をその中で増殖させ、生体内で細胞治療が可能な足場材料の開発が期待されます。
生体と調和する高分子バイオマテリアル
生体機能の再生を目的とした診断・治療の支援を行うために、材料工学の手法を用いた、基礎的ならびに応用的研究も目指しています。具体的には、ハイドロゲルを用いた人工関節や人工血管用材料の設計など、高分子材料の観点から生物と化学の融合を目指し、さらには生体を凌駕するような機能を探求しています。

主な研究業績
- Rajan R, Furuta T, Zhao D, Matsumura K. Molecular mechanism of protein aggregation inhibition with sulfobetaine polymers and their hydrophobic derivatives. Cell Rep. Phys. Chem. 5, 102012 (2024)
- Kumar K, Nakaji-Hirabayashi T, Kato M, Matsumura K, Rajan R. Design of Highly Selective Zn-Coordinated Polyampholyte for Cancer Treatment and Inhibition of Tumor Metastasis. Biomacromolecules 25, 1481-1490 (2024)
- Hirose T, Rajan R, Miyako E, Matsumura K. Liquid metal–polymer nano-microconjugations as an injectable and photo-activatable drug carrier. Mol. Syst. Des. Eng. 9, 781-789 (2024)
使用装置
NMR
FITR
動的粘弾性装置
細胞培養用装置
共焦点レーザー顕微鏡
研究室の指導方針
本研究室では、高分子化学の基礎から応用までを理解し、生体材料としての応用を目指しています。そのためには、化学の知識だけでなく、生物や医学、さらには機械工学などの幅広い学問領域に通じている必要があります。また、生体材料がカバーする範囲は、人工臓器、再生医療、ドラッグデリバリー、バイオセンサなど多種多様であり、それらの研究開発に必要な知識を興味を持って獲得し、多角的な視点で課題の解決を遂行できる力のある学生を育成することを目標としています。
年に数度の学会発表を通じてプレゼンテーション能力を身につけ、週一度の研究室ゼミで基礎力・ディスカッション能力を養います。
[研究室HP] URL:https://matsu-lab.info/
人工細胞膜の形や動きを探求する
人工細胞膜の形や動きを探求する
生体ソフトマター物理研究室
Laboratory on Biological and Soft Matter Physics
准教授:濵田 勉(HAMADA Tsutomu)
E-mail:
[研究分野]
ソフトマター物理、生物物理
[キーワード]
ソフトマター、人工細胞、生体膜、リポソーム、相分離、分子ロボティクス
研究を始めるのに必要な知識・能力
リポソームの実験に興味を持って楽しく取り組めること、物理・化学の基本的な知識があることが望ましいです。
この研究で身につく能力
- 人工細胞膜の実験技術
- ソフトマターの物理化学に関する知識
- 光学顕微鏡を主とする分析装置の取り扱い技術
- 英語の学術論文を読み書きする力
- 学会発表や修士・博士論文などで成果を表現する力
【就職先企業・職種】 化粧品、食品、化学、機械、バイオ研究開発など
研究内容
両親媒性ソフトマターである脂質分子は、自己集合して膜を形成します。脂質膜は、2次元膜面内での相分離や、3次元空間でのベシクル変形などの多様な物理現象を示し、その構造は弾性エネルギーにより支配されます。生体細胞は、この脂質膜を器・界面として利用しています。ミトコンドリア・小胞体のような複雑な構造体を形成したり、膜の融合・分裂などのダイナミックな動きが物質輸送を行っています。また、脂質膜小胞は、ドラッグデリバリーや化粧品などの材料としての応用開発も進められています。
私たちは、ソフトマター物理学的な視点から、細胞サイズの人工膜小胞(リポソーム)をデザインします。分子が集まることで創発する膜の秩序状態やダイナミクスに注目し、特に相分離・相転移などの物理現象が関連する膜の動的な構造や機能の研究を進めています。多様な膜現象を支配する物理化学法則の解明や新奇現象の発見を目指し、膜の世界を探求します。
1.膜の動態コントロール
光応答性分子を膜に導入することで、膜の融合、相分離の生成・消滅、小胞の開閉(細胞のオートファジーに類似した動き)、膜の出芽(細胞のエンドサイト-シスに類似した動き)を光で制御できることを発見しています。ナノメートル領域の膜分子の反応を、マイクロメートル領域の膜ダイナミクスに変換する機能システムを、膜の物性に基づき設計します。
2.膜の相分離現象
生体細胞膜を模倣した不均一な膜表面(相分離構造)を人工的に作り出し、不均一パターンを動的に制御する因子や法則姓を明らかにします。これまでに、分子の電荷による影響や、膜曲率との関連、コロイドやDNA等のゲスト分子との相互作用について明らかにしています。
3.膜の力学応答
物理的刺激に対する膜ダイナミクスの研究を行っています。これまでに、シアストレスや浸透圧によって膜面の相分離構造・パターンが変化することを発見しています。刺激の強さ、温度、膜の分子組成などに依存した、膜の応答ダイナミクスの体系化を進めています。
主な研究業績
- "Photo-induced fusion of lipid bilayer membranes" Y. Suzuki, et al., Langmuir, 33, 2671 (2017).
- "Domain dynamics of phase-separated lipid membranes under shear flow" T. Hamada et al., Soft Matter, 18, 9069 (2022).
- "人工細胞膜のダイナミクス解析と構造制御" 濵田勉, 応用物理, 86, 875 (2017).
使用装置
画像解析システム
蛍光・位相差顕微鏡
研究室の指導方針
私たちは、人工細胞膜の新奇現象を発見し、膜の新たな可能性を表現することで、膜系が示す物理現象の原理究明を目的に研究をしています。研究活動を通して、基礎知識を活用し課題を解決する能力を養い、好奇心を持ち自ら調べ学ぶことの楽しさを経験してもらいたく思います。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/hamada
分子技術を核酸医薬・光ゲノム操作へ~DNA/RNAを光で操る~
分子技術を核酸医薬・光ゲノム操作へ
~DNA/RNAを光で操る~
DNA/RNA工学 研究室 Laboratory on DNA/RNA Engineering
教授:藤本 健造(FUJIMOTO Kenzo)
E-mail:
[研究分野]
核酸化学、有機合成化学、ケミカルバイオロジー、生物有機化学、遺伝子工学
[キーワード]
核酸医薬、光DNA/RNA操作、光ゲノム編集、有機合成、遺伝子治療、遺伝子診断、分子ロボティクス
研究を始めるのに必要な知識・能力
本研究室では「科学の基本原理を理解したうえで、合理的かつ緻密にデザインされた自身オリジナルの分子を創成・合成することで今までにない物性や能力を有する物質を創成する」ことを基本にしています。挑戦しようという意欲を求めています。異分野からの挑戦を歓迎します。
この研究で身につく能力
本研究室では日頃の雑誌会・研究会・実験・研究発表・研究室独自の取り組み(下記)などを通して自然現象・生命現象を科学の言葉で理解する力、自分自身で解釈し、新しいものを生み出す感性や俯瞰力、また最終的には自分を「活かし」ひいては社会に必要とされる人間力を身につけてもらいたいと思っています。
(取り組み事例)
◦最前線で活躍中の先生による研究室セミナー
◦東京・大阪方面で開催されている技術スクールへ参加支援
◦学会(国内、国外)への出席支援
◦海外雑誌への論文投稿の支援
◦ベンチャーラボラトリー等への積極的参画
◦共同研究先企業との合同セミナー・交流
【就職先企業・職種】 大学教員、化学系企業、製薬系企業、機械系企業、電機系企業、研究所研究員、医療機器系企業、食品
研究内容
(藤本研究室で行っている研究概要)
現代の遺伝子工学は酵素を用いた遺伝子操作に基づくものですが、生体内細胞中での操作、マイクロマシン上での操作には酵素のみでは限界があるとされています。藤本研究室では、即時に精密分子設計した光応答性の人工核酸を用いることにより、酵素ではなく光を用いてDNA あるいはRNA を操作する光遺伝子操作法を創出しています。さらには、分子生物学や情報科学、細胞生物学、データ科学などの学際領域のみならず遺伝子解析などの産業応用も含めた実用的新方法論(以下参照)へと展開しています。
1.超高速光DNA・RNA操作法の開発
(光応答性人工核酸の分子設計・合成とその応用研究)
光反応性を有するビニル基を埋め込んだ人工塩基をDNA 中に組み込ませた光操作用の人工DNAプローブを開発しています。この光応答性人工塩基を組み込んプローブ DNA をDNA チップ上で用いることで、従来の100倍以上正確に遺伝子解析が可能となります。特に藤本研究室で開発したシアノビニルカルバゾール(cnvK) は秒単位で核酸類を光架橋できることから国内外で市販されています。最近では、世界最速の核酸光架橋剤として認知されいます。このcnvK を含む光架橋により超高速プラスミド操作や任意の位置のシトシンをウラシルに変換できることを実証しています。遺伝子修復等の医学応用や産業面では DNA チップ上での超高速遺伝子解析への応用が期待されています。
2.核酸医薬(光による遺伝子発現制御)
核酸医薬は遺伝子を直接標的とする最新の医薬です。我々は光応答性人工核酸を組み込んだアンチセンス核酸を用いることにより、高い発現抑制効果を示すことを報告しています。また、光照射の場所・タイミングや照射エネルギーにより発現量を時空間的に制御することにも成功しており、抗ガン剤としての応用も期待されています。また、学術論文の表紙に採用されるなど、高く評価されています。
3.光ゲノム編集(遺伝子疾患治療に向けた核酸光編集)
核酸編集法は遺伝子疾患に対する有用な治療法とされており、CRISPR/Cas システムやADAR などが報告されています。藤本研究室では核酸光編集法(Photochemical RNA editing) を報告しており、光架橋・脱アミノ化反応・光開裂の一連の操作により配列選択的に標的のシトシンをウラシルへと変換できます。酵素を用いない新たな編集法として注目されています。従来のゲノム編集を凌駕する高い配列選択性を有した新たな光ゲノム編集法の開発をおこない、遺伝子疾患の治療等に貢献したいと考えています。
主な研究業績
- J. Mihara and K. Fujimoto, Photo-cross-linking of DNA using 4-methylpyranocarbazole nucleoside with thymine-base selectivity, Organic & Biomolecular Chemistry, 45, 9860-9866 (2021)
- T. Sakamoto, Z. Qiu, M. Inagaki. K, Fujimoto, Simultaneous amino acid analysis based on 19F NMR using modified OPA-derivatization method, Anal. Chem., 92, 1669-1673 (2020)
- K. Fujimoto, H. Yang, S. Nakamura, Strong inhibitory effects of anti-sense probes on gene expression through ultrafast RNA photo-cross-linking, Chem. Asian. J., 14, 1912-1916 (2019)
使用装置
DNA/RNA自動合成機
共焦点レーザー顕微鏡
UPLC-HPLC
マイクロプレートリーダー
蛍光分光光度計
研究室の指導方針
私たちの研究の根本はDNAに関連した精密分子設計とこれに基づく合理的な精密有機合成の技術にあります。学生一人一人がそれぞれオリジナルの研究テーマに取り組む中で、基礎的な合成技術、解析技術ならびに科学的に物事を捉える視点を養います。その上で化学系企業、医療機器メーカー、医薬品関連企業との共同研究を体験し、研究者の社会貢献のあり方について肌で感じてもらいます。その他、研究室独自のプログラム(研究室セミナー、合同セミナー、技術スクールなど)も活用してもらうことで自立した研究者育成を目指します。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/fujimoto/fujimotohp/
自然環境と生体物質の歴史に学ぶー高分子の世界に挑戦!ー
自然環境と生体物質の歴史に学ぶ
ー高分子の世界に挑戦!ー
DRY & WET ソフトマテリアル研究室
Laboratory on DRY & WET Soft Materials
准教授:桶葭 興資(OKEYOSHI Kosuke)
E-mail:
[研究分野]
高分子科学、光化学、ソフトマター
[キーワード]
ゲル、水、ソフトマテリアルの幾何学、光機能材料、エネルギー変換材料、バイオミメティクス
研究を始めるのに必要な知識・能力
高分子科学、物理化学、材料科学、光化学、ソフトマターの基礎知識や経験を持っていると望ましいでしょう。そして何より、チャレンジングスピリットを強く持っている人、好奇心の強い人、思考の持久力を高めたい人と研究を始めたいと考えています。
この研究で身につく能力
論理説明能力・解釈能力、科学的な仮説検証・立案力、高精度なディスカッション能力、発表能力、英語コミュニケーション力
学問分野:高分子科学、光化学、コロイド科学、界面化学、幾何学、非線形科学など
【就職先企業・職種】 化学メーカー、医療機器メーカー、自動車関連、材料全般、食品関連、化粧品関連など
研究内容
自然界を見渡すと、目に見えるレベルで綺麗なパターンがたくさんあります。たとえば生体組織は小さな分子から「自己組織化」 によって創り上げられています。これは、物質そのものにだけ由来している訳ではなく、外的な環境が強く作用した結果です。変化する環境に適応できるように生命が進化した結果、多様な空間 パターンやリズムが生まれています。
一方、人工的に合成された分子から物理環境を制御してパターンを創り出す研究は歴史的に長くなされています。しかし、合成分子のままでは医療や工業的に材料化する上で困難を極め、生体組織との調和や自然との共生には幾つものハードルがあります。これに対して我々は直近の研究で、天然分子の多糖が自らパターンを再構築する現象を発見しました。ここで、「なぜ」「どのように」パターンをつくるのかを解明できれば、生体適合性と環境適応性を合わせ持つマテリアルを手に入れることができます。
1.DRY でWET な天然多糖の自己組織化
天然から抽出された多糖は、どのようにcmスケールの幾何学パターンを生み出すのか、特に、乾燥環境下で多糖が見せる「空間認識」の法則性を検証しています。DRY でWET な非平衡環境下、ミクロにもマクロにも高分子が組織化して析出してきます。実際の生体組織が常に乾燥環境におかれながらもWETなからだを維持していることを振り返ってみれば、水中から陸上進出した生体高分子の進化を紐解く鍵があるはずです。
2.ソフトマテリアルのパターン制御
生体高分子、合成高分子に関わらず多くのソフトマテリアルは、界面の応力制御によって形態の制御が可能です。ほんの小さな環境の違いや僅かな力学的エネルギー負荷によって、多様な構造や形態を見せます(自己集積、自己相似、フラクタルなど:図参照)。これを利用してDRY でWET な環境に適応した医療用材料の設計法を見出したいと考えています。
これら「自然美の追求」を基に現象の法則性を導くことが究極目標です。そして、生物がなぜパターンを創るようになったのか?自然科学の大命題に挑戦しています。

主な研究業績
- Bioinspired gels: polymeric designs towards artificial photosynthesis. Hagiwara R, Yoshida R, Okeyoshi K, Chemical Communications 60, 13314-13324 (2024).
- Recognition of spatial finiteness in meniscus splitting through evaporative interface fluctuations. Wu L, Saito I, Hongo K, Okeyoshi K, Advanced Materials Interfaces 10, 2300510 (2023).
- DRY & WET: meniscus splitting from a mixture of polysaccharides and water. Okeyoshi K, Polymer Journal 52, 1185 (2020).
使用装置
各種光学顕微鏡、各種光学装置(偏光、蛍光など)、画像解析装置、粘度計、密度計、動的光散乱、電子顕微鏡
研究室の指導方針
社会で働くトレーニング期間として、個人個人の能力を最大限に発揮できるようにサポートします。我々のグループは研究・文化の両面で多様な環境に在り、多角的な視野を構築する上で日本でも稀に見る貴重なチャンスです。突出した先端研究をみなさんと進めたいと考えています。そのためにも以下1−3の基礎を実践していきます。
1. 実験とディスカッションを通して論理的思考力と先見性の能力を養う。
2. 仮説と検証を繰り返し大目標にアプローチする。
3. 学会発表、学術論文発表を念頭に科学的言語を使う。
これらの積み重ねを自信にして創造力を高めていきたいと考えています。熱いハートのみなさん、ぜひ21世紀のパイオニアを目指して一緒にチャレンジしましょう!
[研究室HP] URL:https://sites.google.com/oke-acgroup.com/web/home-j
次世代の医用材料による医療の発展
次世代の医用材料による医療の発展
医用材料学研究室 Laboratory on Biomedical Materials
講師:西田 慶(NISHIDA Kei)
E-mail:
[研究分野]
生体材料学、合成高分子、タンパク質工学、ナノメディシン
[キーワード]
医用高分子、刺激応答性、バイオ界面、細胞膜、細胞内分解系
研究を始めるのに必要な知識・能力
特定分野の知識や能力は問いません。高分子化学、タンパク質工学、分子生物学、薬学、情報学を含む学際的な医用材料の研究について、学生のバックグラウンドに応じてテーマを設定します。新しい技術や分野を開拓する好奇心や向上心が最も大切です。
この研究で身につく能力
合成高分子やタンパク質、細胞を材料とした医用材料や疾患の診断・治療法の開発に取り組みます。学生の興味やバックグラウンドに応じて、有機合成や遺伝子工学、生物といった基盤材料を選択し、社会的にも学術的にも重要な研究テーマを進めてもらいます。各種材料の作製だけでなく、材料物性の評価、細胞や動物を用いた生命科学的な評価と多岐の分野にわたる実験技術や知識が必要になります。材料学と生命科学といった学問的な高いレベルの知識と技術が身につくとともに、理系人材としてどこでも活躍できる広い視野と知恵を養います。
【就職先企業・職種】材料、製薬、医療機器、食品関連企業
研究内容
私達は、がんをはじめとした疾患の治療や診断法の開発といった応用研究と、生体と医用材料の相互作用の理解や制御といった基礎研究を両立した医用材料の開発を進めています。有機合成、遺伝子工学、タンパク質工学、細胞工学を駆使して様々な材料を設計し、次世代の医用材料を創出しています。
1. 細胞の代謝機能を改善する刺激応答性高分子

図1 刺激応答性高分子やタンパク質からなる医用材料

図2 ステルス材料としての直鎖状タンパク質
がん化や老化した細胞は、正常な細胞と比較して代謝機能が大きく変わります。この代謝機能の変化に着目して、がんや老化の進行を逆転させる治療法の開発に取り組んでいます(図1)。特に、代謝産物や生理活性分子を細胞に送り込むことで代謝を改善し、疾患治療への応用を検討しています。具体的には、代謝産物などを原料とした刺激応答性合成高分子を設計し、細胞内の特異的環境に応答して分解・代謝物を放出する医用材料を合成しています。
2. 細胞膜構成分子に着目したがん治療・診断
がん細胞の細胞膜構成分子に着目した新たながん治療や診断法を開発しています (図1)。特に、がん細胞で異常性がある細胞膜のコレステロールや糖鎖を標的としています。このような細胞膜構成分子と相互作用するタンパク質材料を遺伝子工学的に設計し、がん治療や診断法を検討しています。例えば、細胞膜コレステロールに相互作用する合成タンパク質を設計し、がん細胞のコレステロール合成系やオートファジーといった細胞内分解系を制御し、がんの殺傷を可能にしています。
3. 直鎖状タンパク質のde novo設計とステルス材料
採血管や注射器から人工心肺、人工臓器、バイオ医薬などの医療機器・医薬品は、医療技術に必要不可欠なものです。医療機器・医薬品の表面は血液や体液と接触するため、血液の凝固や異物認識、免疫・炎症応答を抑制するためにタンパク質の吸着を抑制するステルス特性が重要です。私達は、医療機器・医薬品にステルス性を付与するタンパク質性の医用材料を構築しています (図2)。特に、計算科学やAIを活用した直鎖状タンパク質の設計法を考案し、ステルス性医用材料としての有用性を検討しています。
主な研究業績
- Kei Nishida, et al, Cholesterol- and ssDNA-binding fusion protein-mediated DNA tethering on the plasma membrane, Biomaterials. Science, 13, 299-309 (2025)
- Kei Nishida, et al., Sensitive detection of tumor cells using protein nanoparticles with multiple display of DNA aptamers and bioluminescent reporters, ACS Biomaterials Science and Engineering., 9, 5260–5269 (2023)
- Kei Nishida, et al., Selective Accumulation To Tumor Cells With Coacervate Droplets Formed From Water-Insoluble Acrylate Polymer, Biomacromolecules, 23, 1569–1580 (2022).
使用装置
NMR、高速液体クロマトグラフ、水晶振動子マイクロバランス、接触角計、フローサイトメーター、共焦点レーザー顕微鏡
研究室の指導方針
医用材料に関する研究では、様々な学問に関する知識や技術必要です。個々に独立した研究テーマを設定し、基礎知識や技術を指導するとともに自分の研究に愛着と興味を持って自らが研究を追求できるように導きます。さらに理系人材として重要な科学的な思考力や文章力、表現力を身に付けられるようサポートします。また、もっとも成長する場である学会の参加・発表のチャンスもたくさんあります。ディスカッション、就活、生活についての悩み等、なんでも相談してください。ウェルカムです。
[研究室HP] URL:https://miyakoeijiro.wixsite.com/eijiro-miyako-lab
ナノ粒子工学:機能材料の創製から応用まで
ナノ粒子工学:機能材料の創製から応用まで
ナノ粒子工学研究室 Laboratory on Nanoparticle Engineering
教授:前之園 信也(MAENOSONO Shinya)
E-mail:
[研究分野]
ナノ材料化学、ナノ材料物性、コロイド化学
[キーワード]
半導体ナノ粒子、磁性体ナノ粒子、金属ナノ粒子、バイオ医療、エネルギー変換、センシング
研究を始めるのに必要な知識・能力
基礎学力、コミュニケーション能力、知的好奇心、柔軟な思考
この研究で身につく能力
修士課程では、(1) ナノ材料の化学合成技術、(2) 各種分析機器(透過型電子顕微鏡、X 線回折装置、X 線光電子分光、組成分析装置など)の操作スキル、(3) 基礎学問の知識(無機材料化学、結晶学、コロイド化学、固体物性など)、(4) ナノ材料に関する先端専門知識を身につけて頂きます。博士課程では、1-4に加え、英語によるプレゼンテーション能力、英語論文執筆能力、研究課題設定能力、共同研究遂行能力など、研究者に必要なあらゆる能力を身につけて頂きます。
【就職先企業・職種】 製造業(化学、精密機器、電気機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
物質をナノメートルサイズまで細かくしていくと、種々の物性がサイズに依存する新奇な材料となります。このような新奇材料を一般に「ナノ材料」と呼びますが、我々はその中でも特に「ナノ粒子」に興味を持ち、ナノ粒子に関する基礎から応用に亘る研究を行っています。半導体、磁性体、金属などのナノ粒子を化学合成し、その表面をさまざまな配位子によって機能化し、さらにそれらナノ粒子の高次構造を制御することによって、バイオ・医療分野あるいは環境・エネルギー分野で新たな応用を開拓することを目指しています。

1.磁性体ナノ粒子の合成とバイオ医療分野への応用
超常磁性体のナノ粒子を独自の方法によって合成し、その表面を自在に修飾することによって、バイオ医療分野での様々な応用の道を開拓しています。具体的には、細胞やタンパクの磁気分離、MRI 造影剤、ドラッグデリバリーシステムなどのナノ磁気医療に応用するための技術開発を行っています。
2.半導体ナノ粒子の合成とエネルギー変換素子への応用
狭ギャップ化合物半導体から広ギャップ酸化物半導体のナノ粒子まで、幅広い種類の半導体ナノ粒子を化学合成し、それらを用いて低炭素社会の実現を志向したナノ構造エネルギー変換素子の創製に関する研究を行っています。特に、ナノ構造熱電素子や光機能素子などに興味を持っています。
3.金属ナノ粒子を用いたバイオセンシング技術の開発
近年、金ナノ粒子を用いた様々なバイオセンサが開発され、簡便かつ迅速に DNA 配列検出やタンパク質機能解析などが可能となってきています。我々は、ナノ粒子プローブを用いたバイオセンシング技術の更なる高度化を目指し、異種金属元素からなるヘテロ構造ナノ粒子や合金ナノ粒子のプローブの開発を進めています。
主な研究業績
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, and S. Maenosono, “Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles”, ACS Nano 16 (2022) 885
- J. Hao, B. Liu, S. Maenosono, and J. Yang, “One-Pot Synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) Core-Shell Nanoparticles as Highly Efficient Catalysts for the Reduction of 4-Nitrophenol”, Sci. Rep. 12 (2022) 7615
- T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono, “Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes”, Langmuir 37 (2021) 6566
使用装置
透過型電子顕微鏡 (TEM) 超伝導量子干渉磁束計 (SQUID)
過型電子顕微鏡 (STEM) 動的光散乱測定装置 (DLS)
X 線回折装置 (XRD) 共焦点レーザー顕微鏡 (CLSM)
X 線光電子分光装置 (XPS) 核磁気共鳴装置 (NMR)
研究室の指導方針
就職希望者には、基礎・専門知識はもちろん、コミュニケーション能力、英会話力、論理的思考力および柔軟な対応力を涵養し、不確実性の時代を生き抜くことができる人材となってもらうための指導を行います。企業経験を活かした実践的就職指導も行っています。
博士後期課程への進学希望者については、先端的かつ国際的な研究環境を提供することによって、将来的に大学教員や企業研究者として活躍できるグローバル研究人材を育成します。
[Website] URL:https://www.jaist.ac.jp/~shinya/
次世代の細胞計測技術を創り、ニューロン情報処理の秘密に迫る
次世代の細胞計測技術を創り、
ニューロン情報処理の秘密に迫る
神経情報生理学研究室
Laboratory for Neural Information Physiology
准教授:筒井 秀和(TSUTSUI Hidekazu)
E-mail:
[研究分野]
分子生物学、生理学、生物物理学、細胞計測
[キーワード]
神経細胞、分子センサー、次世代計測技術
研究を始めるのに必要な知識・能力
予備知識:分子・細胞生物学や電気回路の基礎などを理解しているとスムーズに研究を開始できますが、初学者にも丁寧に指導します。
求める人材:新しい技術を創出したい人。実験が好きで、試行錯誤や寄り道の楽しさを理解している方。
この研究で身につく能力
分子・細胞生物学、基礎生理学、生物物理学に関する基本的な研究方法や実験手技を理解し、体得します。さまざまな生命現象の仕組みや分子的基礎が詳細に解明されてきましたが、その一方で、広大な領域が未だに謎に包まれたまま残されています。本研究室では、新しい技術を創出し、今までアクセス不可能だった領域に踏み入る意義や楽しさを学びます。こうした新規技術を創り出すための創意工夫、粘り強い探求や試行錯誤を通じて身に付く能力は、学術の世界のみならず、社会や産業の発展を牽引する上で大いに役に立ちます。
【就職先企業・職種】学術、医工学・電気、情報・バイオなど
研究内容
【ニューロン回路の不思議】
柔軟さ、堅牢さ、緻密さを兼ね備えていることが細胞・組織・器官の機能の特徴の一つです。生き物の仕組みを知りたい!そんな素朴な疑問を大切に研究を行っています。具体的には、ニューロン回路における情報処理の秘密に迫るための、新しい細胞計測技術の創出に取り組んでいます。ニューロン回路は究極の生体組織です。0.1ボルト、1ミリ秒程度の電圧信号が回路網を高速に流れ、情報の表現や処理を司っています。この過程を詳細に理解することができれば、疾患の理解や新しい情報処理様式の発見のほか、想像もできない展開も期待できます。しかし、この挑戦は、数多くの障壁に阻まれています。例えば、既存の細胞計測技術では、複雑なニューロン回路の中を伝播する電気信号を十分に詳細に追跡することは困難で、実験的な立場における大きな課題の一つです。研究室では、主に二つの異なるアプローチでこの課題に取り組んでいます。
【次世代の電気生理計測法の探求】

(上)ニューロンの配線メカニズムを用いて作成した微小電極との接合構造
電気生理計測とは、金属やガラス管の微小電極を用いて、細胞の電気的現象を調べる手法の総称です。長い歴史のある計測法ですが、今日の最先端研究でも欠かすことのできない、強力な手法です。しかしながら、細胞認識能を原理的に備えていない、などの本質的な欠点が残されています。研究室では、脳内でニューロンが配線される分子メカニズムと微細加工技術を融合させることで、この課題の解決に取り組んでいます。これまでに、分子生物学的に人工設計したシナプス誘導因子を用いて、特定種のニューロンを特定の電極に接続する基本原理の実証など成功しています。ニューロン活動を読み取る次世代の電気生理技術の創出に向けて、皆さんと様々な工夫をこらし、探求をしていきます。
また、思いもよらぬ方向から、研究の突破口が開けることも多くあります。既成概念にとらわれず、不思議・楽しい!を大切にし、色々な技術や考え方を学際的に学び、日々の研究に活かしていくことを心掛けています。
【ニューロン活動を可視化する分子センサー】

(左)分子センサーの性能試験の様子
(中央)分子センサーを発現した神経細胞
(右)試作した次世代電気生理技術の原理実証用の微小電極
ある種の細胞には膜電位の変化(電圧信号)を感知するための分子が備わり、電圧信号を増幅し、細胞外環境に応じて細胞内の環境を変化させています。こうした分子を部品として使うことで、電圧信号を光の信号として可視化するセンサー分子を創ることが出来ます。研究室ではこれまでに単一細胞の単一スパイクを可視化することなどに成功してきています。皆さんといろいろなアイディアを持ち寄り、センサーのさらなる高速・高感度化を目指したいと考えています。また、細胞に備わるそうした分子が、そもそもどのような仕組みで電圧信号を感知しているのか?といった基礎的な問題にも興味を持って研究を進めています。
主な研究業績
- K. Sekine, et al., Neuron-microelectrode junction induced by an engineered synapse organizer, Biochem. Biophys. Res. Commun. p149935, 2024.
- W. Haga, et al., Development of artificial synapse organizers liganded with a peptide tag for molecularly inducible neuron-microelectrode interface, Biochem. Biophys. Res. Commun., vol. 699, 2024.
- S. Kim, et al., Formation of neuron-microelectrode junction mediated by a synapse organizer, Appl. Phys. Express, vol. 16, 2023.
使用装置
各種光学顕微鏡・走査型電子顕微鏡
電気生理・電気化学計測関連機器
薄膜作成・微細加工装置
細胞・組織培養関連機器
分子生物学関連機器
研究室の指導方針
研究は自由で楽しいものであるべきと考えますが、それもバックグラウンドの正しい理解や確かな実験技術に基づくはずです。まずは正確な実験や観察が行えるようになる事に努めます。研究結果の定期的な発表(プログレスレポート)および論文紹介(ジャーナルクラブ)を通じてプレゼンテーション力を身につけます。英語専門書を一つ選定して、輪読を行い、研究の背後にある概念や文化を理解する事にも重点を置きます。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/tsutsui/wordpress/
新しい固体触媒プロセスの構築による資源・エネルギー問題の解決に挑む!
新しい固体触媒プロセスの構築による
資源・エネルギー問題の解決に挑む!
触媒・資源変換プロセス研究室
Laboratory on Catalyst/Resource Chemical Process
准教授:西村 俊(NISHIMURA Shun)
E-mail:
[研究分野]
触媒化学、固体触媒、合金触媒、バイオマス変換
[キーワード]
資源・エネルギーの有効利用技術、金属ナノ粒子触媒、固体酸塩基触媒、新触媒の創成、触媒作用機構の解明
研究を始めるのに必要な知識・能力
基礎的な計算・データ処理能力と仲間と安全に研究を進められる方であれば、バックグラウンドを問わずに歓迎します。物理化学、有機化学、無機化学、分析化学、触媒化学などの基礎・経験があると、よりスムーズに研究を開始できます。失敗にひるまずに挑戦する「忍耐力」や「好奇心・探究心」がより自発的に研究を進める上で役に立ちます。
この研究で身につく能力
新しい固体触媒プロセスの開発は、触媒設計→触媒調製・条件の最適化→触媒活性評価・反応条件の最適化→触媒のキャラクタリゼーション→触媒作用機構の提案→検証・再考といった多くの研究段階からなっています。また、触媒作用に関連する因子は一つであるとは限りません。従って、触媒開発プロセスを経験することで、様々な分析・評価手法の技術習得、多角的に実験データを整理・解析・統合する力を身に付けることができます。また、英語の先行研究を読み自らの研究へフィードバックする力、自分の結果を他人へより分かりやすく伝えるためのプレゼンテーション力を、日常の研究室ゼミや学会発表等を通じて向上できます。
【就職先企業・職種】 化成品・ポリマー製造や自動車触媒製造を主とした化学・材料メーカーなど。
研究内容
触媒は様々な物質変換・合成プロセスに欠かすことができない材料で、身近な生活を力強く下支えしています。そのため、高機能な触媒プロセスの開発は、日常の生活様式の劇的な改善やより低環境負荷なスタイルへと大きく変えるインパクトを持っています。例えば、空気中の窒素の人工的な固定化を実現したアンモニア合成触媒の実現(1918年ノーベル化学賞)は、窒素を含む化学品合成の発展に繋がり、その後の安定的な食料生産による人口増加や火薬製造による工業の発展へと繋がりました。
当研究室では、「従来の在来型化石資源の利用技術で培われた触媒プロセス技術を生かし、より高効率な触媒を設計するための指針の提案」や、「固体触媒を用いた高効率な次世代バイオマス資源変換プロセスの構築」から、持続可能・低環境負荷な社会形成に貢献できる触媒・資源変換プロセス技術の構築を目指しています。
・金属担持触媒の高機能化に向けた触媒設計と作用機構解明
金属活性点を固体表面に固定化した金属担持触媒は、主に1. 金属活性中心の電子状態や形状、2. 金属活性点の周囲環境、3. 担体の性質によって、その触媒作用が大きく異なります。それぞれの因子を系統的に制御し、対象とする触媒反応への性能を評価することで、求める触媒作用に対して選択的に欲しい性能を付与できる触媒調製指針の策定を目指します。例えば、異種金属を合金化させた活性サイトの構築による高活性化、保護配位剤を作用させることによる活性点周囲の環境制御による高活性・高選択性の発現、特異な構造を有する担体合成による超高活性化を実現しています。
・高効率なバイオマス資源変換を実現する固体触媒プロセス開発
バイオマス資源は再生可能でカーボンニュートラルであることから、持続可能な次世代資源としての活用が期待されています。しかし、低いLCA(ライフサイクル・アセスメント)が課題です。固体触媒を用いた高効率プロセスの実現によるバイオマス資源利用の拡大を目指しています。例えば、常圧水素によるバイオ燃料製造プロセス、非可食性グルコサミン類からの高品位化成品合成プロセス、高活性な酸- 塩基反応プロセス、バイオマス由来有機酸・脂肪酸の高効率な水素化転換を実現しています。また、バイオマス資源の連続的なフロー変換プロセスの展開に必要な課題抽出とその改善にも取り組んでいます。
主な研究業績
- S. D. Le, S. Nishimura: Selective hydrogenation of succinic acid to gamma-butyrolactone with PVP-capped CuPd catalysts. Catal. Sci. Technol. 12 (2022) 1060.
- K. Anjali, S. Nishimura: Efficient Conversion of Furfural to Succinic Acid using Cobalt-Porphyrin based Catalysts and Molecular Oxygen. J. Catal. 428 (2023) 115182
- X. Li, S. Nishimura: Synthesis of 5-Hydroxymethy-2-furfurylamine via Reductive Amination of 5-Hydroxymethyl-2-furaldehyde with Supported Ni-Co Bimetallic catalysts. Catal. Lett. 154 (2024) 237.
使用装置
触媒活性評価(GC, HPLC, GC-TOFMS, FTICR-MS, 液体 NMR)
触媒構造評価(XRD, ガス吸着 / 脱着 , SEM/TEM, XPS, 固体 NMR, FT-IR, TPR/TPD, パルス分析など)
状況に応じて、外部の共同利用研究施設(KEK-PF, SPring-8, SAGA- LS など)での XAFS 測定も行います。
研究室の指導方針
当研究室では、月1~2回の研究室ゼミ(研究進捗報告・ディスカッション)を行います。コアタイムは設けませんが、社会人生活に向け て規則正しい生活リズムを作って実験・大学院生活を送ってください。本学には様々な分析機器が共通設備として整備されており、 装置によっては専門職員からのサポートも得られる充実した環境が整っています。在籍中にこのサポート・分析体制を存分に活か し、自らのスキルアップを実現してほしいと思います。在籍中に得られた成果は、国内外での学会等で対外発表を行うことを推奨 します。また、修了生1人に対して1報以上の学術論文・国際会議プロシーディングス等を公開し、各学生の成果を残せるように努めています。
[研究室HP] URL:https://www.jaist.ac.jp/~s_nishim/index.html
人体に学び、自然を理解し、ナノ戦略で難治性疾患や老化に挑む
人体に学び、自然を理解し、ナノ戦略で難治性疾患や老化に挑む
抗疾患ナノファイター研究室 Laboratory on Anti-Disease Nano-Fighter
教授:鄭 主恩(CHUNG, Joo Eun)
E-mail:
[研究分野]
バイオマテリアル、ドラッグデリバリーシステム(DDS)、ナノメディシン、抗がん治療、アンチエイジング
[キーワード]
生体適合性ポリマー、ナノ粒子、非侵襲的薬物送達、ターゲティング、薬効増幅、緑茶カテキン、メラトニン
研究を始めるのに必要な知識・能力
特別な専門知識や技術は必要ありません。科学への探究心があり、向上心、自他への責任感、本気で世界トップレベルの研究に取り組む意欲と覚悟が大事です。
この研究で身につく能力
バイオマテリアルの合成やナノ粒子の調製から化学物質・細胞・動物を用いた様々な手法の評価まで、学際的な知識や分析技術を経験し習得することができます。社会実装価値の高い医療技術創出を目指し世界最先端技術と競う研究を行う中、実験・ディスカッション・プレゼンテーション・論文執筆を通して、論理的思考、慎重さ、忍耐強さ、トラブルシューティング能力、洞察力、コミュニケーション能力を鍛えられるよう指導します。
【就職先企業・職種】 大学教員、博士研究員、特許審査官、化学企業、製薬企業
研究内容

図1 自然由来のナノファイターによる難治性疾患治療および健康寿命の伸長
当研究室はバイオマテリアルを用いたナノシステムを開発し、現治療法の限界を克服することを目指しています。
昨今、医療技術の発展に伴い世界中の人々の寿命が長くなっていますが、健康寿命の伸長は平均寿命より遅く、そのギャップは老化に伴う様々な疾患による生活質(QOL)の低下や個人と社会への大きな負担をもたらしています。当研究室では自然や人体由来の物質からなる新規な生体分解性バイオマテリアルを合成し、様々な難治性疾患の治療や抗老化作用を発揮するナノ粒子を開発しています。例えば、緑茶カテキンまたは脳内睡眠ホルモンであるメラトニンの誘導体を薬物キャリアとしたナノ粒子の開発により、今まで薬物送達が困難とされている疾患部位(がん・脳・後眼部など)へタンパク質・抗体・低分子・核酸などの性質の異なる様々な薬物を高濃度で疾患部位へ特異的に送達し、従来の薬物治療の大きい問題となっている正常部位への副作用を低減すると共に、緑茶カテキンやメラトニンから由来するキャリア本来の治療効能とのシナジー効果により、著しく薬効を増幅することが可能であります(図1)。このナノ粒子は薬物送達の妨げになっている様々な生体バリアを効率よく克服する高い薬物送達能力と、副作用のない低濃度の薬物を用いても高い薬効を達成する薬効増幅能力を兼ね備えた革新的なテクノロジーであり、トップジャーナルに掲載され高い国際評価を受けています。さらに国際特許(90報以上)の出願・登録および大学や企業との共同研究など臨床応用及び産業化を目指した研究開発を推進します。
従来のDDS製剤とは異なる設計指針によって開発されている当研究室のナノメディシンにより、今まで治療困難であった難治性疾患の治療や老化により蓄積する生体へのダメージの修復を可能とし、健康な生活・社会の実現や産業の活性化を目指しています。
主な研究業績
- N. Yongvongsoontorn, J. E. Chung, S. J. Gao, K. H. Bae, M. H. Tan, J. Y. Ying, M. Kurisawa, Carrier-enhanced anticancer efficacy of sunitinib-loaded green tea-based micellar nanocomplex beyond tumor-targeted delivery, ACS Nano 13, 7591-7602 (2019).
- K. Liang, J. E. Chung, S. J. Gao, N. Yongvongsoontorn, M. Kurisawa, Highly augmented drug loading and stability of micellar nanocomplexes comprised of doxorubicin and poly(ethylene glycol)-green tea catechin conjugate for cancer therapy, Advanced Materials 30, 1706963 (2018).
- J. E. Chung et al. Self-assembled nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy, Nature Nanotechnology. 9, 907-912 (2014).
使用装置
動的光散乱測定装置、紫外可視分光光度計、HPLC、NMR、電子顕微鏡、細胞培養装置、動物実験関連機器、IVIS動物イメージングシステム
研究室の指導方針
自分が行っている研究の科学的・社会的意義やインパクト、そして最先端技術と競うレベルの新規性をしっかり理解することで、熱意と意欲を持って研究を進めるよう鼓舞します。研究の進捗状況に関する十分なディスカッションを行い、総合・分析・判断力や問題解決能力を身につけるよう指導します。研究課題を含め学生の個性と適性に合った方法で段階的なマルチプルマイルストーンを設定し、着実に自信をつけながら成長するよう努めます。迅速な意見交換やチームワークは研究遂行において重要であるため、コアタイム(10-17時)を設けます。雑誌会、研究発表、論文執筆を通して、実力・倫理観・リーダーシップを兼ね備えた科学者として活躍できるよう育成します。
[研究室HP] 作成中
タンパク質分子モーターで駆動する微小機械
バイオ分子機械工学 研究室" width="146" height="220" class="imgR" />
タンパク質分子モーターで駆動する微小機械
バイオ分子機械工学 研究室
Laboratory on Bio-Molecular Mechanical Engineering
准教授:平塚 祐一(HIRATSUKA Yuichi)
E-mail:
[研究分野]
生命分子工学、機械工学、タンパク質工学、ナノバイオテクノロジー、生物物理学
[キーワード]
分子ロボティクス、MEMS/マイクロマシン、分子モーター、遺伝子工学
研究を始めるのに必要な知識・能力
平塚研究室ではタンパク質を使って人工の機械を作るという全く新しい研究分野を開拓しています。そのため分野を超えた幅広い知識が必要となりますが最も重要なことは「新しいものを作りたい!」という強い意識と「科学的な思考」です。専門的な知識は研究室で学ぶことができます。
この研究で身につく能力
本研究室では、バイオ・化学・微細加工技術・機械工学などを組み合わせた融合的な研究を進めています。融合研究を行うためには異なった専門分野を学んでいく必要があり、多くの学生は躊躇するかもしれません。しかし本研究室での研究開発の経験を通し融合領域では新しい発見や新しい可能性がたくさんあることを学び、専門分野間の垣根が低く感じることになるでしょう。もちろん基礎的な知識なくして融合分野に取り組むことはできません。本研究室では大きさ数ナノメータのタンパク質を人類が利用できるマイクロまたはミリメータサイズの機械として組み立てる研究をしています。そのためにタンパク質や化学物質の分子レベルの構造やナノメータ空間での挙動を理解し、分子レベルから設計できる能力を身につけます。
【就職先企業・職種】 化学メーカー、機械メーカー、IT企業、公務員など
研究内容

図1.光造形可能な人工筋肉で動く微小機械

図2.モータータンパク質で駆動する世界初のディスプレイ

図3.バクテリアで駆動する回転モーター
細胞は、大きさ数ナノメートルのタンパク質がその内部で働くことでさまざまな生命現象を生み出しています。タンパク質は一般に知られているような単なる栄養素の一つではなく「非常に精巧な分子機械」であり「細胞を構成する多彩な部品」です。本研究室では、タンパク質を分子部品として使うことによって、これまで人類が作り出してきた人工機械とは全く異なる夢の微小機械(マイクロマシン、微小ロボット)の創製に挑んでいます。本研究室ではタンパク質の中でも特に「動く」という機能をもった面白いタンパク質「モータータンパク質」に注目し、モータータンパク質で駆動するさまざまな微小な機械の開発に取り組んでいます。
1)光で自在に作製可能な生体分子モーターで動く人工筋肉
筋肉のような収縮性のファイバー(人工筋肉)を、光照射した場所に自在に形成させることに成功しました。光の照射形状を変えることで自由な形状・大きさの人工筋肉が造形でき、ミリメートルスケールの微小機械の動力に利用できます。将来、マイクロロボットやソフトロボットの3Dプリンタによる製造への応用が期待されます。
2)タンパク質により駆動するバイオディスプレイ
生き物には周囲の環境に合わせて体色を変化させる「保護色機能」を持つものがいます。これらの現象はモータータンパク質によって引き起こされています。本研究では微細加工技術とタンパク質工学を組み合わせ、保護色の分子機構を模倣した人工細胞を生体外に作り、世界初のタンパク質で駆動するディスプレイの開発に成功しました。
3) モータータンパク質・バクテリアで動く回転モーター
大きさ数十μmの微小な回転モーターもモータータンパク質やバクテリアを使って作製することに成功しています。これらは従来の人工モーターとは異なり糖や ATP といった化学物質を燃料として動くユニークなモーターとして注目を集めています。
主な研究業績
- Takahiro Nitta, Yingzhe Wang, Zhao Du, Keisuke Morishima & Yuichi Hiratsuka A printable active network actuator built from an engineered biomolecular motor Nature Materials 20, 1149–1155 (2021)
- Susumu Aoyama, Masahiko Shimoike, and Yuichi Hiratsuka Self-organized optical device driven by motor proteins Proc. Nati. Acad. Sci. (PNAS) 110, 16408-16413 (2013).
- Y. Hiratsuaka, M. Miyata, T. Tada and T. Q.P. Uyeda, Micro-rotary motor powered by bacteria, Proc. Nati. Acad. Sci. (PNAS) 103, 13618-13623 (2006).
使用装置
レーザー直接描画装置フォトリソグラフィ装置
タンパク質精製および解析装置高感度
蛍光顕微鏡
細胞培養装置
研究室の指導方針
本研究室の学生には誰もが見たことがない・驚かれるような研究に挑戦してもらいたいと考えています。しかし、そのような研究を成功させるためには基礎的な知識はもちろんのこと論文による学習が必須となります。また自分自身で考え失敗にめげず何度も挑戦し、そして何よりも研究を楽しんでもらいたいと考えています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/hiratsuka/
「BioJapan 2025」に出展
10月8日(水)から10日(金)までの3日間、パシフィコ横浜(神奈川県横浜市)にて「BioJapan 2025」が開催されました。会期中の来場者数は22,167名(前回比141%)にのぼり、会場は多くの熱気と交流にあふれました。
本学からは、超越バイオメディカルDX研究拠点(eMEDX)がブースを出展し、都 英次郎教授によるプレゼンテーション「複合細菌AUNを用いた固形がん治療法」を行いました。会期中は、eMEDX会員をはじめ、ライフサイエンス関連の製造業や教育・学習支援業など、幅広い分野の方々にブースや出展者プレゼンテーションへお立ち寄りいただき、活発な意見交換が行われました。ご来場いただいた皆さまに、心より御礼申し上げます。
今後もeMEDXでは、健康・医療・ライフサイエンス分野における最先端の研究や取り組みを紹介しながら、未来志向の共創を通じて、産学官連携の新たな可能性を発信してまいります。
【超越バイオメディカルDX研究拠点】
https://www.jaist.ac.jp/ricenter/emedx/




令和7年10月24日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/10/24-1.html10月8日(水)~10日(金) BioJapan 2025に出展
10月8日(水)から10日(金)までの3日間、パシフィコ横浜(神奈川県横浜市)にて、世界で最も歴史あるバイオテクノロジー展「BioJapan 2025」が開催されます。
本学からは超越バイオメディカルDX研究拠点がブース出展し、都 英次郎教授が出展者プレゼンテーションに登壇します。ご来場の際には事前登録のうえ、ぜひ本学ブースへお立ち寄りください。
(来場案内)https://jcd-expo.jp/jp/
※事前登録:無料(当日の来場登録:5,000円)
| 日 時 | 10月8日(水)~10月10日(金) 各日 10時00分~17時00分 |
| 会 場 | パシフィコ横浜(神奈川県横浜市西区みなとみらい1-1-1) |
| ブース出展 | 【ブース名】国立大学法人北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点 【小間番号】A-9 |
| プレゼンテーション | 【日 時】10月10日(金)15時35分~16時05分 【場 所】Presentation Stage D 【テーマ】『複合細菌AUNを用いた固形がん治療法』 【講演者】都 英次郎 |
詳細はこちらをご覧ください。
・BioJapan 2025 公式サイト
物質化学フロンティア研究領域の都教授らの総説論文がCell Biomaterialsに掲載
物質化学フロンティア研究領域の都 英次郎教授らの総説論文「生きた医薬(リビングドラッグ):治療応用における素晴らしい進化(Living Drugs: A Wonderful Evolution for Therapeutic Applications)」が、国際学術誌 Cell Biomaterials(Nature姉妹誌と同等レベルに格付けされているCell Pressの新興フラッグシップジャーナル)に掲載されました。
なお、本研究は、文部科学省 科学研究費補助金 基盤研究A(23H00551)、同 挑戦的研究(開拓)(22K18440、25K21827)、国立研究開発法人 科学技術振興機構(JST)研究成果最適展開支援プログラム(A-STEP)(JPMJTR22U1)、同 大学発新産業創出基金事業 スタートアップ・エコシステム共創プログラム(JPMJSF2318)、同 次世代研究者挑戦的研究プログラム(SPRING)未来創造イノベーション研究者支援プログラム(JPMJSP2102)、本学超越バイオメディカルDX研究拠点ならびに生体機能・感覚研究センターの支援のもと行われたものです。
掲載誌 :Cell Biomaterials
論文題目:Living Drugs: A Wonderful Evolution for Therapeutic Applications
著者 :Soudamini Chintalapati, Nina Sang, Mikako Miyahara, Seigo Iwata, Kei Nishida, Eijiro Miyako*
掲載日 :2025年9月8日にオンライン版に掲載
DOI :https://doi.org/10.1016/j.celbio.2025.100193
■論文概要
本総説では、細菌・ウイルス・ファージなどの「生きた医薬(Living Drugs)」が持つ治療応用の最前線と将来展望について包括的に解説しています。特に、がんや多剤耐性菌感染症において、これらの生物を利用した革新的治療法が急速に進展しており、免疫応答の回避、標的精度の向上、複合療法モデルの構築など、多様な技術的ブレークスルーが紹介されています。さらに、臨床応用に向けた課題として、投与方法や安全性評価、規制面での対応などが議論され、治療カテゴリーごとの将来方向性や研究優先課題についても提案しています。
本総説では、都研究室が開発を進めている2種の細菌による新たながん治療へのアプローチ「AUN(阿吽)」(プレスリリース参照)を用いた新規がん療法についても取り上げています。AUNは低酸素性腫瘍微小環境に選択的に集積・増殖し、免疫依存性と免疫非依存性の両経路を介して腫瘍を攻撃する自然由来の細菌療法です。特に、免疫不全状態でも効果を発揮し、腫瘍内血管の選択的破壊や細菌変形などによる直接的な腫瘍壊死誘導が確認されています。遺伝子改変を必要とせず高い安全性を維持できることから、臨床応用への展望が広がっています。
本総説は、Living Drugs研究の現状と課題、そして都研究室発のAUN療法を含む次世代治療の可能性を示す重要な指針となるものです。
プレスリリース詳細:2種の細菌による新たながん治療へのアプローチ「AUN(阿吽)」を開発 ―免疫不全状態でも機能が期待されるがん治療に向けて―
令和7年9月9日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/09/09-1.htmlInternational Symposium on Exponential Biomedical DX 2024を開催
2024年12月19日から20日にかけて、本学 超越バイオメディカルDX研究拠点主催の第1回国際シンポジウム「International Symposium on Exponential Biomedical DX 2024(eMEDX-24)」を石川ハイテク交流センターにて開催しました。本シンポジウムでは、「ウェルビーイングの実現」をテーマに、バイオメディカルサイエンス・テクノロジーの最前線で活躍する国内外の研究者・科学者が一堂に会し、多岐にわたるテーマについて自由闊達な議論が展開されました。参加者は総勢148名に上り、基調講演4件、特別講演9件、招待講演32件が行われました。
本学の寺野 稔 学長および大会長である超越バイオメディカルDX研究拠点長の松村 和明 教授による開会挨拶の後、東京女子医科大学 岡野 光夫 名誉教授と亜洲大学校 キ・ドン・パク 教授による基調講演が行われました。岡野名誉教授は温度応答性高分子材料の研究、パク教授は生理活性ヒドロゲルの研究について、それぞれ医療分野への応用を含めた最先端の成果を発表し、参加者の大きな関心を引きました。続いて、バイオメディカル分野で活躍するトップランナーの研究者による特別講演や招待講演が行われ、参加者同士の活発な意見交換が展開されました。また、北陸三県のバイオメディカル研究室に所属するJST次世代研究者挑戦的研究プログラム(SPRING)に採択された博士後期課程の学生が主催する特別セッションでは、博士号取得後のキャリアプランについて熱心な議論が交わされました。
二日目には、京都大学 秋吉 一成 名誉教授と韓国科学技術研究院 クァン・リョル・リー 博士による基調講演が行われました。秋吉名誉教授はバイオインスパイアードナノマテリアルを活用したドラッグデリバリーシステムの開発について、また、リー博士はマテリアルズR&Dデータにおけるスキーマおよび語彙の標準化に関する研究成果について講演されました。その後、バイオメディカル分野を牽引する第一線の研究者による特別講演や招待講演が続き、参加者間では熱心な議論や意見交換が行われました。また、国内外の学生による最新の研究に関するポスター発表(49件)が行われ、活発なディスカッションが繰り広げられました。その結果、4名の学生が最優秀学生ポスター賞を、8名の学生が優秀学生ポスター賞を受賞し、授賞式が執り行われました。その後、本学超越バイオメディカルDX研究拠点の栗澤 元一 教授および都 英次郎 教授による挨拶で締めくくられ、盛況のうちに終了しました。
本シンポジウムの開催を契機に、ウェルビーイングの実現に向けて、超越バイオメディカルDX研究のさらなる加速を目指して邁進してまいります。


開会の挨拶をする寺野 稔 学長(左)と
松村 和明 超越バイオメディカルDX研究拠点長

基調講演①
岡野 光夫 名誉教授
(東京女子医科大学)

基調講演②
キ・ドン・パク 教授
(亜州大学校)

基調講演③
秋吉 一成 名誉教授
(京都大学)

基調講演④
クァン・リョル・リー 博士
(韓国科学技術研究院)

SPRING主催特別セッション

ポスター発表

優秀学生ポスター賞受賞式


閉会の挨拶をする栗澤 元一 教授(左)と
都 英次郎 教授(右)

シンポジウムの様子
令和6年12月27日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/12/27-1.html

