研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発 ―電子顕微鏡とデータ科学による究極の精密測定―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 九州大学 |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発
―電子顕微鏡とデータ科学による究極の精密測定―
ポイント
- 電子顕微鏡とデータ科学を組み合わせることで、局所ひずみを高精度に測定
- 0.2%というわずかな局所ひずみをも検出できる精密さを達成
- 棒状ナノ粒子には表面形状の曲率変化に起因する約0.5%の局所膨張ひずみが生じることを発見
北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の麻生 浩平助教、大島 義文教授と、九州大学・大学院工学研究院のJens Maebe大学院生 (修士課程、当時)、Xuan Quy Tran研究員、山本 知一助教、松村 晶教授は、原子分解能電子顕微鏡法とデータ科学的手法であるガウス過程回帰を組み合わせることによって、ナノメートルサイズの粒子の中のわずか0.2%という局所ひずみを測定できる解析手法の開発に成功しました。開発した手法によって金のナノ粒子を解析したところ、棒状の粒子の内部では、先端付近で長さ方向に0.5%膨張したひずみを見出しました。この膨張ひずみは、粒子の先端部分で表面の形状(曲率)が変化しているために生じたこともわかりました。ナノ粒子の形状に由来して内部に局所ひずみが生じるという新たな発見と、ひずみを精密に捉える新規な手法は、ナノ物質内での原子配列と機能の理解に役立つと期待されます。 本研究成果は、2021年7月7日(米国東部標準時間)に科学雑誌「ACS Nano」誌のオンライン版で公開されました。 本研究は、日本学術振興会(JSPS)科研費基盤研究(B) (25289221、18H01830)と科学技術振興機構(JST)戦略的創造研究推進事業 ACCEL「元素間融合を基軸とする物質開発と応用展開」(研究代表者:北川 宏、研究分担者:松村 晶、プログラムマネージャー:岡部 晃博、研究開発期間:2015年8月~2021年3月、(JPMJAC1501))の支援を受けて行われました。 |
【研究背景と内容】
わずかな原子間距離の局所変化 (局所ひずみ) によって、磁性や触媒特性などといった様々な材料物性が左右されます。そのため、材料の局所ひずみを精密に測定する手法が求められてきました。ここ20年間で走査透過電子顕微鏡(STEM)の空間分解能が大きく向上して、原子状態の観察と解析が可能になりました。ナノメートルサイズの金の粒子をSTEMで観察したのが図1aです。ナノ粒子の内部に原子位置に対応した明るい点が整列して現れて見えます。原子は一見すると結晶構造を作って規則正しく周期的に配列しています。
しかし、図1aのSTEM像から原子の位置を特定して詳しく解析すると、場所によって原子は周期配列からわずかにずれて変位していることがわかりました。それをマップにしたのが図1bです。紙面左方向に大きく変位する原子が暗い青、紙面右方向に大きく変位する原子が明るい黄色でそれぞれ表されています。マップを遠目から見てみると、左から右手に向かって滑らかに、青色から黄色へと変化しているように見えます。しかし局所的には波のような細かい変化が全体を覆っています。この細かな変化は、像から原子位置を正しく特定できなかったために含まれる揺らぎノイズで、変位の変化率に相当するひずみを求めるうえで大きな障害になります。このノイズ成分を低減するには、長い時間 (カメラの露光時間に相当) をかけて計測して像質を改善するのがこれまでの一般的方法でしたが、計測時間が長くなるとその間の装置の機械的・電気的な状態のわずかな乱れの影響で像がゆがんでしまうという問題がありました。
そこで研究グループは、様々な分野で活用されているデータ科学手法のガウス過程回帰に着目しました。ガウス過程回帰では、データの真の姿は滑らかに変化すると仮定して、観測データにはこの真の姿に細かな揺らぎノイズが付加されていると考え、この順序をさかのぼることでデータの真の姿を予測します。ガウス過程回帰を図1bのマップに適用したところ、滑らかに変化する主要な成分だけを取り出すことに成功しました (図1c)。得られた変位の棒の長さ方向の変化率を求めて、局所的なひずみの分布をマップしたのが図1dです。開発した手法の精度を確かめるために、元データから直に、およびガウス過程回帰を適用して求めた場合のひずみ値の分布を比較したのが図1eです。元データでは標準偏差で1.1%の広がりがあるのに対して、ガウス過程回帰を用いることでその広がりが0.2 %に狭くなっており、ノイズ成分の除去によって有意に観測されるひずみ量の下限が大きく改善しました。
図1dに戻って見ると、棒の胴体部分と先端の半球部分の境目付近が明るい黄色になっており、この部分では棒の長さ方向に約0.5%膨張した局所ひずみが生じています。ナノ粒子では、表面積を小さくしようとして表面から内部に向かって力が作用するために、収縮ひずみが生じていると考えられていました。しかし、円筒状の胴体部と半球状の先端部からなる棒状の粒子では、2つの部分の表面曲率が異なることから内部にかかる力の向きと大きさに違いが生まれて、局所的に膨張するひずみ場が生ずることがわかりました。このように、原子位置の精密な解析が可能になって、ナノ粒子の局所形状によって内部のひずみの状態が変化することが発見できました。この新たな発見と、本成果で生み出された精密な解析手法は、ナノ構造材料の原子配置とそれによって引き起こされる機能に関する理解を深めることにつながると期待されます。
(b) 元データから得た原子変位マップ。紙面左方向への大きい変位が暗い青、紙面右方向への大きい変位が明るい黄色で表示される。細かく変化するノイズ成分が目立っている。
(c) ガウス過程回帰によって予測された真の変位。ノイズ成分の除去に成功している。
(d) 紙面横方向の変位の変化率(局所ひずみ)マップ。明るい黄色になっている両端部分では膨張ひずみが生じている。
(e) 元データとガウス過程回帰後のひずみ分布。ガウス過程回帰を用いることで、分布の広がりが1.1%から0.2%にまで狭まっており、微小な局所ひずみの検出が可能になった。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(B)(25289221、18H01830)
・科学技術振興機構(JST)戦略的創造研究推進事業ACCEL (JPMJAC1501)
【論文情報】
雑誌名 | ACS Nano |
題名 | Subpercent Local Strains Due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis |
著者名 | Kohei Aso*, Jens Maebe, Xuan Quy Tran, Tomokazu Yamamoto, Yoshifumi Oshima,Syo Matsumura |
掲載日 | 2021年7月7日(米国東部標準時間)にオンラインで掲載 |
DOI | 10.1021/acsnano.1c03413 |
令和3年7月13日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/07/13-1.htmlダイヤモンドを用いた広帯域波長変換に成功 ~新しい量子センシング技術の糸口に~

![]() ![]() ![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンドを用いた広帯域波長変換に成功
~新しい量子センシング技術の糸口に~
強い光と物質の相互作用に関する研究は、1960年にレーザーが開発されて以降、非線形光学分野として発展してきました。その中でも特に活発に研究されているのが高調波発生です。非線形光学結晶にレーザー光を照射した際に、その周波数の整数倍の光が放出される現象で、2倍の周波数の光が発生する場合を第二高調波発生、3倍の場合を第三高調波発生と呼びます。レーザー光の波長を変換する際などに用いられます。そして近年は、光共振器や光導波路などの光通信用技術としてダイヤモンド非線形光学が進展してきました。 本研究では、ダイヤモンドの表面近傍に窒素−空孔(NV)センターと呼ばれる欠陥を導入してダイヤモンド結晶の対称性を操作し、第二高調波、第三高調波発生など、広帯域の波長変換を行うことに成功しました。 この実験で波長変換の効率を評価したところ、第二高調波が第三高調波と同程度の高効率で生成されていました。その理由として、第二高調波がダイヤモンドの表面に極めて近い深さ約35nm(nmは10億分の1メートル)の領域で発生し、第三高調波の駆動力となっていることが明らかになりました。 また、このダイヤモンド中NVセンターの非線形光学効果により、波長1350~1600nmの赤外光が、波長450~800nmの可視~近赤外光にわたる広い帯域で波長変換でき、短い波長ほどその変換効率が高いことも判明しました。 ダイヤモンド中NVセンターによる第二高調波発生、すなわち電場振幅の二乗に比例する2次の非線形光学効果が可能となれば、ダイヤモンド結晶では今までできなかった電場による屈折率変調(電気−光学効果)なども可能となり、ダイヤモンド非線形光学の新領域を開拓できます。さらに、第二高調波発生や電気−光学効果などを利用した新しい量子センシングの開発への貢献も期待されます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 先端科学技術研究科 応用物理学領域
安 東秀准教授
【研究の背景】
天然のダイヤモンド単結晶は、地球のマントルにおいて超高温かつ超高圧下で生成されます。高純度のダイヤモンド単結晶は希少で高価なため、産業応用は限られていました。しかし、20世紀中頃から、不純物濃度が極めて低い高純度ダイヤモンド単結晶が人工的に安価に作製できるようになり、エレクトロニクスや光学分野で応用されるようになりました。
高純度ダイヤモンド単結晶は結晶学的に対称性が高く、空間反転対称性を持つ(対称点を中心に結晶を反転させると結晶構造が重なる)ため、非線形光学の観点では2次の非線形感受率注1)がゼロとなり、2次の非線形光学効果が発現しません。そのため、光学分野でのダイヤモンドの研究開発は、光カー効果注2)や2光子吸収注3)など、もっぱら3次の非線形光学効果を基に光共振器や光導波路に関する研究が行われてきました。応用上でも重要である2次の非線形光学効果の研究はほとんど行われて来なかったのです。しかし、最近の研究で、高純度ダイヤモンド単結晶に窒素−空孔(Nitrogen-Vacancy: NV)センター注4)と呼ばれる格子欠陥を導入することにより、欠陥準位を介したマイクロ波による発光制御が可能になり、この原理を用いた量子センシング注5)の研究が活発になっています。
今回、本研究チームは、高純度ダイヤモンド単結晶の表面近傍にNVセンターを導入してダイヤモンド単結晶の対称性を操作し、第二高調波注6)および第三高調波の発生について研究しました。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ赤外域の波長で瞬く超短パルスレーザー注7)を、NVセンターを導入した高純度ダイヤモンド単結晶に照射し、表面近傍から発生した第三高調波に加えて、第二高調波を世界で初めて観察することに成功しました。
具体的には、波長1350nmの赤外パルスレーザー光を励起光として照射すると、第二高調波が1/2波長の約675nmに、また第三高調波が1/3波長の約450nmに発生することが明らかになりました(参考図1)。この時、レーザーを照射されたダイヤモンド単結晶は紫色(赤色と青色の混成色)に発光していることが分かります(参考図1挿入写真)。
従来のダイヤモンド中NVセンターの研究では、連続発振グリーンレーザー(波長532nm)を照射した際に、NVセンターの欠陥準位を介した発光が、約660nmを中心とした波長領域に現れることが分かっています。このような既知の発光である可能性を取り除き、今回観測された約675nmの発光が第二高調波発生であることを確かめるため、励起レーザーの波長を掃引して波長変換特性を調べました。その結果、励起レーザーの波長の変化に応じて、第二高調波だけでなく第三高調波の発光波長が逐次変化することが確かめられました(参考図2)。これにより、今回観測された発光は、常に660nmを中心とした波長領域に観測される従来の欠陥準位を介した発光ではなく、欠陥により結晶の対称性が崩れることによる2次の非線形光学効果、すなわち第二高調波発生であることが明らかになりました。さらに、その変換効率は短波長ほど大きくなり、最高で5x10-5に達することが分かりました。今回、第二高調波がダイヤモンドの表面近傍約35nmの非常に薄い領域から発生していることを鑑みても、極めて高い変換効率であることが分かります。
また、励起レーザーの偏光角を回転させることで、第二高調波と第三高調波の発光強度の変化を調べたところ、それらの偏光角依存性はNVセンターを導入する前の高純度ダイヤモンドのパターンとは明らかに異なることが分かりました(参考図3)。特に、NVセンターを導入したダイヤモンドでは、第二高調波と第三高調波のパターンが若干の回転を除けば非常に似ていることが分かり(参考図3bとc)、これらのことから、第三高調波は第二高調波が駆動力になっていることも示唆されました。
【今後の展開】
本研究チームは、2次の非線形光学効果である第二高調波発生や電気−光学効果を用いた量子センシング技術を深化させ、最終的にダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングの研究を進めています。今後は、フェムト秒パルスレーザー技術が持つ高い時間分解能と、走査型プローブ顕微鏡注8)が持つ高い空間分解能とを組み合わせ、ダイヤモンドのNVセンターから引き出した2次の非線形光学効果が、電場や温度のセンシングに応用できることを示していきます。さらに、今回の成果は、ダイヤモンドNVセンターにより、2次の非線形光学効果のみならず、4次、6次以上の高次の非線形光学効果の開発に貢献することが期待されます。
【参考図】
図1.本研究に用いた実験手法と結果
NVセンターを導入したダイヤモンドに波長1350nmの励起光を照射し、その発光スペクトルを分光器で測定すると、波長約675nmに第二高調波(SHG)が、また約450nmに第三高調波(THG)が発生することが分かった。これは、エネルギーω(波長にすると1350nm)の2光子からエネルギー2ω(波長にすると675nm)の第二高調波がNVセンターによる結晶の対称性の崩れから発生していることに相当する(挿入図)。
図2.変換効率の発光波長依存性
第二高調波(SHG)と第三高調波(THG)の変換効率を励起レーザーの波長を変化させて記録した。
図3.発光強度の励起光偏光角依存性とエネルギーダイヤグラム
高純度ダイヤモンド(Pure diamond)(a)およびNVセンターを導入したダイヤモンド(NV diamond)において、第二高調波(SHG) (b)と第三高調波(THG) (c)の発光強度の励起光偏光角依存性をプロットしたもの。(d) 第二高調波発生から第三高調波発生へ向かうエネルギーダイヤグラムを示す。
【用語解説】
注1) 非線形感受率
物質の光への応答は、パルスレーザー光のように光電場振幅が大きくなると振幅に比例せず、非線形な非線形光学効果となる。非線形感受率は非線形光学効果の大きさを特徴づける光学定数である。
注2) 光カー効果
媒質中に光が入射した際に、媒質の屈折率が光強度に比例して変化する現象で、1875年にJohn Kerrによって発見された3次の非線形光学効果(電場振幅の三乗に比例する効果)の一種である。
注3) 2光子吸収
二つの光子が同時に媒質に吸収される現象で、3次の非線形光学効果の一種である。
注4) 窒素−空孔(NV)センター
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)センター」は、ダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NVセンターには、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NVセンターを持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
注5) 量子センシング
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
注6) 第二高調波
二つの同じ周波数(波長)を持つ光子が非線形光学結晶に入射すると、入射した光子の2倍の周波数(半分の波長)の光を発生する現象のこと。2次の非線形光学効果(電場振幅の二乗に比例する効果)の一種である。
注7) 超短パルスレーザー
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注8) 走査型プローブ顕微鏡
小さいプローブ(探針)を試料表面に近接させ、探針を表面に沿って動かす(走査する)ことで、試料の原子レベルの表面構造のみならず、温度や磁性などの物理量も画像化できる顕微鏡である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)による支援を受けて実施されました。
【掲載論文】
題名 | Second-harmonic generation in bulk diamond based on inversion symmetry breaking by color centers. (色中心による反転対称性の破れに基づくバルクダイヤモンドの第二高調波発生) |
著者名 | Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase |
掲載誌 | ACS Photonics |
掲載日 | 2021年3月18日 |
DOI | 10.1021/acsphotonics.0c01806 |
令和3年3月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/03/18-1.html科学技術振興機構(JST)「研究成果最適展開支援プログラム(A-STEP)」に3件が採択
科学技術振興機構(JST)の「研究成果最適展開支援プログラム(A-STEP)産学共同(育成型)」及び「研究成果最適展開支援プログラム(A-STEP)トライアウト」に本学から以下の3件の研究課題が採択されました。
A-STEPは、大学・公的研究機関等で生まれた科学技術に関する研究成果を国民経済上重要な技術として実用化することで、研究成果の社会還元を目指す技術移転支援プログラムで、大学等が創出する社会実装志向の多様な技術シーズの掘り起こしや、先端的基礎研究成果を持つ研究者の企業探索段階からの支援を、適切なハンズオン支援の下で研究開発を推進することで、中核技術の構築や実用化開発等の推進を通じた企業への技術移転を行います。
また、大学等の研究成果の技術移転に伴う技術リスクを顕在化し、それを解消することで企業による製品化に向けた開発が可能となる段階まで支援することを目的とし、研究開発の状況に応じて、リスクの解消に適した複数のメニューを設けています。
*詳しくは、JSTホームページをご覧ください。
「研究成果最適展開支援プログラム(A-STEP)産学共同(育成型)」
- 研究課題名:高感度FETと等温増幅法によるウイルス・病原菌センサー開発
- 研究課題名:分離回収可能なタンパク質凝集抑制ナノ構造体
- 研究概要:機能性タンパク質の凝集抑制高分子ナノ構造体を創生し、バイオ医薬品の製造効率の向上を目指すとともに、長期保存、安定化剤としての応用展開を目指す。バイオ医薬品は、製造工程において凝集などによる効率低下や長期保存性が問題となっている。我々は双性イオン高分子がタンパク凝集抑制などの安定化作用を示すことを報告してきている。本申請ではこの化合物の分子設計の最適化を行い、磁性ナノ粒子やナノゲルの様なナノ構造体とする事で、分離回収可能な保護デバイスを創出する。この高分子は、凝集してしまったタンパク質をリフォールディングする事も可能であり、応用面のみならず学術面からの重要性も高い。
- 採択にあたって一言:世界の医薬品の主流が低分子医薬品からバイオ医薬品へシフトしている中で、抗体医薬などの安定性の問題を解決するための凝集抑制高分子の開発を行っています。今回採択された研究課題では、添加した状態でタンパク質医薬品を安定化させ、必要な時には完全に分離回収できる安全かつ高性能な凝集抑制構造体を開発します。この成果により、これまで不安定で産業化できなかった効果の高いバイオ医薬品の開発やその長期保存技術に貢献したいと考えています。
「研究成果最適展開支援プログラム(A-STEP)トライアウト」
- 研究課題名:襲雷予測システムのためのグラフェン超高感度電界センサの開発
- 研究概要:雷の事故による世界の死者は年間2万4千人にのぼり、我が国の電気設備における雷被害額は年間2千億円にのぼっている。雷雲の接近により、地表では電界が発生し、変化する。従って、正と負の電界センシングが雷の予測に極めて重要である。既存の超小型電界センサは、極性判定ができないため、これまで、雷に伴う事故について、落雷後の分析はあるが、落雷前の検知は出来ていなかった。グラフェン電界センサは負の電界を検出することができ、超高感度化と正・負が実現できれば、襲雷を予測することができる。
- 採択にあたって一言:襲雷を予測するためには、ピンポイント性、リアルタイム性が要求されます。今回、グラフェン電界センサの超高感度化の研究を進め、音羽電機工業株式会社と共同で、学校、消防、自治体などに襲雷予測システムを設置し、地域社会の持続的な発展に貢献していきたいと思います。
令和2年11月20日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/11/20-1.html生命機能工学領域の山口准教授が日本糖質学会奨励賞を受賞

生命機能工学領域の山口拓実准教授が2019年度 (第22回) 日本糖質学会奨励賞を受賞しました。
日本糖質学会は、1978年に設立された炭水化物研究会を前身とする学会です。生命現象のあらゆる側面において重要な役割を果たす糖鎖について、その総合科学に関する基礎・応用研究の発展向上を図り、学際的な糖鎖研究をリードしています。日本糖質学会奨励賞は、糖質科学の分野で優れた研究成果を挙げた若手研究者に対し授与されるものです。
*参考
日本糖質学会ホームページ
■受賞年月日
令和元年8月19日
■受賞テーマ
常磁性NMR計測を活用した糖鎖の動的立体構造解析法の開発
■研究概要
柔軟な生命分子である糖鎖の機能を正しく理解するためには、静的な安定構造を捉えるだけではなく、動態としての描象が重要となります。本研究では、分子分光法と計算科学手法を組み合わせた、糖鎖の新しい物理化学解析法の開発に取り組みました。その結果、糖鎖の立体構造をダイナミックな揺らぎを含めて描き出すことが可能になりました。これにより、糖鎖が関わる生命現象メカニズムの一端についても解明が進みつつあります。本研究の進展により、病気原因の究明を含む、糖鎖の高次機能の更なる理解とその制御へ向けた道が開けるものと期待されます。
■受賞にあたっての一言
タンパク質・核酸につぐ第3の生命の鎖と呼ばれる糖鎖には、様々な研究分野の垣根を超えて取り組むべき多くの課題や謎、そして面白さがあります。本当に幸いなことに、学生さんをはじめ共同研究者に恵まれ、合成化学や物理化学、分子生物学にわたる様々な方法を用いてここまで研究を展開することができました。あらためて感謝するとともに、化学と生物学の橋渡しとなるような糖鎖工学研究をさらに進めていきたいと考えています。


令和元年8月29日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/08/29-1.html修了生の高橋さんが公益財団法人井上科学振興財団の第35回井上研究奨励賞を受賞
修了生の高橋 麻里さん(平成30年3月博士後期課程修了、物質化学領域・前之園研究室)が公益財団法人井上科学振興財団の第35回井上研究奨励賞を受賞しました。
井上研究奨励賞は、理学、医学、薬学、工学、農学等の分野で過去3年の間に博士の学位を取得した37歳未満の研究者で、優れた博士論文を提出した若手研究者に対し、公益財団法人井上科学振興財団より贈呈される名誉ある賞です。
第35回井上研究奨励賞においては、全国の大学から推薦された140名の優れた候補者の中から、厳正なる選考の結果40名に贈呈されます。贈呈式は2019年2月4日、東京都内にて開催される予定です。
■受賞年月日
平成30年12月6日
■博士論文題目
細胞小器官の高選択的磁気分離技術構築に向けた磁性-プラズモンハイブリッドナノ粒子の創製とオートファゴソームの単離への応用に関する研究
平成30年12月7日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2018/12/07-1.htmlイムノクロマト診断薬の高感度化、迅速診断化に有効な金属ナノ粒子-ラテックスナノコンポジット微粒子を創製

イムノクロマト診断薬の高感度化、迅速診断化に有効な
金属ナノ粒子-ラテックスナノコンポジット微粒子を創製
ポイント
- 金および白金ナノ粒子をラテックス粒子にそれぞれ約200個、25,000個担持させた金属ナノ粒子-ラテックスナノコンポジット微粒子の合成に成功
- 合成した金属ナノ粒子-ラテックスナノコンポジット微粒子を用いたイムノクロマトは、金コロイドとの比較において最大64倍の感度向上を示した。
- 金属ナノ粒子-ラテックスナノコンポジット微粒子は、ビオチン-アビジン結合を利用することにより、様々な抗体、バイオマーカーを粒子表面にコーティング可能であることを示唆した。
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、物質化学領域の前之園 信也 教授らは、新日鉄住金化学株式会社総合研究所(新日鉄住金化学株式会社と新日鉄住金マテリアルズ株式会社は経営統合し、2018年10月1日より日鉄ケミカル&マテリアル株式会社となります)と連携し、医療診断薬(イムノクロマト)の高感度化・迅速診断化に有効な金属ナノ粒子-ラテックスナノコンポジット微粒子を創製しました。 イムノクロマト注)は、特別な設備が不要なハンディータイプのデバイスであり短時間に目視判定ができるため、 その簡便性・迅速性をメリットとして先進国から発展途上国まで世界の様々な医療現場において重要な検査手法として利用されています。しかしながら、イムノクロマトの感度は十分とは言えず、現状では検体中の抗原やバイオマーカーが比較的豊富に存在する検査項目に限定されています。また、検査項目の中には、発症初期の抗原濃度が低い場合、判定が不十分なものもあるため、検出感度の向上は非常に重要な課題となっています。このイムノクロマトの感度向上には、標識粒子の発色性が大きく影響します。すなわち、標識粒子の発色性を強くすることにより、イムノクロマトの感度を向上することが可能となります。 この様な背景の中、我々は従来標識粒子として利用されている金や白金ナノ粒子をラテックス粒子に数百~数万個担持させることにより粒子1個当たりの発色性が極めて強い金属ナノ粒子-ラテックスナノコンポジット微粒子を合成しました。さらに粒子サイズや金属ナノ粒子の担持量を最適化することでイムノクロマトの感度と検出時間を飛躍的に向上することに成功しました。本成果は、アメリカ化学会が発行するACS Applied Materials and Interfaces 誌に2018年9月5日に掲載されました。 本研究の一部は文部科学省ナノテクノロジープラットフォーム事業(分子・物質合成)の支援により北陸先端科学技術大学院大学で実施されました。 |
<今後の展開>
本研究で合成した金属ナノ粒子-ラテックスナノコンポジット微粒子の実用化を推進していきます。また、磁性粒子の担持など新しい機能化も検討していきます。一方、この粒子は、イムノクロマトでの利用のみに留まらず多種多様な応用の可能性を持っています。今後、様々な分野での適用検討を行うことで、この粒子の新しいアプリケーションの創製に繋がることを期待しています。
図1 金ナノコンポジット微粒子(左)と白金ナノコンポジット微粒子(右)のSEM写真
図2 金ナノコンポジット(Au-P2VP:青)と白金ナノコンポジット(Pt-P2VP:赤)の吸収スペクトル。 比較として、担体であるラテックス(P2VP:灰)および金コロイド(AuNP:緑)の吸収スペクトルもプロット。 挿入した写真は、Au-P2VPおよびPt-P2VPの水分散液。尚、Au-P2VP、Pt-P2VP、P2VP(1×109)は同じ粒子数で測定し、AuNPは100倍の粒子数(1×1011)で測定した。
図3 (A)インフルエンザA型で評価した結果。(上)Au-P2VP、(中)Pt-P2VP、および(下)Pt-P2VPを用いたイムノクロマト(640 HAU/mlの抗原を1.0×102〜1.024×105倍に希釈)。左の列はイムノクロマトのカラー写真を示し、右の列はコントラストを強調した黒と白のネガ画像を示す。 NC、C lineおよびT lineは、それぞれネガティブコントロール、コントロールラインおよびテストラインを示す。(B)抗原希釈倍率と吸収スペクトル強度の相関を示したグラフ。
<論文>
掲 載 誌 | ACS Applied Materials and Interfaces |
論文題目 | Metal (Au, Pt) Nanoparticle-Latex Nanocomposites as Probes for Immunochromatographic Test Strips with Enhanced Sensitivity |
著 者 | Yasufumi Matsumura,† Yasushi Enomoto,† Mari Takahashi,‡ Shinya Maenosono‡ †新日鉄住金化学株式会社 総合研究所 ‡北陸先端科学技術大学院大学 マテリアルサイエンス系 物質化学領域 |
DOI | 10.1021/acsami.8b11745 |
掲 載 日 | 2018年9月5日にオンライン掲載(Just Accepted Manuscript) |
<用語説明>
注)イムノクロマト
抗原抗体反応を利用した迅速検査方法。イムノクロマトは目視で結果を判定することができるため、簡便な方法として、主に細菌やウイルスなどの病原体の検出に用いられています。日本国内では、妊娠検査薬やインフルエンザ検査薬として多く利用されています。
平成30年9月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2018/09/21-1.htmlシリセン上へ分子を線状に集積 -分子の性質を損なわずに固定することに成功-

シリセン上へ分子を線状に集積
-分子の性質を損なわずに固定することに成功-
ポイント
- シリセンへ有機分子を蒸着した結果、分子の性質が保たれたまま、シリセン上の特定の活性な場所に固定されることが分かった。
- 有機分子とシリセンのつくる界面を実験と理論計算の両面から詳細に調べた例はなく、世界で初めての成果。
北陸先端科学技術大学院大学(JAIST)(学長・浅野 哲夫、石川県能美市)の先端科学技術研究科応用物理学領域の高村 由起子准教授、アントワーヌ・フロランス助教らは、ユニバーシティ・カレッジ・ロンドン、ユーリッヒ総合研究機構、東京大学物性研究所と共同でシリセン上にヘモグロビン様の有機分子がその性質を保持した状態で固定されることを発見しました。 |
Image courtesy of Tobias G. Gill, Vasile Caciuc, Nicolae Atodiresei, Ben Warner, and Cyrus Hirjibehedin.
<今後の展開>
シリセン上に磁性を持つ分子を固定できると、シリセンの分子スピントロ二クス分野への応用が期待されます。また、今後は、分子を蒸着したシリセンの電子状態の測定などを通して、シリセンの性質が分子吸着によりどう制御できるのかを調べていきたいと考えています。
<論文>
"Guided molecular assembly on a locally reactive two-dimensional material"(局所的に活性な二次元材料上への誘導分子集積)
DOI: 10.1002/adma.201703929
Ben Warner, Tobias G. Gill, Vasile Caciuc, Nicolae Atodiresei, Antoine Fleurence, Yasuo Yoshida, Yukio Hasegawa, Stefan Blügel, Yukiko Yamada-Takamura, and Cyrus F. Hirjibehedin
Advanced Materials 2017, 1703929.
http://onlinelibrary.wiley.com/doi/10.1002/adma.201703929/abstract
(オープンアクセス論文なので、どなたでもダウンロードできます。)
<共同研究先へのリンク>
Hirjibehedin Research Group, London Centre for Nanotechnology, University College London
https://www.ucl.ac.uk/hirjibehedin
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA
http://www.fz-juelich.de/pgi/pgi-1/EN/Home/home_node.html
長谷川幸雄研究室、東京大学物性研究所
http://hasegawa.issp.u-tokyo.ac.jp/hasegawa/Welcome/Welcome.html
平成29年10月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/10/12-1.html特別研究学生のトバイアス・ギルさんがRamsay Medalを受賞
特別研究学生のトバイアス・ギルさん(博士後期課程3年、応用物理学領域・高村(由)研究室、UCL-JAIST協働研究指導プログラム在籍中)がRamsay Medalを受賞しました。
Ramsay Medalは、University College London(UCL)のDepartment of Chemistryの博士課程最終学年で学ぶ最優秀の学生に1923年から毎年授与されてきた栄誉あるメダルです。メダルの名前の由来であるSir William Ramsayは、1887年から1913年まで同Departmentで教授を務め、1904年にノーベル化学賞を受賞した化学者です。
参考 https://www.ucl.ac.uk/chemistry/about-us/history/history-ramsaymedal
トバイアス・ギルさんはUCL-JAIST協働研究指導プログラムの一期生で、UCLのCyrus Hirjibehedin先生とJAISTの高村由起子准教授による協働研究テーマ「シリコン及びシリセン上の原子・分子スピントロニクス」のもとに選抜された学生です。
UCL-JAIST協働研究指導プログラムの詳細 http://www.jaist.ac.jp/ms/news/20120725-132457.html
■受賞年月日
平成28年7月1日
(メダルは11月に開催されるannual UCL Chemistry Department Dinnerにおいて授与)
■研究課題
「二次元材料シリセンの電子的・磁気的特性の制御」
"Controlling the electronic and magnetic properties of the two dimensional material silicene"
■研究課題概要
ケイ素版グラフェンと言える新しい二次元材料「シリセン」の上にケイ素や磁性を持つコバルトを蒸着し、それらの原子がシリセンと相互作用することでシリセンの電気的・磁気的な性質がどう変化するのかを走査トンネル顕微鏡を用いた実験から明らかにしました。
■受賞にあたっての一言
To be awarded the Ewing prize, and Ramsay medal for best final year PhD student in the Department of Chemistry at UCL is a great honour. It is recognition of the fantastic work our collaborative team, from UCL and JAIST, has achieved. Our unique insights into the two-dimensional material silicene have only been made possible thanks to the guidance of both Dr Cyrus Hirjibehedin of UCL and Prof Yukiko Yamada-Takamura at JAIST. I owe a great debt to these two for their tutelage, and support over the past four years. I would also like to take this opportunity to thank the M3S centre for doctoral training in the Department of Chemistry at UCL, and the School of Materials Science at JAIST for their financial support. Finally, it has been a wonderful privilege to be part of the two institutes and I am sure many more great things will come from continued collaborations in years to come.
平成28年7月14日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2016/07/14-1.html