研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。ダイヤモンド結晶中の色中心から飛び出す準粒子を発見

![]() ![]() ![]() ![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 慶應義塾大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド結晶中の色中心から飛び出す準粒子を発見
電子と結晶格子の振動をまとめて一つの粒子とみなしたものをポーラロン準粒子と呼びます。色中心と呼ばれる不純物を導入したダイヤモンド結晶に超短パルスレーザー光を照射し、その反射率の変化を精密測定した結果、ポーラロンが色中心の周りに飛び出して協力しあうことを発見しました。
ダイヤモンドの結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがあります。この窒素と空孔が対になったNitrogen- Vacancy(NV)中心はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となります。NV中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性を高空間分解能・高感度なセンサー機能として利用することが期待されています。NV中心の周りの結晶格子の歪み(ひずみ)により、NV中心の電子のエネルギー準位が分裂することが分かっていますが、電子と格子歪みの相互作用メカニズムなど詳細については、ほとんど解明されていませんでした。 本研究では、純度の高いダイヤモンド結晶の表面近傍に、密度を制御したNV中心を極めて薄いシート(ナノシート)状に導入しました。そのシートにパルスレーザーを照射し、ダイヤモンドの格子振動の様子を調べた結果、NV中心の密度が比較的低いにもかかわらず、格子振動の振幅が約13倍に増強されることが分かりました。そこで、量子力学に基づく計算手法(第一原理計算)でNV中心の周りの電荷状態を計算したところ、正負の電荷が偏った状態になっていることが分かりました。 電子と結晶格子の振動をまとめて一つの粒子とみなしたものをポーラロン準粒子と呼び、これにはいくつかのタイプがあります。ダイヤモンドでは、約70年前にフレーリッヒが提案したタイプは形成されないと考えられていましたが、今回の解析結果は、フレーリッヒ型のポーラロンがNV中心から飛び出してナノシート全体に広がっていることを示しています。本研究成果は、ポーラロンを利用したNV中心に基づく量子センシング技術の新たな戦略への道筋を開くものです。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明 教授
市川 卓人 大学院生(当時)
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀 准教授
慶應義塾大学 電気情報工学科
ポール フォンス 教授
【研究の背景】
ダイヤモンドは炭素原子のみからなる結晶で、高い硬度や熱伝導率を持っています。その特性を生かし、研磨材や放熱材料などさまざまな分野で応用されています。
そして、最近注目されているのが量子センサー注1)としての働きです。ダイヤモンド中の不純物には窒素やホウ素などさまざまなものがあります。その中でも、不純物原子で置換された点欠陥注2)に電子や正孔が捕捉され発光を伴う種類のものは、ダイヤモンドを着色させるため「色中心」と呼ばれ、量子準位の変化で温度や電場を読み取る量子センサーとして用いられています。量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心注3)と呼ばれる複合欠陥を用いたセンサーは、高空間分解能・高感度を必要とする細胞内計測やデバイス評価装置のセンサーへの応用が期待されています。
NV中心の周りの炭素原子の格子にはヤーン・テラー効果注4)により歪みが生じていることが分かっており、この格子歪みに伴いNV中心の電子状態が分裂し、NV中心からの発光強度などに影響を与えることが知られています。しかし、その格子歪みに関しては、ポーラロン注5)の存在が示唆されるものの、電子と格子振動の相互作用の観点からは十分な解明がなされていませんでした。
【研究内容と成果】
本研究では、極めて不純物が少ない高品質のダイヤモンド結晶に窒素イオン(14N+)を4種類の線量(ドーズ)で注入することで、NV中心の密度を制御しながら表面近傍40ナノメートルの深さに導入し、そのナノシートにおける炭素原子の集団運動(格子振動:フォノン注6))の様子を調べました。
フェムト秒(1000兆分の1秒、fs)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注7)を、NV中心を導入した高純度ダイヤモンド単結晶に照射し、ポンプ・プローブ分光法注8)によりダイヤモンド試料表面における反射率の変化を精密に計測しました。その結果、ポンプパルス照射直後(時間ゼロ)に見られる超高速に応答する電気・光学効果注9)の信号に加え、結晶中に発生した40テラヘルツ(1012 Hz)の極めて高い周波数を持つ位相がそろった格子振動を検出することに成功しました(図1)。さらにNV中心の密度を変化させて計測を行ったところ、14N+ドーズ量が1x1012/cm2のときに、格子振動の振幅(波形の縦軸方向の幅)が約13倍にも増強されることが分かりました(図2)。
通常の固体結晶では、格子欠陥を導入すると欠陥による格子振動の減衰が大きくなるため、格子振動の振幅は小さくなることが知られており、約13倍もの増強は固体物理学の範疇では説明できません。そこで第一原理計算注10)を用いて、NV中心の周りの電荷状態を計算したところ、正負の電荷が偏った状態になっていることが分かりました。これは、NV中心の周りに分極が発生しており、ヤーン・テラー効果によるポーラロンとは全く異なるフレーリッヒ型ポーラロン注11)がNV中心の周りに存在していることを示唆しています。また、約13倍もの格子振動の増強は、フレーリッヒ型ポーラロンがNV中心近傍から飛び出してナノシート全体に広がり、互いに協力し合っていることを示しています(図3)。一方、さらにドーズ量が増加すると、今度は欠陥による減衰により格子振動の振幅が小さくなることも分かりました(図2)。よって、ドーズ量が1x1012/cm2の時に増強と減衰がつり合い、最も協力現象が起こりやすいことが示されました。
【今後の展開】
本研究グループではこれまで、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)が発現することを報告しました。SHGは結晶にレーザー光を照射した際に、そのレーザー周波数の2倍の周波数の光が発生する現象です。今回の成果は、これらの先行研究に基づいたものです。
今回明らかにした物理的メカニズムは、レーザーパルスの強い電場下で起こるNV中心近傍のフレーリッヒ相互作用による協力的ポーラロンの生成と、それによるダイヤモンド格子振動の増強を示唆しています。また、今回観測したダイヤモンドの格子振動は、固体材料の中で最も高い周波数を持っています。つまり、これらの結果は、40テラヘルツという極めて高い周波数の格子歪み場による電子と格子振動の相互作用(ポーラロン準粒子)を利用したNV中心に基づく量子センシング技術の開発に向けた新たな戦略への道筋を開くものと言えます。
【参考図】
図1 本研究で行なった実験の概要図
NV中心なし、およびNV中心ありのダイヤモンド試料で得られた時間分解反射率信号。挿入図はNV中心の局所構造(楕円)およびポンプ・プローブ分光法の概要を示している。挿入図中の紫色の球が窒素(Nitrogen)を、点線で描かれた円が空孔(Vacancy)を示す。ポンプパルスを照射したのち、プローブパルスを照射するまでの時間を遅延時間(単位はfs)と呼ぶ。
図2 実験で得られた位相がそろった格子振動信号のドーズ依存性
NV中心なし、および4種類の窒素イオン(14N+)のドーズ量におけるダイヤモンド試料の時間分解反射率変化信号。黒線は、位相がそろった格子振動の信号を減衰型の正弦波(sin関数)によりフィットした結果である。ドーズ量が1x1012 N+cm-2の時に、位相がそろった格子振動の振幅がNV中心なしの場合と比較して約13倍に増強されていることが分かった。
図3 NVダイヤモンドにおける協力的ポーラロニック描像の模式図
図中のτは、パルスレーザー(ポンプパルス)照射後の経過時間(単位はfs)を表す。(a) 励起前のNVダイヤモンドの電荷状態を示す。NV中心は負に帯電したNV-状態(赤色の電荷分布)と電荷が中和されたNV0状態(緑色の電荷分布)が混在し、それぞれは局在している。挿入図はイオン化ポテンシャルINVを示し、rはイオン半径である。 (b) 光励起により、NV中心はポンプ電場Epumpによってイオン化される。 (c) 光励起直後、電荷は強く非局在化され、NV中心間の距離にわたって広がり、非線形分極PNLを形成する。 (d) 非線形分極PNLによりコヒーレントな(位相のそろった)格子振動が駆動される。
【用語解説】
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
結晶格子中に原子1個程度で存在する格子欠陥を指す。原子の抜け穴である空孔や不純物原子で置換された置換型欠陥などがある。
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」は、ダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NV中心には、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
固体中において、電子的に縮退した基底状態を持つ場合、結晶格子は変形する(歪ませる)ことによりエネルギーが低く安定な状態になる。このような効果をヤーン・テラー効果という。1937年にイギリスのハーマン・アーサー・ヤーンとハンガリーのエドワード・テラーにより提唱された。
結晶中の格子振動と電子が相互作用すると、結合して相互作用の衣を着た素励起である準粒子、すなわちポーラロンが生成される。ポーラロンの存在は1933年にロシアの物理学者レフ・ダヴィドヴィッチ・ランダウによって提案された。フレーリッヒが提案したタイプのポーラロン注11)はこれまで極性をもつ半導体や誘電体など(分極を有する材料)で報告されているが、ダイヤモンドは極性材料ではないため、フレーリッヒ型ポーラロンは観測されていなかった。
原子の集団振動を格子振動と呼ぶ。格子振動を量子化したものをフォノンと呼ぶ。
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
強い励起パルス(ポンプパルス)により試料を励起し、時間遅延をおいて弱い探索パルス(プローブパルス)を照射し、プローブ光による反射率変化などから試料内部に励起された物質の応答を計測する手法のこと。
物質に電場を印可すると、その強度に応じて屈折率が変化する効果のこと。
「もっとも基本的な原理に基づく計算」という意味で、量子力学の基本法則に基づいた電子状態理論を用いて電子状態を解く計算手法である。物質の光学特性などの物性を求めることができる。
電子と縦波光学フォノンの間の相互作用をフレーリッヒ相互作用と呼ぶ。1954年にドイツの物理学者ヘルベルト・フレーリッヒにより提唱された。この相互作用により生じたポーラロンがフレーリッヒ型ポーラロンである。
【研究資金】
本研究は、科研費による研究プロジェクト(22H01151, 22J11423, 22KJ0409, 23K22422, 24K01286)、および科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)(JPMJCR1875)の一環として実施されました。
【掲載論文】
題名 | Cooperative dynamic polaronic picture of diamond color centers. (ダイヤモンド色中心の協力的な動的ポーラロニック描像) |
著者名 | T. Ichikawa, J. Guo, P. Fons, D. Prananto, T. An, and M. Hase |
掲載誌 | Nature Communications |
掲載日 | 2024年8月30日 |
DOI | 10.1038/s41467-024-51366-x |
令和6年9月2日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/09/02-1.html学生の永原さんが第6回フロンティア太陽電池セミナーにおいて優秀ポスター賞を受賞

学生の永原光倫さん(博士前期課程2年、サスティナブルイノベーション研究領域、大平研究室)が、第6回フロンティア太陽電池セミナーにおいて優秀ポスター賞を受賞しました。
フロンティア太陽電池セミナーは、産官学の様々な分野で太陽電池研究に取り組む研究者が集まり、シリコンや化合物など無機系、有機薄膜系、ペロブスカイト型、さらには量子ドット型など新しい太陽電池も含み、広く太陽電池の開発研究および関連する基盤技術を題材に取り上げ、様々な視点から徹底的に議論し、研究者間での連携を深めることで、本研究分野の飛躍的な発展の促進を図るものです。
第6回フロンティア太陽電池セミナーは令和6年12月12日~13日にかけて、愛媛県(松山市)にて開催されました。
※参考:第6回フロンティア太陽電池セミナー
■受賞年月日
令和6年12月13日
■研究題目、論文タイトル等
封止材とカバーガラスを使用しない曲面結晶Si太陽電池モジュールの機械的強度および浸水試験
■研究者、著者
永原光倫、Huynh Thi Cam Tu、大平圭介
■受賞対象となった研究の内容
封止材とカバーガラスを使用しない曲面・大面積結晶Si太陽電池モジュールに対し、JIS規格に基づく砂袋式荷重試験と降雹試験の2種類の機械的強度試験を行った。結果として、砂袋式荷重試験では、切削加工により作製したポリカーボネート(PC)ベースが破壊されないことや、フロントカバーであるPC板と太陽電池セルの接触による破損がないことが分かった。降雹試験では、降雹によるフロントカバーに傷が確認されないことや、衝撃による太陽電池セルの破損が見られないことを確認した。以上のことから、従来型太陽電池モジュールの評価基準を満たす機械的強度を有することが分かった。また、ベースの端部にOリングをはめ込み、ポリカーボネート製カバーとフレーム状のクランプで押さえることにより水分浸入の抑止を試みた。この構造を持つ小型モジュールに対し浸水試験を行った結果、水分浸入がみられなかったことから、OリングとAlフレームは水分浸入を防ぐ構造であるということが示された。
■受賞にあたって一言
優秀ポスター賞を受賞でき、とてもうれしく思います。研究を進める中で、大平圭介教授をはじめ多くのサポートと貴重な助言をいただいたことが、今回の受賞につながったと感じています。これからも一層研究活動に取り組んでいきたいです。
令和7年1月31日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/01/31-2.htmlダイヤモンド中に10兆分の1秒で瞬く磁化を観測 ~超高速時間分解磁気センシング実現に期待~

![]() ![]() ![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド中に10兆分の1秒で瞬く磁化を観測
~超高速時間分解磁気センシング実現に期待~
磁石や電流が発する磁気の大きさと向きを検出するデバイスや装置を磁気センサーと呼びます。現在では、生体中における微弱な磁気から電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの応用分野が広がりつつあります。磁気センサーの中で最も高感度を誇るのが、超伝導量子干渉素子(SQUID)で、1 nT(ナノテスラ、ナノは10億分の1)以下まで検出可能です。また、ダイヤモンドの点欠陥である窒素−空孔(NV)センターと走査型プローブ顕微鏡(SPM)技術を組み合わせることで、数十nm(ナノメートル)の空間分解能を持つ量子センシングが可能になると期待されています。 このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきましたが、時間分解能はマイクロ秒(マイクロは100万分の1)の範囲にとどまっています。このため、磁場を高い時間分解能で測定できる新しい磁気センシング技術の開発が望まれていました。 本研究では、表面近傍にNVセンターを導入したダイヤモンド単結晶に超短光パルスを照射し、それにより10兆分の1秒で瞬く結晶中の磁化を検出することに成功しました。検出感度を見積もると、約35 mT(ミリテスラ、ミリは1000分の1)となりました。また、計測の時間分解能は、超短光パルスにより磁化を発生させたことにより、約100フェムト秒(フェムトは1000兆分の1)となりました。 本研究成果により、NVセンターでは従来困難だった高速に時間変化する磁気のセンシングも可能であることが示され、高い時間分解能と空間分解能を兼ね備えた新たな磁気センシングの開拓につながることが期待されます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀准教授
【研究の背景】
磁石や電流が発する磁気の大きさと向きを検出するのが磁気センサーです。現在では、生体中における微弱な磁気から、電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの研究開発が進んでいます。磁気センサーには、比較的簡便なトンネル磁気抵抗素子注1)によるものや、超伝導体のリングを貫く磁束の変化を電流で読み取る超伝導量子干渉素子(SQUID)注2)などがあります。その中でも最高感度を誇るのがSQUIDで、1 nT(ナノテスラ)以下の磁場をも検出できるほどです。しかし、超伝導体を用いるSQUIDは電気回路や極低温などの高度な取扱いを要します。このため、近年では、ダイヤモンドの点欠陥である窒素−空孔(NV)センター注3)を用いた磁気センサーの開発が進んでいます。特に、負に帯電したNVスピン状態を利用した全光読み出しシステムが、室温でも動作する量子磁力計として注目されています。また、NVセンターの利用と、走査型プローブ顕微鏡(SPM)注4)技術を組み合わせることで、数十nmの空間分解能注5)で量子センシング注6)を行うことが可能になります。
このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきました。その一方で、時間分解能注7)はマイクロ秒の範囲にとどまっています。このため、磁場をより高い時間分解能で測定できる新しい量子センシング技術の開発が望まれていました。
そうした中、NVセンターを高濃度に含むダイヤモンド単結晶膜において、入射された連続発振レーザーの直線偏光が回転することが分かり、ダイヤモンドにおける磁気光学効果が実証されました。NVセンターに関連する集団的な電子スピンが磁化として機能することが示唆されていますが、この手法では時間分解能を高めることができません。他方、逆磁気光学効果、すなわち光パルスで磁気を作り出すという光磁気効果に対するダイヤモンドNVセンターの研究については、行われてきませんでした。しかし、この光磁気効果を開拓することは、ダイヤモンドの非線形フォトニクスの新しい機能性を追求する上で非常に重要です。また、ダイヤモンドNVセンターのスピンを用いた非接触かつ室温動作の量子センシング技術を、高い時間分解能という観点でさらに発展させるためにも、光磁気効果の開拓が必要だと考えられます。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注8)を円偏光にして、NVセンターを導入した高純度ダイヤモンド単結晶に照射し、結晶中に発生した超高速で生成・消滅する磁化を検出することに成功しました。
実験ではまず、波長800nmの近赤外パルスレーザー光をλ/4波長板により円偏光に変換し、NVセンターを導入した高純度ダイヤモンド単結晶に励起光として照射しました。その結果、磁気光学効果の逆過程(光磁気効果)である逆ファラデー効果注9)により、ダイヤモンド中に磁化を発生できることを見いだしました(参考図1挿入図)。この磁化が生じている極短時間の間に直線偏光のプローブ光を照射すると、磁化の大きさに比例してプローブ光の偏光ベクトルが回転します。これを磁気光学カー回転と呼びます。磁気光学カー回転の時間変化はポンプープローブ分光法で測定しました(図1)。測定の結果、逆ファラデー効果で生じるダイヤモンド中の磁化は、約100フェムト秒の応答として誘起されることが確かめられました(図2左)。NVセンターを導入していないダイヤモンドでも磁化は発生しますが、導入すると、発生する磁化が増幅されることも明らかになりました(図2右)。
次に、励起レーザーの偏光状態を直線偏光から右回り円偏光、そして直線偏光に戻り、次に左回り円偏光と逐次変化させることで、波長板の角度とカー回転角(θ )の関係を調べました。すると、NVセンターを導入する前の高純度ダイヤモンド単結晶では、逆ファラデー効果を示すsin 2θ 成分および非線形屈折率変化である光カー効果を示す sin 4θ 成分のみが観測されました。一方、NVセンターを導入したダイヤモンドでは、それらの成分に加えて、新規にsin 6θ の成分を持つことが明らかになりました(図3a)。さらに、励起光強度を変化させながら各成分を解析したところ、sin 2θ 成分およびsin 4θ 成分は励起光強度に対して一乗で増加しますが(図3b,c)、新規のsin 6θ の成分の大きさは励起光強度に対して二乗で変化することが分かりました(図3d)。これらのことから、 sin 6θ の成分は、NVセンターが有するスピンが駆動力となり、ダイヤモンド結晶中に発生した非線形な磁化(逆コットン・ムートン効果注10))であることが示唆されました。また、この付加的で非線形な磁化により、図2で観測された磁化の増幅が説明できました。この非線形な磁化による磁場検出感度を見積もると、約35 mT(ミリテスラ)となりました。SQUIDの検出感度には及びませんが、本手法では約100フェムト秒という高い時間分解能が得られることが示されたといえます。
【今後の展開】
本研究チームは、今回観測に成功した光磁気効果を用いた量子センシング技術をさらに高感度化し、ダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングに深化させることを目指して研究を進めていきます。今後は、ダイヤモンドNVセンターが駆動力となった逆コットン・ムートン効果を磁気センシングに応用することで、先端材料の局所磁場やスピン流を高空間・高時間分解能で測定することが可能となります。さらに、パワーデバイス、トポロジカル材料・回路、ナノバイオ材料など実際のデバイスの動作条件下で、例えば磁壁のダイナミクスや磁化反転などデバイス中に生じるダイナミックな変化を、フェムト秒の時間分解能で観察できることになり、先端デバイスの高速化や高性能化への貢献が期待されます。
【参考図】
図1 本研究に用いた実験手法 パルスレーザーから出たフェムト秒レーザー光はビームスプリッタでポンプ光とプローブ光に分割され、それぞれ波長板と偏光子を通過した後、ポンプ光は光学遅延回路を経由した後レンズで試料に照射される。プローブ光も同様に試料に照射された後、偏光ビームスプリッタにより分割されて二つの検出器で光電流に変換される。その後、電流増幅された後、デジタルオシロスコープで信号積算される。右上の挿入図は、逆ファラデー効果の模式図を示し、右回り(σ+)または左回り(σ-)の円偏光励起パルスによりダイヤモンド結晶中に上向き(H+)または下向きの磁化(H-)が生じる。なおデジタルオシロスコープでは、下向きの磁化が観測されている。 |
図2 高純度ダイヤモンド(NVなし)およびNVセンターを導入したダイヤモンド(NVあり)における時間分解カー回転測定の結果。赤色および青色の実線はそれぞれ、右回り円偏光、左回り円偏光により励起した実験結果を示す。 |
図3 NVセンターを導入したダイヤモンドにおけるカー回転の解析結果 (a) 下図(青丸)はカー回転角の波長板の角度(θ )に対するプロットである。黒い実線はCsin 2θ + Lsin 4θ による最小二乗回帰曲線(フィット)を示す。上図(赤丸)は下図の最小二乗回帰の残差を示す。太い実線はFsin 6θ による最小二乗回帰曲線(フィット)を示す。また最上部は偏光状態の変化(直線偏光→右回り円偏光→直線偏光→左回り円偏光→直線偏光)を表す。(b) Csin 2θ の振幅Cを励起フルエンスに対してプロットした図。 (c) Lsin 4θ の振幅Lを励起フルエンスに対してプロットした図。(d) Fsin 6θ の振幅Fを励起フルエンスに対してプロットした図。(b)と(c)の実線は一次関数によるフィットを示し、(d) の実線は二次関数によるフィットを示す。 |
【用語解説】
注1)トンネル磁気抵抗素子
2枚の磁性体の間に非常に薄い絶縁体を挟んだ構造(磁性体/絶縁体/磁性体)からなる素子。磁性体は金属であり、電圧を加えると、薄いポテンシャル障壁を通り抜けるという量子力学的なトンネル効果により絶縁体を介したトンネル電流が流れる。各磁性体の磁化の向きが平行な場合と反平行な場合で、素子の電気抵抗が大きく変化する。これをトンネル磁気抵抗効果という。よって、この効果を原理とした素子をトンネル磁気抵抗素子と呼ぶ。
注2)超伝導量子干渉素子(QUID)
超伝導体のリングにジョセフソン接合(二つの超伝導体間にトンネル効果によって超伝導電流が流れるようにした接合のこと)を含む素子を、超伝導量子干渉素子(SQUID)と呼ぶ。リングを貫く磁束が変化すると、ジョセフソン接合を流れるトンネル電流が変化するため、高感度の磁気センサーとして用いられる。
注3)窒素−空孔(NV)センター
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)センター」はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となる。NVセンターには、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。
注4)走査型プローブ顕微鏡(SPM)
微小な探針(プローブ)で試料表面をなぞることにより、試料の凹凸を観察する顕微鏡の総称である。細胞やデバイスなどにおいて、分子や原子などナノメートルの構造を観察するのに用いられる。代表的なものに原子間力顕微鏡(AFM)などがある。
注5)空間分解能
近い距離にある2つの物体を区別できる最小の距離である。この距離が小さいほど空間分解能が高く、微細な画像データの測定が可能になる。
注6)量子センシング
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
注7)時間分解能
観測するデータに識別可能な変化を生じさせる最小の時間変化量である。最小時間変化量が小さいほど時間分解能が高く、高速で変化する画像などのデータ識別が可能となる。
注8)超短パルスレーザー
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注9)逆ファラデー効果
ファラデー効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは平行である。逆ファラデー効果はこれとは逆に、円偏光したレーザー光を物質に入射することで、入射した方向に平行に磁化が生じる現象のことをいう。磁性体に限らず、あらゆる物質で生じる非線形光学過程である。
注10)逆コットン・ムートン効果
コットン・ムートン効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に、光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは垂直である。逆コットン・ムートン効果は、逆に、磁界が印可された物質に直線偏光のレーザー光を入射した際に、入射した方向に垂直に磁化が生じる現象であり、磁性体などで生じる高次の非線形光学過程である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング(JPMJCR1875)」(研究代表者:長谷 宗明)、および独立行政法人 日本学術振興会 科学研究費補助金「サブサイクル時間分解走査トンネル顕微鏡法の開発と応用」(研究代表者:重川 秀実)による支援を受けて実施されました。
【掲載論文】
題 目 | Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals. (ダイヤモンド結晶中の窒素空孔センターが誘起する超高速光磁気効果) |
著者名 | Ryosuke Sakurai, Yuta Kainuma, Toshu An, Hidemi Shigekawa, and Muneaki Hase |
掲載誌 | APL Photonics |
掲載日 | 2022年6月15日(現地時間) |
DOI | 10.1063/5.0081507 |
令和4年6月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/06/16-1.htmlナノ物質の強度を決める表面1層の柔らかさ ―電子顕微鏡観察下での金属ナノ接点のヤング率測定―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 金沢大学 |
ナノ物質の強度を決める表面1層の柔らかさ
―電子顕微鏡観察下での金属ナノ接点のヤング率測定―
ポイント
- 金ナノ接点の物質強度(ヤング率)は接点が細くなると減少した。
- 独自開発の顕微メカニクス計測法でこの計測実験に成功。
- 最表面層のヤング率のみがバルク値の約1/4に減少。
- ナノ電気機械システム(NEMS)の開発に指針を与える成果である。
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域の大島義文教授、富取正彦教授、張家奇研究員、及び金沢大学 理工研究域 数物科学系の新井豊子教授は、[111]方位を軸とした金ナノ接点を引っ張る過程を透過型電子顕微鏡で観察しながら、等価ばね定数と電気伝導の同時に測定する手法(顕微メカニクス計測法)によって、金ナノ接点のヤング率がサイズに依存することを明らかにした。 金[111]ナノ接点は砂時計のようなくびれ形状を持つ。そのくびれは、0.24nm引っ張るたびに、より小さな断面積をもつ(111)原子層1層が挿入されることで段階的に細くなっていく。この観察事実を基に、挿入前後の等価ばね定数値の差分から、挿入された(111)原子層の等価ばね定数を求め、さらにこの(111)原子層の形状とサイズを考慮してヤング率を算出した。サイズが2 nm以下になると、ヤング率は約80 GPaから30 GPaへと徐々に減少した。この結果から、最外層のヤング率が約22 GPaと、バルク値(90GPa)の約1/4であることを見出した。このような材料表面での機械的強度の差は、ナノ電気機械システム(NEMS)の材料設計において考慮すべき重要な特性である。 本研究成果は、2022年4月5日(米国東部標準時間)に科学雑誌「Physical Review Letters」誌のオンライン版で公開された。なお、本研究は、日本学術振興会(JSPS)科研費、18H01825、18H03879、笹川科学研究助成、丸文財団交流研究助成を受けて行われた。 |
金属配線のサイズが数nmから原子スケールレベル(金属ナノワイヤ)になると、量子効果や表面効果によって物性が変化することが知られている。金属ナノワイヤの電気伝導は、量子効果によって電子は特定の決められた状態しか取れなくなるためその状態数に応じた値になること、つまり、コンダクタンス量子数(2e2/h (=12.9 kΩ-1);e: 素電荷量、h: プランク定数)の整数倍になることが明らかになっている。近年、センサーへの応用が期待されナノ機械電気システムの開発が進められており、金属ナノワイヤを含むナノ材料のヤング率などといった機械的性質の理解が課題となっている。この解決に、例えば、透過型電子顕微鏡(TEM)にシリコン製カンチレバーを組み込んだ装置を用いて、カンチレバーの曲がりから金属ナノワイヤに加えた力を求め、それによって生じた変位をTEM像で得ることで、ヤング率が推量されている。しかし、この測定法は、個体差があるカンチレバーのばね定数を正確に知る必要があり、かつ、サブオングストロームの精度で変位を求める必要があるため、定量性が十分でないと指摘されている。
本研究チームは、原子配列を直接観察できる透過型電子顕微鏡(TEM)のホルダーに細長い水晶振動子(長辺振動水晶振動子(LER)[*1])を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする顕微メカニクス計測法を世界で初めて開発した(図1上段)。この手法では、水晶振動子の共振周波数が、物質との接触で相互作用を感じることによって変化することを利用する。共振周波数の変化量は物質の等価バネ定数に対応するので、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)で、TEMによる原子像がぼやけることはない。この手法は、上述した従来の手法の問題点を克服しており、高精度測定を実現している。
本研究では、[111]方位を軸とした金ナノ接点(金[111]ナノ接点)をLER先端と固定電極間に作製し(図1上段参照)、この金[111]ナノ接点を一定速度で引っ張りながら構造を観察し、同時に、その電気伝導、および、ばね定数を測定した(図1下段)。金[111]ナノ接点は砂時計のようなくびれをもつ形状であり、0.24nm引っ張る度により狭い断面をもつ(111)原子層1層がくびれに挿入されることで段階的に細くなることを観察した。これは、図1下段のグラフで電気伝導がほぼ0.24nm周期で階段状に変化することに対応していた。この事実から、挿入された(111)原子層の等価ばね定数を挿入前後の等価ばね定数の差分から算出することができ、さらに、この(111)原子層の形状やサイズを考慮することでヤング率を見積もった。なお、28回の引っ張り過程を測定して可能な限り多数のヤング率を見積もることで統計的にサイズ依存性を求めた(図2)。その結果、ヤング率は、サイズが2 nm以下になると、サイズが小さくなるとともに約80 GPaから30 GPaへと徐々に減少した。この結果から、最外層のヤング率が約22 GPaと、バルク値(90GPa)の約1/4であることを見出した。このような材料表面の強度は、ナノ電気機械システム(NEMS)の材料設計でも考慮すべき重要な特性である点で大きな成果である。
図1
(上段)金ナノコンタクトの等価ばね定数を計測する顕微メカニクス計測法。透過型電子顕微鏡(TEM)を用いて金ナノ接点の構造観察をしながら、長辺振動水晶振動子(LER)を用いて等価ばね定数を計測できる。
(下段)(左)金ナノ接点の引っ張り過程における変位に対する電気伝導及び等価ばね定数の変化を示すグラフ。(右)変位Aと変位Bで得た金ナノ接点のTEM像と最もくびれた断面の構造モデルを示す。黄色が内部にある原子、青が最表面原子である。
図2
金[111]ナノ接点の引っ張り過程を28回測定して、統計的に求めた金[111]ナノ接点ヤング率のサイズ依存性である。横軸は、断面積である。赤丸が実験値であり、誤差は、同じ断面の金(111)原子層に対して得られたヤング率のばらつきを示す。青丸は、第一原理計算によって得た結果である。
【論文情報】
掲載誌 | Physical Review Letters |
論文題目 | Surface Effect on Young's Modulus of Sub-Two-Nanometer Gold [111] Nanocontacts |
著者 | Jiaqi Zhang, Masahiko Tomitori, Toyoko Arai, and Yoshifumi Oshima |
掲載日 | 2022年4月5日(米国東部標準時間) |
DOI | 10.1103/PhysRevLett.128.146101 |
【用語説明】
[*1] 長辺振動水晶振動子(LER)
長辺振動水晶振動子(LER、図1参照)は、細長い振動子(長さ約3 mm、幅約0.1 mm)を長辺方向に伸縮振動させることで、周波数変調法の原理で金属ナノ接点などの等価バネ定数(変位に対する力の傾き)を検出できる。特徴は、高い剛性(1×105 N/m)と高い共振周波数(1×106 Hz)である。特に、前者は、化学結合の剛性(等価バネ定数)測定に適しているだけでなく、小さい振幅による検出を可能とすることから、金属ナノ接点を壊すことなく弾性的な性質を得ることができ、さらには、原子分解能TEM像も同時に得られる点で大きな利点をもつ。
令和4年4月11日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/04/11-1.htmlナノ粒子と近赤外レーザー光でマウス体内のがんを検出・治療できる! ~ ガンマ線架橋したゼラチン-液体金属ナノ粒子の開発により実現 ~

![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 国立研究開発法人量子科学技術研究開発機構 |
ナノ粒子と近赤外レーザー光でマウス体内のがんを検出・治療できる!
~ ガンマ線架橋したゼラチン-液体金属ナノ粒子の開発により実現 ~
ポイント
- 液体金属に生体分子を吸着させた複合体へのガンマ線照射によりコア-シェル型の構造を持つナノ粒子の作製に成功
- ガンマ線架橋したゼラチン-液体金属ナノ粒子がEPR効果により腫瘍に集積し、マウスに移植したがんの可視化と、光熱変換によるがん治療が可能であることを実証
- 当該ナノ粒子と近赤外光を組み合わせた新たながん診断・治療技術の創出に期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 物質化学領域の都 英次郎准教授とセキ ウン大学院生(博士前期課程)は、量子科学技術研究開発機構(理事長・平野 俊夫、千葉県千葉市)、高崎量子応用研究所 先端機能材料研究部(群馬県高崎市)の田口 光正上席研究員(「生体適合性材料研究プロジェクト」プロジェクトリーダー)、木村 敦上席研究員と共同で、量子ビーム(ガンマ線*1)架橋技術を用いて、ガリウム-インジウム合金から成る液体金属*2 表面に様々な生体高分子(ゼラチン、DNA、レシチン、牛血清蛋白質)がコートされ、安定な状態を保つことができるコア-シェル型*3 のユニークな構造を有すナノ粒子の作製に成功した(図1)。得られたゼラチン-液体金属ナノ粒子は、EPR効果*4 によって大腸がんを移植したマウス体内の腫瘍内に集積し、生体透過性の高い近赤外レーザー光*5 により、がん患部の可視化と光熱変換による治療が可能であることを実証した。さらに、マウスがん細胞とヒト正常細胞を用いた細胞毒性試験と生体適合性試験を行い、いずれの検査からもゼラチン-液体金属ナノ粒子が生体に与える影響は極めて少ないことがわかった。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待される。 |
【研究背景と内容】
ガリウム・インジウム(Ga/In)合金からなる室温で液体の金属(液体金属)は、高い生体適合性と優れた物理化学的特性を有することが知られており、とりわけナノ粒子化した液体金属をバイオメディカル分野に応用する研究に大きな注目が集まっている。研究チームでも、液体金属をがん患部に送り込むことができれば、生体透過性の高い近赤外レーザー光を用いることで、患部の可視化や光熱変換を利用した、新たながんの診断や治療が実現できるのではないかと考え、研究をスタートさせた。
液体金属をナノ粒子化するためには煩雑な合成プロセスが必要であり、ナノ粒子化した液体金属の構造や機能を溶媒中で安定的に保持させることは難しい。そこで、研究チームは、液体金属をがん患部まで送り、がん細胞内に取り込ませるために、液体金属表面に生体高分子(ゼラチン、DNA、レシチン、牛血清蛋白質)を吸着させたコア-シェル型ナノ粒子の作製を試みた。Ga/In液体金属と生体分子の混合物に超音波照射することで、コア-シェル型ナノ粒子を形成できることを見出したが、そのままではナノ粒子の構造を水中で安定的に維持させることはできなかった。
この問題を解決するために、ナノ粒子表面の生体高分子がバラバラにならないよう、量子ビーム(ガンマ線)架橋反応を利用すれば、架橋剤などの細胞毒性を有する薬剤を用いることなく、生体高分子の特性を保持したまま安定化できると考えた。この方法でガンマ線架橋したゼラチン-液体金属ナノ粒子は、30日以上の粒径安定性を有していること、細胞に対し高い膜浸透性を有し毒性が無いこと、近赤外レーザー光照射により発熱が起こることが確認できたため、がん患部の可視化と治療効果について試験を行った。
大腸がんを移植して10日後のマウスに、ゼラチン-液体金属ナノ粒子を投与し、4時間後に740~790 nmの近赤外光を当てたところがん患部だけが蛍光を発している画像が得られ、当該ナノ粒子がEPR効果によりがん組織に取り込まれていることが分かった(図2(左))。そこで、当該ナノ粒子が集積した患部に対して808 nmの近赤外レーザー光を照射したところ、光熱変換による効果で26日後には、がんを完全に消失させることに成功した(図2(右))。
さらに、ゼラチン-液体金属ナノ粒子の細胞毒性と生体適合性を評価した。2種類の細胞[マウス大腸がん由来細胞(Colon-26)、ヒト胎児肺由来正常線維芽細胞(MRC5)]を培養する培養液中に、ゼラチン-液体金属ナノ粒子を、添加量を変えて投与・分散させ、24時間後に細胞内小器官であるミトコンドリアの活性を指標として細胞生存率を測定した結果、細胞生存率の低下は見られず、細胞毒性はなかった(図3)。また、ゼラチン-液体金属ナノ粒子をマウスの静脈から投与し、生体適合性を血液検査(1週間調査)と体重測定(約1ヵ月調査)により評価したが、いずれの項目でもゼラチン-液体金属ナノ粒子が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発した生体高分子のナノ粒子コーティング技術が、革新的がん診断・治療法の基礎に成り得ることを示すだけでなく、ナノテクノロジー、光学、量子ビーム工学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、2021年12月20日に先端材料分野のトップジャーナル「Applied Materials Today」誌(Elsevier発行)のオンライン版に掲載された。なお、本研究は、日本学術振興会科研費(基盤研究A)及び総合科学技術・イノベーション会議 官民研究開発投資拡大プログラム(Public/Private R&D Investment Strategic Expansion PrograM:PRISM)の支援のもと行われたものである。
図1. ガンマ線を利用した生体分子-液体金属ナノ複合体の合成と当該ナノ粒子を活用した光がん療法の概念。
LM: 液体金属、NIR: 近赤外、FL: 蛍光。
図2. ナノ粒子をがん患部に集積・可視化(左)し、光照射によりがんを治療(右)。
図3. CCK-8法によるゼラチン-液体金属ナノ粒子の細胞毒性評価。
赤:マウスの大腸がん細胞、グレー:ヒトの正常細胞、
RIPA: Radioimmunoprecipitation Buffer(細胞や組織の溶解に
使用される緩衝液、本実験の陽性対照に利用)
【論文情報】
掲載誌 | Applied Materials Today |
論文題目 | Sonication- and γ-ray-mediated biomolecule-liquid metal nanoparticlization in cancer optotheranostics |
著者 | Qi Yun, Atsushi Kimura, Mitsumasa Taguchi, Eijiro Miyako* |
掲載日 | 2021年12月20日にオンライン版に掲載 |
DOI | 10.1016/j.apmt.2021.101302 |
【関連研究情報】
北陸先端科学技術大学院大学(JAIST)、先端科学技術研究科物質化学領域の都研究室では、近赤外レーザー光により容易に発熱するナノ材料の特性(光発熱特性)に注目し、これまでに、"三種の神器"を備えた多機能性グラフェン(2020年4月23日 JAISTからプレス発表)、ナノテクノロジーと遺伝子工学のマリアージュ(2020年8月17日 JAISTからプレス発表)、がん光細菌療法の新生(2021年2月16日JAISTからプレス発表)などの光がん療法を開発している。
量子科学技術研究開発機構(QST)、先端機能材料研究部プロジェクト「生体適合性材料研究」では、量子ビーム微細加工技術による先端医療デバイスの創製の一環として、これまでに、診断や創薬における微量検体の分析性能が数10倍に!(2019年6月25日 QSTからプレス発表)、平面状の細胞シートが立体的に!細胞が自分の力でシートを3次元化(2021年7月14日QSTからプレス発表)などの機能性材料作製技術を開発している。
【用語説明】
*1 ガンマ線
ガンマ線とは、放射性同位元素(コバルト60など)の崩解によって放出される量子ビームの一種。
*2 液体金属
室温以下あるいは室温付近で液体状態を示す金属のこと。例えば、水銀(融点マイナス約39℃)、ガリウム(融点約30℃)、ガリウム-インジウム合金(融点約15℃)がある。
*3 コア-シェル型
コアは核、シェルは殻を意味し、一つの粒子で核と殻の素材が異なるものをこのように呼ぶ。
*4 EPR効果
100nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみがん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
*5 近赤外レーザー光
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
令和3年12月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/12/21-1.html原子層材料グラフェンを用いたナノセンサー素子で二酸化炭素分子一個の検出に成功

原子層材料グラフェンを用いたナノセンサー素子で二酸化炭素分子一個の検出に成功
- 超高感度・超小型パーソナル環境センシング応用に期待 -
ポイント | |||
|
|||
|
|||
|
<開発の背景と経緯> | |||
原子層材料であるグラフェンは、その優れた電気的特性に加え、シリコンと比べて1桁以上高いヤング率(材料の弾性係数)と、引っ張り応力に対して約20%の格子変形にも耐える機械的特性も有していることから、ナノ電子機械システム(NEMS)への応用が期待されています。さらに表面対体積比率が極めて高いことから、高感度センサーの材料としても大きな期待が寄せられています。水田らのグループは、グラフェンNEMS複合機能素子の研究にいち早く着手し、科学研究費助成事業・基盤研究(S)において、超高感度・環境センサーとパワーマネジメント素子を融合したオートノマス・複合機能センサーの開発に取り組んできました。近年、シックハウス症候群に代表される個人の生活空間レベルでの空気汚染に起因する健康障害が深刻な問題となっていますが、建材やインテリア素材、家具などから発生する化学分子ガスは一般に濃度がppbレベルと非常に希薄で、既存のガスセンサー技術で検出することは極めて困難です。今回の単一CO2分子検出成功は、グループが世界に先駆けて構築してきたグラフェンNEMS素子に関するリーディング技術と、吸着分子とグラフェン間に生じる相互作用を原子レベルで明らかにするシミュレーション技術を融合させて初めて実現できた成果です。 |
|||
<今回の成果> | |||
グラフェンNEMS作製技術を用いて、半導体基板上に2層グラフェン膜の両持ち梁を作製した後、下部の金電極に電圧を印加することで、グラフェン梁を電極上に引き寄せて付着させ、グラフェン斜め梁を形成しました(図1参照)。非常に希薄なCO2ガスを導入し、グラフェン斜め梁の電気抵抗を時間的にモニターしましたが、この状態では分子吸着に伴う信号は検出されません(図2(b)内の黒点データ)。しかし、半導体基板に電圧を加えて電界を発生させると、グラフェン梁の電気抵抗に、CO2分子一個一個がグラフェン梁表面に吸着・離脱したことを示す量子化された変化(一定の値で抵抗が増減すること)が観測されました(図2(b)内の青点とピンク点データ)。これは、基板から印加した電界によってCO2分子内にわずかな分極が生じ、それと基板からの電界の相互作用によってCO2分子がグラフェン梁表面に引き寄せられるからです(図3参照)。 |
|||
<今後の展開> | |||
今回の実験では、分子内の分極がゼロで電気的な検出が困難と考えられていたCO2分子を用いましたが、今後はシックハウス症候群の原因となっているホルムアルデヒドやベンゼンなど揮発性有機化合物ガスを用いた検証実験を進めていきます(図4参照)。また、グラフェン梁の幅をシングルナノメートル(10ナノメートル未満)に超微細化することで検出感度を更に向上させるとともに、基板から印加する電界の強度とグラフェンNEMS構造のデザインを最適化することで検出速度の向上を図ります。さらに、本プロジェクト内で並行して開発を進めているグラフェンNEMSスイッチを、本センサー回路のパワーゲーティング素子として集積化することで、センサーシステムの待機時消費電力をシャットアウトし、バッテリーの寿命を飛躍的に延ばすことを試みます。 |
|||
<用語説明> | |||
|
<参考図> |
![]() 図1 (a)作製した2層グラフェンNEMSセンサーの構造、(b)斜めグラフェン梁の模式図、(c)実際に作製した素子の原子間力顕微鏡写真 |
![]() 図2 (a)吸着したCO2分子によるグラフェン梁電気抵抗変化を説明する模式図、(b)実際に観測された電気抵抗変化の時間依存性(黒点:基板電圧オフの場合、青点:基板に正電圧印加の場合、ピンク点:基板に負電圧印加の場合)、(c)電気抵抗変化の統計分布。'抵抗変化の量子化'を示している。 |
![]() 図3 斜め2層グラフェン梁の表面に物理吸着するCO2分子の様子を分子動力学でシミュレーションしている途中経過(左)。2層グラフェン表面付近での静電ポテンシャル分布。ポテンシャルの高い領域(黒い部分)に吸着CO2分子がトラップされる様子を示している(右上)。基板電界をオフにした場合、CO2分子が離れて行く軌跡を示している(右下)。 |
![]() 図4 シックハウス症候群、シックカー症候群などの原因となる揮発性有機化合物ガス分子の一例。表中の数字は、WHOから示されている8時間での限界濃度値で一桁のppbレベルでの検出精度が要求されることを示している。 |
![]() 図5 本研究成果に対するイメージ図 |
平成28年4月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/04/18-1.html【12/14(水)開催】ナノマテリアル・デバイス研究領域、国際シンポジウム 2022 JAIST International Symposium of Nanomaterials and Devices Research Area "Quantum Devices and Metrologies"
開催日 | 令和4年12月14日(水) |
実施方法 | 現地開催、ネット配信(ハイブリッド方式) |
会 場 | 北陸先端科学技術大学院大学 知識科学系中講義室(石川県能美市旭台1-1) |
講演者 | キーノート講演者 阿部 英介 氏(理化学研究所、量子コンピュータ研究センター) 福間 剛士 氏(金沢大学、ナノ生命科学研究所、所長、教授) 本学講演者 大島 義文 教授 (ナノマテリアル・デバイス研究領域) 高村由起子 教授 (ナノマテリアル・デバイス研究領域) 安 東秀 准教授 (ナノマテリアル・デバイス研究領域) |
言 語 | 英語 |
申込み | 以下の申込フォームより、参加ご希望の方は12/5(月)までにお申し込みください。 https://forms.gle/tyk9v775xJdFLFzh8 |
サスティナブルイノベーション研究領域の水田教授が応用物理学会からフェロー称号を受理

サスティナブルイノベーション研究領域の水田 博教授に公益社団法人応用物理学会からフェローの称号が授与され、表彰を受けました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を行っています。公益性の高い学会として広く活動を展開し、社会連携事業にも取り組んでいます。
*参考:公益社団法人応用物理学会ホームページ
■フェローの概要等
「応用物理学会フェロー表彰」制度は、同学会の会員表彰制度の一環として、2006年に創設されました。この表彰制度は、同学会における継続的な活動を通じて、学術・研究における業績、産業技術の開発・育成における業績、教育・公益活動を通した人材育成や教育における業績などにより、応用物理学の発展に貢献した在籍累計年数10年以上の正会員を対象とし、特に貢献が顕著であると認められた会員を表彰するものです。また、フェローの人数は同学会個人会員数の3%程度と定められています。
*参考:第16回(2022年度)応用物理学会フェロー表彰者
■授与日
令和4年9月20日
■表彰内容
ナノメータスケール電子-機械複合機能素子の研究
■水田教授からの一言
本フェロー表彰の対象となった研究は、企業から大学に異動した2003年頃に「従来の電子デバイスの中に機械的に動くパーツを入れたら面白いことができるのでは?」という単純な発想で開始したものです。約20年にわたり東工大、サウサンプトン大、本学と職場を移しながら継続し、特に本学ではグラフェンなど原子層材料を用いて、気相単分子センシングやナノスケール熱制御素子などの極限機能素子について原理探索から社会実装までを進めてきました。英国で働いた期間も長かったのですが、その間、応用物理学会では200件超の発表、分科会・研究委員会幹事、シンポジウム世話人、また応物主催/共催の国際学会の実行委員長・論文委員長など、微力ながら学会の活動に参画させていただきました。これらはひとえに学内外の多くの方々からいただいた多大なご支援、特に研究室の同僚の方々・学生の皆さんのご協力の賜物です。この場をお借りして心より御礼を申し上げます。
*水田教授は2012年に英国物理学会(IOP)フェローの称号も受理しています。
![]() 表彰を受けた水田教授(左) |
![]() |
![]() |
![]() |
記念盾とフェローバッジ |
令和4年9月21日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/09/21-1.html世界初!個々の原子間の結合強度の測定に成功 ―強くて伸びる白金原子の鎖状物質―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 金沢大学 |
世界初! 個々の原子間の結合強度の測定に成功
―強くて伸びる白金原子の鎖状物質―
ポイント
- 個々の原子の並びを見ながら、その結合強度を測る手法(顕微メカニクス計測法)の開発
- 白金原子が一列に並んだ鎖状物質を作製し、その結合強度を測定
- 結合強度が高く、よく伸びる白金原子の鎖状物質
- 原子スケールで制御された機能性物質探索への期待
北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の大島 義文教授、富取 正彦教授、張家奇 大学院生(博士後期課程)、石塚慧介 大学院生(博士後期課程)、環境・エネルギー領域の前園 涼教授、本郷 研太准教授、及び金沢大学・理工研究域 数物科学系の新井 豊子教授は、International School for Advanced Studies (SISSA)のErio Tosatti教授との共同研究で、物質を構成する個々の原子の並びを観察しながら、その結合強度を計測できる顕微メカニクス計測法を開発した。この手法を使って、白金原子が一列に並んだ鎖状物質が強い結合強度を持つとともに、白金の塊(バルク)と比較してかなり大きく引き伸ばしても破断しないという特異な性質を持つことを発見した。実験結果を第一原理計算で解析したところ、この鎖状物質は、エネルギーが最小になる安定構造を取っているわけではなく、その形成に必要な張力が極小な構造であることを突きとめた。この鎖状物質がもつこの特有な性質の解明は、今後ますます期待される原子スケールで制御された機能性物質の創製に指針を与える大きな成果である。 本研究成果は、2021年4月29日(米国東部標準時間)に科学雑誌「Nano Letters」誌のオンライン版で公開された。なお、本研究は、日本学術振興会(JSPS)科研費, 18H01825, 18H03879、笹川科学研究助成, 2020-2006、ERC ULTRADISS Contract No. 834402, the Italian Ministry of University and Research through PRIN UTFROM N. 20178PZCB5の助成を受けて行われた。 |
原子が鎖状に並んだ1次元物質の力学的性質は、同じ組成や構造を持つバルク物質と大きく異なることが理論計算によって予想されていた。しかし、1次元物質の性質はわずかな原子の変位にも敏感に変化するため測定例が少なく、解明が進んでいない。原子配列構造とその力学的性質の相関を明らかにできれば、1次元物質などの性質を決めるメカニズムの解明に繋がる。このメカニズムこそが、1次元物質を活用した新しい原理で動作する電子デバイスやセンサー開発の指針となる。
最近、私たちは、原子配列を直接観察できる透過型電子顕微鏡(TEM)のホルダーに細長い水晶振動子を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする顕微メカニクス計測法を世界で初めて開発した(図1)。この手法では、水晶振動子の共振周波数が、物質との接触で相互作用を感じることによって変化することを利用する。共振周波数の変化量は物質の等価バネ定数に対応するので、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)で、TEMによる原子像がぼやけることはない。この手法は、従来の手法(小さなSi製テコを利用してその変位から力を計測する手法、TEM-AFM法[*1])では困難だった結合強度の高精度測定を実現している。
本研究では、このTEMホルダー内部で白金原子鎖を150個作製してその特性を詳細に調べ、白金原子鎖における原子結合強度が25 N/mであることを突きとめた。この値は、白金のバルク結晶の原子結合強度20 N/mよりも25%高い。また、原子間結合の長さ(0.25 nm)は最大0.06 nmも延びることが分かった。これは原子結合の最大弾性ひずみが24%になることを示しており、バルク結晶の値(5%以下)と比較して著しく高い(図2)。さらに、第一原理計算の結果を合わせて考察することで、このような特異な原子結合の性質は、白金原子鎖がエネルギー的に最安定な構造ではなく、形成に必要な張力が極小となる構造を取ることによって生まれることがわかった。
本研究は、1次元物質がもつ特異な原子結合に関わる性質を明らかにし、理論計算と組み合わせることによって形成メカニズムを突きとめた点に大きな成果がある。今後ますます期待される原子スケールで制御された機能性物質の創製に指針を与える大きな成果である。
図1.個々の原子の並びを観察しながら、原子間の結合強度を計測する顕微メカニクス計測法。透過型電子顕微鏡(TEM)を用いてナノ物質の構造観察をしながら、長辺振動水晶振動子(LER)を用いて物質の結合強度を計測できる。この測定によって、赤矢印で示す部位の白金原子鎖の原子間結合強度が25 N/mであることがわかった。
図2. 左上は透過型電子顕微鏡(TEM)像、左下はそのシミュレーション像である。原子4個からなる原子鎖が得られている。その観察時に測定された電気伝導(コンダクタンス量子単位G0でプロット)とばね定数の時間変化を、それぞれ右上と右下に示す。赤い矢印で示す領域は形成した原子鎖を破断することなく引っ張ることができた時間帯である。毎秒0.08 nmの速度で引っ張っており、白金原子鎖は破断なく約0.1 nm伸びた。
【論文情報】
雑誌名 | Nano Letters |
題名 | Peculiar Atomic Bond Nature in Platinum Monatomic Chains |
著者名 | Jiaqi Zhang, Keisuke Ishizuka, Masahiko Tomitori, Toyoko Arai, Kenta Hongo, Ryo Maezono, Erio Tosatti, Yoshifumi Oshima* |
掲載日 | 2021年4月29日(米国東部標準時間)にオンライン版に掲載 |
DOI | 10.1021/acs.nanolett.1c00564 |
【用語解説】
[*1] TEM-AFM法(透過型電子顕微鏡と原子間力顕微鏡を組み合わせた測定法)
従来の測定法の一つ。ナノ物質に接触したSiカンチレバーを引っ張ると、Siカンチレバーがたわむ(変位する)。このたわみ(変位)から、ナノ物質に負荷されている力を求める。一方、この負荷された力によって変形したナノ物質を透過型電子顕微鏡によって計測することで、このナノ物質の機械的強度を得る。ただし、10 nm以下のサイズをもつナノ物質は1Åしか変形しない(原子間距離は2-3Åである)。このような変形を高い精度で測定することは難しく、ナノ物質の強度測定にばらつきが出てしまうという課題があった。
令和3年4月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/04/30-1.html学生の中村さんが令和2年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞

学生の中村 航大さん(博士前期課程1年、環境・エネルギー領域、大平研究室)が令和2年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。
北陸・信越支部発表奨励賞は、応用物理学会北陸・信越支部が開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的として授与されるものです。
今回、令和2年度応用物理学会北陸・信越支部学術講演会は、11月28日にオンラインで開催されました。
■受賞年月日
令和2年11月28日
■発表題目
封止材無しn型フロントエミッタ型結晶Si太陽電池モジュールの電圧誘起劣化
■講演の概要
近年、太陽光発電システムの導入が急増しているが、そのほとんどは、モジュールに封止材を有している。封止材を有した結晶シリコン(c-Si)太陽電池モジュールは、いくつか問題点があり、その一つである電圧誘起劣化(PID)は、太陽電池モジュールのアルミフレームとセル間の電位差に起因して性能が低下する現象である。PIDは、Na+侵入や電荷蓄積が封止材を経由して起きるため、封止材を無くせばこの問題は解決できると考えられる。本研究では、今後の普及が期待される、n型c-Siを基板に用い、光入射側にp型エミッタ層があるn型フロントエミッタ型c-Si太陽電池モジュールを作製し、封止材の有無がPIDにおよぼす影響を調査した。封止材の無いモジュールでは、SiNx膜からの電子移動やNa+の侵入の経路が存在しないため、性能低下が抑制できた。また、わずかに電荷蓄積型のPIDが見られたのは、リーク電流の経路を介してSiNx膜から電子が流出することにより正電荷が蓄積し、表面再結合が増大したためと考えられる。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。ご指導いただいた、大平圭介教授、Huynh Thi Cam Tu特任助教ならびに研究室のメンバーには厚く御礼申し上げます。本受賞を励みに、今後もより一層精進して参りたいと思います。
令和2年12月7日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/12/7-2.htmlNEDO「ムーンショット型研究開発事業」研究開発プロジェクトに採択
![]() |
国立大学法人北陸先端科学技術大学院大学 |
このたび、北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)ら8機関による提案研究が、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の「ムーンショット型研究開発事業※」におけるムーンショット目標4「2050年までに、地球環境再生に向けた持続可能な資源循環を実現」の達成を目指す研究開発プロジェクトに採択されました。
1)ON型光スイッチ:陸域の生活圏では材料として安定ですが、投棄後に海洋流出するまでの過程で生じる表面損傷などにより太陽光がプラスチック内部に届き生分解が始まる(ON)スイッチです。 2)OFF型光スイッチ:蛍光灯や太陽光暴露のある状態では生分解が抑制(OFF)され、海中・海底・コンポストなどの暗所の環境で生分解が始まるという「光スイッチ」です。 3)また、これらを具有させたON/OFF型という理想的システムも同時に提案します。 さらには、海洋生物が誤飲したり周りまわって人間の食料中に混ざり込んでも消化管内で物理的障害や化学的毒性を生じない「食せるプラスチック」の開発も目指します。 2030年にはこれらの海洋実環境における分解性を証明し衣料品やビニール袋などの試作品を作製します。さらに、上記のシステムは広範囲のプラスチックに適用できるため、2050年までにはさらに多くのプラスチックへと展開し様々な種類や形態の光スイッチ型分解性プラスチック製品へと展開します。本プロジェクトは、二酸化炭素の固定化、炭素循環および窒素循環などの概念を取り入れた統合的な地球環境保全・再生に資するものです。加えて、本プロジェクトは、成熟期に差し掛かってきた我が国の石油化学産業をバイオ化学産業に業態転換せしめ、新たな成長に向けたパラダイムチェンジ型イノベーションの一端を担う可能性を有します。 |
<参 考>
1 ムーンショット型研究開発制度
本制度の詳細については、以下を参照
https://www8.cao.go.jp/cstp/moonshot/index.html
2 ムーンショット目標
2020年1月CSTIにおいてムーンショット目標1~6が決定。2020年7月には健康・医療戦略推進本部においてムーンショット目標7が決定
目標1:2050年までに、人が身体、脳、空間、時間の制約から解放された社会を実現
目標2:2050年までに、超早期に疾患の予測・予防をすることができる社会を実現
目標3:2050年までに、AIとロボットの共進化により、自ら学習・行動し人と共生するロボットを実現
目標4:2050年までに、地球環境再生に向けた持続可能な資源循環を実現
目標5:2050年までに、未利用の生物機能等のフル活用により、地球規模でムリ・ムダのない持続的な
食料供給産業を創出
目標6:2050年までに、経済・産業・安全保障を飛躍的に発展させる誤り耐性型汎用量子コンピュータを実現
目標7:2040年までに、主要な疾患を予防・克服し100歳まで健康不安なく人生を楽しむための
サステイナブルな医療・介護システムを実現
3 NEDOムーンショット型研究開発事業の採択結果
https://www.nedo.go.jp/news/press/AA5_101346.html
令和2年9月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/09/7-1.html学生の秦野さんが令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞
学生の秦野加奈さん(博士前期課程2年、応用物理学領域、水谷研究室)が令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材、環境材料など、工学と物理学の接点にある最先端課題、学際的なテーマ、社会問題解決に取り組みながら学術活動を続けています。
応用物理学会北陸・信越支部学術講演会発表奨励賞は、応用物理学会北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的とし授与されるものです。
令和元年度応用物理学会北陸・信越支部学術講演会は、12月7日に福井県福井市において開催されました。
■受賞年月日
令和元年12月7日
■研究タイトル
光第二高調波を用いたサクラン水溶液の動的観察
■発表者
秦野加奈、李彦蓉、趙越、Khuat Thi Thu Hien, 水谷五郎、桶葭興資、岡島麻衣子、金子達雄
■研究概要
サクランは2007年にJAISTの金子 達雄教授と岡島研究員(環境エネルギー領域、金子研究室)により発見された高分子多糖類です。本研究ではフェムト秒レーザーを用いた光第二高調波(SHG)顕微鏡により、対称性の破れという観点から、サクラン水溶液が乾燥する過程でどのように変化するかをとらえることを試み、水溶液中のサクランから発生する第二高調波を観察することに成功しました。また、実際に観察されたトーラス状の形をした20m程度のサイズのSHGスポットの発生は興味深いものであり、これよりサクラン水溶液中のマランゴニ対流についての新たな知見が得られる可能性があります。
■受賞にあたっての一言
サクラン研究会に続き、SHGを使ったサクラン研究に興味と意義を感じて頂けたことを大変光栄に思います。日頃からご指導いただいている水谷先生、金子先生、また両研究室でお世話になっている皆さまにこの場をお借りして御礼申し上げます。
令和2年1月15日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/01/15-1.html学生の平松さんが令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞
学生の平松 考樹さん(博士前期課程2年、応用物理学領域、村田研究室)が、令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、発表奨励賞を授与し、その功績を称えることを目的としています。
令和元年度応用物理学会北陸・信越支部学術講演会は、12月7日に福井県福井市において開催されました。
■受賞年月日
令和元年12月7日
■研究題目、論文タイトル等
ケイ素含有イオン液体を用いた高効率電気化学発光セルの作製とその動作機構の解明
■研究者、著者
平松 考樹、鈴木 貴斗、村田 英幸
■受賞対象となった研究の内容
電気化学発光セル (LEC)は、発光層が発光材料および電解質からなる発光素子です。素子に電圧を印加すると電解質由来のイオンが分極し、電気二重層とp、nドープ領域を形成することで電荷の注入および輸送を促進するため、有機ELと比較しシンプルな層構造で発光できる素子となっています。LECでは電解質のアニオンとカチオンの構造が電気二重層およびp、nドープ領域の形成に影響し、電荷バランスを決定します。本研究ではイオン液体をLECの電解質に使用しており、そのアニオンおよびカチオンの構造により電荷バランスを制御することで高効率発光を実現しました。
■受賞にあたっての一言
応用物理学会北陸・信越支部学術講演会にて、発表奨励賞をいただけましたこと大変光栄に思っております。本研究を進めるにあたりご指導いただきました村田教授、卒業生の鈴木貴斗様 (現 日清紡ホールディングス (株))をはじめ、多くのご助言をいただきました研究室の皆様にこの場をお借りして、心より御礼申し上げます。
令和元年12月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/12/17-1.html蛍光タンパク質フォトルミネッセンスの電気制御に成功
蛍光タンパク質フォトルミネッセンスの電気制御に成功
ポイント
- 蛍光タンパク質とは下村脩らが発見したGFP及びその類縁分子の総称で、大きさおよそ4ナノメートル、基礎医学・生物学研究に広く利用されている。今回、金属と水溶液の界面に蛍光タンパク質を配置し、そのフォトルミネッセンス(蛍光)を電気制御することに世界で初めて成功した。
- この原理をもとに、蛍光タンパク質を用いた微小ディスプレイの作成と動作にも成功した。
北陸先端科学技術大学院大学(JAIST)(学長・浅野哲夫、石川県能美市)の先端科学技術研究科のTRISHA, Farha Diba(博士後期課程学生)、濱宏丞(博士前期課程学生・研究当時)、生命機能工学領域の今康身依子研究員、平塚祐一准教授、筒井秀和准教授らの研究グループは、蛍光タンパク質のフォトルミネッセンス(蛍光)を電気的に制御する手法を世界で初めて確立し、この原理を用いた微小ディスプレイの作成と動作に成功した。
蛍光タンパク質とは、下村脩らによりオワンクラゲから最初に発見された緑色蛍光タンパク質(GFP)及びその類縁分子の総称で、大きさおよそ4ナノメートル、成熟の過程で自身の3つのアミノ酸が化学変化を起こし明るい蛍光発色団へと変化する。生体内の細胞や分子を追跡したり、局所環境センサーを作ったりすることが可能になり、GFPの発見は2008年のノーベル化学賞の対象になった。蛍光タンパク質は多様な光学特性を示すことでも知られ、例えば、フォトスイッチングという現象を使うと、蛍光顕微鏡の空間解像度を格段に良くすることができ、その技術も2014年のノーベル化学賞の対象に選ばれた。 研究グループは、金薄膜に蛍光タンパク質を固定化し、±1~1.5V程度の電圧を溶液・金属膜間に印加することによりフォトルミネッセンスが最大1000倍以上のコントラスト比で変調される現象を発見した。またこの原理に基づいた、大きさ約0.5ミリのセグメントディスプレイの試作と動作に成功した(下図)。 本成果は、5月8日(水)に「Applied Physics Express (アプライド・フィジックス・エクスプレス)」誌に掲載された。 なお、本研究は、国立研究開発法人理化学研究所・光量子工学研究センターとの共同研究であり、また、科学研究費補助金、光科学技術振興財団、中部電気利用基礎研究支援財団などの支援を受けて行われた。 |
<今後の展開>
基礎医学・生物学研究で広く使われている蛍光タンパク質の性質は、溶液や細胞内環境において詳しく調べられてきた。今回、金属―溶液の界面という環境において、新たな一面を示すことが明らかになった。現状での表示装置としての性能は既存技術に比べれば動作速度や安定性の点で及ばないものの、今後、電気制御メカニズムの詳細が明らかになれば、蛍光タンパク質の利用は、分子センサー素子など、従来の分野を超えてより多様な広がりをみせる可能性がある。
<論文情報>
"Electric-field control of fluorescence protein emissions at the metal-solution interface"
(金属・溶液界面における蛍光タンパク質発光の電圧制御)
https://iopscience.iop.org/article/10.7567/1882-0786/ab1ff6
T. D. Farha, K. Hama, M. Imayasu, Y. Hiratsuka, A. Miyawaki and H. Tsutsui
Applied Physics Express (2019)
令和元年5月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/05/16-1.html高分子の相転移を利用した人工光合成に成功-可視光エネルギーによる高効率な水素生成を達成-

高分子の相転移を利用した人工光合成に成功
-可視光エネルギーによる高効率な水素生成を達成-
ポイント
- 実際の光合成に習った光エネルギー変換システムの構築
- 高分子の可逆的相転移挙動を利用して高効率な水素生成に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、先端科学技術研究科環境・エネルギー領域の桶葭興資講師らは東京大学大学院の吉田亮教授と共同で、電子伝達分子を持つ刺激応答性高分子を合成し、高分子の相転移によって電子伝達を加速させる人工光合成システムを構築した。
石油ショック以来、持続可能社会の実現に向けて人工光合成*1が注目を浴び、様々なシステムが考案されてきた。しかし、実際の葉緑体が持つ光合成システムにあるような、水分子との連動的な電子伝達組織の構築が未だ提案されてこなかった。これに対し本研究では、機能分子間の電子伝達に駆動力が生じるよう、高分子の相転移を利用した人工光合成システムを設計した。 まず、刺激応答性高分子*2のポリ(N-イソプロピルアクリルアミド)(poly(NIPAAm))*3に電子伝達分子ビオロゲン*4を導入すると、その酸化/還元*5状態によって高分子の相転移*6温度が異なることを見出した。この高分子poly(NIPAAm-co-Viologen) は一定温度下で酸化/還元変化により可逆的なコイル - グロビュール転移*7を伴い、加速的に電子伝達して水素を生成する。光エネルギーが与えられた際、光励起電子をビオロゲン分子が受けると、その周辺の高分子は疎水的となる。これが、界面活性剤で分散された触媒ナノ粒子近傍の疎水的な空間に潜り込み、電子を渡して水素生成する。実際、可視光エネルギーを用いた水素生成は、相転移温度付近で10%を超え、高い量子効率が達成された。 従来の溶液システムによる人工光合成では、液相中で機能性分子や触媒ナノ粒子が乱雑な分散状態のため電子伝達も乱雑となり、反応が進むにつれて分子凝集による機能低下が問題であった。これとは大きく異なり、粒子間に高分子が介在することで粒子凝集を抑制すると同時に、高分子の相転移によって電子伝達の加速が得られた。 高分子相転移現象は、ソフトアクチュエータ*8やドラッグデリバリーシステム*9の開発に広く利用されてきたが、今回の光エネルギー変換への利用は画期的である。本成果により、可視光エネルギーによる人工光合成システム「人工葉緑体」の構築が期待される。 ![]() 本成果は、4月25日付WILEY発行Angewandte Chemie International Edition (オンライン版) に掲載された。なお、本研究は科学研究費補助金などの支援を受けて行われた。 |
<今後の展開>
可視光エネルギーにより水を完全分解 (2H2O + hν → 2H2 + O2) する反応場として、高分子網目中に機能分子を配置した光エネルギー変換システムを構築することが期待される。
<論文情報>
掲載誌 | Angewandte Chemie International Edition (WILEY) |
論文題目 | Polymeric Design for Electron Transfer in Photoinduced Hydrogen Generation through a Coil-Globule Transition |
著者 | Kosuke Okeyoshi, Ryo Yoshida |
掲載日 | 2019年4月25日付、オンライン版 |
DOI | 10.1002/anie.201901666 |
<用語解説>
*1. 人工光合成
光合成を人為的に行う技術のこと。自然界での光合成は、水・二酸化炭素と、太陽光などの光エネルギーから化学エネルギーとして炭水化物などを合成するものであるが、広義の人工光合成には太陽電池を含むことがある。自然界での光合成を完全に模倣することは実現していないが、部分的には技術が確立している。
*2. 刺激応答性高分子
温度やpHなど外部刺激に応答して可逆的に親・疎水性など物理化学的性質を変化させる高分子のこと。
*3. ポリ(N-イソプロピルアクリルアミド)
この高分子水溶液は、32度付近で下限臨界温度型の相転移挙動を示す。最も広く研究されている刺激応答性高分子。
*4. ビオロゲン
4,4'-ビピリジンの窒素原子上をアルキル化したピリジニウム塩のこと。農薬の他、生物学や光触媒反応、エレクトロクロミック材料などの研究で使用されている。
*5. 酸化/還元
酸化還元反応とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のこと。
*6. 相転移
ある系の相が別の相へ変わることを指す。熱力学または統計力学的において、相はある特徴を持った系の安定な状態の集合として定義される。
*7. コイル - グロビュール転移
分子鎖が広がったランダムコイル状態から凝集したグロビュール状態をとること。またその逆の状態変化のこと。今回の場合、高分子がランダムコイル状態で親水的、グロビュール状態で疎水的な性質を持つ。
*8. ソフトアクチュエータ
軽量で柔軟な材料が変形することによりアクチュエータとして機能する材料、素子、デバイスのこと。
*9. ドラッグデリバリーシステム
体内の薬物分布を量的・空間的・時間的に制御し、コントロールする薬物伝達システムのこと。
令和元年5月15日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/05/15-1.html学生の米澤さんが笹川科学研究助成に採択
学生の米澤 隆宏さん(博士後期課程3年、応用物理学領域、高村研究室)が公益財団法人・日本科学協会笹川科学研究助成に採択されました。
笹川科学研究助成は、課題の設定が独創性・萌芽性をもつ研究、発想や着眼点が従来にない新規性をもつ若手の研究を支援しています。
■採択期間
2019年4月1日~2020年2月10日
■研究課題
界面状態の理解に基づく半導体/絶縁体基板上へのシリセン成長と物性・形成機構の解明
■研究概要
Siの二次元結晶である「シリセン」は理論的に新奇量子現象の発現やそれを利用した次世代電子デバイスへの応用が期待されていますが、合成報告されたシリセンの殆どが金属基板を用いているため、シリセン自体の物性の殆どが未解明のままとなっています。本研究では半導体/絶縁体基板上へのシリセン合成を試み、電子線/X線を用いた分析や原子分解能顕微鏡観察、計算による解析などの多角的な評価を通じて、シリセンの物性・形成機構の解明を目指します。
■採択にあたって一言
私のシリセンに関する研究が伝統のある笹川科学研究助成に採択されたことを大変嬉しく思います。シリセンの物性解明、実用化に向け、本助成を通し、その取り組みを一層と加速したく思います。本研究課題を採択して下さった公益財団法人日本科学協会に心より感謝申し上げます。また、本研究を進めるにあたり多くのご助言を頂きました主指導教員の高村由起子准教授、アントワーヌ・フロランス講師、研究室のメンバー及びスタッフの方々にも深く感謝致します。
令和元年5月10日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2019/05/10-1.html